Characterisation of FAGE apparatus for HOx detection and application in an environmental chamber Frank Alexander Frederick Winiberg Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Chemistry The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2014 The University of Leeds and Frank Winiberg Acknowledgments So this is where I’m supposed to write something nice about people… Well… I tried. Hello. I’m sat writing this with a large Ardmore whiskey at 1.45 am on the day before I’m going to submit, so hopefully by the end, things will still be coherent. I’ve been to a lot of cool places and met a load of interesting people along the way. I’m sure in the rush I’ll forget someone. If it’s you, then there’s a blank page before this one First and foremost, Paul and Dwayne: thank you for offering me the opportunity to stay on after my masters. I’ve had a load of fun within the groups and learnt a lot along the way. Hopefully I’ve not been too much of a burden. Shona: You helped field far too many of my stupid questions in my first couple of years. Thanks for being my personal organiser and providing me with helpful criticism, like “yuk” and “eurgh”. I didn’t flounce out of the room once whilst writing up. Honest. Jess: I honestly can’t believe how patient you’ve been. I think I’ve been living in work and on my laptop for the last two years, and for some reason you’ve understood, let me get on with it and tried to offer me help. You’re clearly as crazy as I originally thought. Mark and Trev: Cheers for the help in the lab. A lot of time was lost on my endless questions about lasers and FAGE, I’m sure. Pete: Cheers for giving me a place to live right at the start of my PhD dude. The North View Hostel was a fun (if cold) place to live. Oh, and the endless Blackadder quotes will never get old, despite what Jenny thinks. Maaaaah! Mum and Dad (a.k.a Gut Bucket): I did it! All that effort you put in to raising the perfect son finally paid off… Yes I am getting a job now (hopefully). No I’m not moving home. Yes I realise so-and-so left uni and dossed around for a year and sponged of his/her parents. Please stop asking. Thanks for being so understanding this last year. Basement guys: Thanks for making that rather Vitamin-D-deficient office a fun place to work. The random conversations and endless cups of tea and coffee have helped me develop a healthy caffeine habit. I think we definitely have more fun than that horrible Dainton lot upstairs. Dainton people: Thanks for letting me get away from those annoying basement dwellers. They’re so chatty and force me to have endless cups of tea. You guys were awesome. Pub trips and late night records/arguments/arguments about records. Fun times. The motivational dances were particularly helpful in the final weeks. Abstract The hydroxyl radical, OH, and the hydroperoxy radical, HO (known collectively as 2 HOx), play a key role in tropospheric chemistry and are intricately related to chemical cycles that control the concentration of greenhouse gases and have important implications for air quality. Through accurate measurements of these two important radicals, and thorough investigation of the chemical mechanisms that control their formation and removal, we can develop a better understanding of atmosphere. Simulation chambers offer the unique ability to study these processes under atmospherically relevant conditions, using a wide variety of instrumentation to probe many different species. The Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) is a stainless steel chamber based at the University of Leeds and was previously designed to operate over a range of temperatures and pressures. HIRAC was implemented to validate important oxidation mechanisms of volatile organic compounds, furthering mechanism databases, such as the Master Chemical Mechanism (MCM). This thesis concentrates on the continued development of a dedicated HOx radical detection instrument, based on laser induced fluorescence spectroscopy at low pressure (fluorescence assay by gas expansion (FAGE)), for use in an atmospheric simulation chamber. In the field, FAGE instruments are designed to operate on board aircraft, which subject the instrument to a range of external operating pressures. Thorough characterisation and calibration of the FAGE instrument was performed using traditional methods, accounting for several factors known to affect instrument sensitivity. This calibration procedure was successfully validated using two newly developed calibration methods for OH and HO , which take advantage of the HIRAC 2 chamber and its ability to operate over a range of temperatures and pressures. After thorough calibration, the instrument was implemented in the investigation of direct OH radical production from the reaction of HO with acetylperoxy radicals in the 2 HIRAC chamber. Reactions of RO radicals with HO have previously been thought to 2 2 be a radical sink in atmospherically pristine environments (i.e., low NOx). However, more recently, higher than anticipated concentrations of OH have been observed in areas where biogenic loadings are high. Recycling of OH from reactions of RO with 2 HO could provide part of the current mechanism shortfall. Acetyl peroxy radicals are 2 of particular importance as they are formed directly from the oxidation of MVK, a major product of isoprene oxidation. Reported here is the first study sensitive to products from all three branching pathways of the reaction. Table of Contents Table of Contents .......................................................................................................... vii List of Figures ................................................................................................................. xi Chapter 1. The tropospheric chemistry of OH and HO radicals ...................................... 1 2 1.1 Motivation and project aims ............................................................................... 2 1.2 Tropospheric chemistry of the hydroxyl radical: an outline .............................. 5 1.3 Comparison of field work with comprehensive reaction mechanisms ............... 7 1.4 HOx chemistry in areas with high biogenic VOC emissions ........................... 10 1.5 Mechanism of the OH initiated oxidation of isoprene ..................................... 13 1.6 HOx radical measurement techniques .............................................................. 15 1.6.1 Calibration methods .................................................................................. 18 1.6.2 HOx measurement interferences ............................................................... 20 1.6.3 Validation through intercomparison ......................................................... 22 1.7 References ........................................................................................................ 24 Chapter 2. The Highly Instrumented Reactor for Atmospheric Chemistry .................... 33 2.1 Introduction ...................................................................................................... 34 2.2 The HIRAC Chamber ....................................................................................... 38 2.2.1 Temperature control .................................................................................. 40 2.2.2 Gas handling and sample preparation ....................................................... 41 2.2.3 Data acquisition ......................................................................................... 42 2.2.4 Artificial light sources ............................................................................... 42 2.3 Instrumentation ................................................................................................. 48 2.3.1 FTIR .......................................................................................................... 48 2.3.2 GC-FID ..................................................................................................... 50 2.3.3 Commercial trace-level gas analysers ....................................................... 53 2.3.4 Dilution compensation system .................................................................. 53 vii 2.4 References ........................................................................................................ 55 Chapter 3. Quantitative FTIR Analysis Techniques ....................................................... 59 3.1 Introduction ...................................................................................................... 60 3.1.1 Peak area/height analysis .......................................................................... 66 3.1.2 Spectral subtraction ................................................................................... 67 3.1.3 Classic Least Squares (CLS) ..................................................................... 69 3.1.4 Inverse Least Squares (ILS): the Multiple Linear Regression method (MLR) 71 3.1.5 PCA and PLS ............................................................................................ 72 3.1.6 Spectral synthesis for quantitative analysis .............................................. 72 3.2 Reference Spectra - Guidelines ........................................................................ 73 3.3 Software Development ..................................................................................... 74 3.3.1 Non-linear least-squares fitting algorithm ................................................ 78 3.4 Results and discussion ...................................................................................... 80 3.4.1 Reaction of Cl atoms with butane isomers................................................ 80 3.4.2 Application to HO + CH C(O)O ............................................................ 83 2 3 2 3.5 Uncertainty analysis ......................................................................................... 86 3.5.1 Manual subtraction .................................................................................... 86 3.5.2 Quant2 ....................................................................................................... 86 3.6 Conclusions and further work .......................................................................... 88 3.7 References ........................................................................................................ 90 Chapter 4. HOx instrumentation ..................................................................................... 93 4.1 Introduction ...................................................................................................... 94 4.2 The FAGE technique ........................................................................................ 95 4.3 FAGE instrumentation ..................................................................................... 97 4.4 FAGE instrument for HOx radical detection in the HIRAC chamber ........... 100 4.4.1 Laser systems and light delivery ............................................................. 103 viii 4.4.2 Reference cell .......................................................................................... 105 4.4.3 Data acquisition ....................................................................................... 105 4.5 Aircraft instrument ......................................................................................... 110 4.6 Summary ........................................................................................................ 112 4.7 References ...................................................................................................... 114 Chapter 5. FAGE Instrument Calibration and Characterisation ................................... 119 5.1 Introduction .................................................................................................... 120 5.2 Water vapour photolysis ................................................................................. 122 5.2.1 Experimental ........................................................................................... 123 5.2.2 Results ..................................................................................................... 126 5.2.3 Uncertainty analysis ................................................................................ 138 5.2.4 Limit of Detection ................................................................................... 139 5.3 Calibration source characterization, F .................................................. 140 184.9nm 5.3.1 N O actinometry...................................................................................... 141 2 5.3.2 O actinometry ........................................................................................ 144 2 5.3.3 Uncertainty analysis ................................................................................ 146 5.3.4 O cross section ....................................................................................... 147 2 5.4 RO interference in HO measurements ......................................................... 152 2 2 5.5 Conclusions and future work .......................................................................... 154 5.6 References ...................................................................................................... 156 Chapter 6. Alternative FAGE calibration methods ....................................................... 161 6.1 Introduction .................................................................................................... 162 6.2 Experimental .................................................................................................. 164 6.2.1 General HIRAC preparation and instrumentation................................... 164 6.2.2 Hydrocarbon decay calibration ............................................................... 165 6.2.3 Formaldehyde photolysis ........................................................................ 170 6.3 Data analysis procedure .................................................................................. 171 ix 6.3.1 Hydrocarbon decay ................................................................................. 171 6.3.2 Formaldehyde photolysis ........................................................................ 175 6.4 Results and discussion .................................................................................... 178 6.4.1 Hydrocarbon decay ................................................................................. 178 6.4.2 Formaldehyde photolysis calibration ...................................................... 181 6.5 Uncertainties ................................................................................................... 184 6.5.1 Hydrocarbon Decay Calibration ............................................................. 184 6.5.2 Formaldehyde photolysis calibration ...................................................... 185 6.6 Conclusions and further work ........................................................................ 186 6.7 References ...................................................................................................... 188 Chapter 7. OH yield measurements from the reaction of acetylperoxy and HO radicals 2 ....................................................................................................................................... 191 7.1 Introduction .................................................................................................... 192 R 7.4c ............................................................................................................................ 192 7.2 Experimental .................................................................................................. 196 7.2.1 Chamber and instrumentation ................................................................. 196 7.2.2 Chemicals, sample preparation and gas handling ................................... 197 7.2.3 Radical generation and experimental process ......................................... 197 7.2.4 Chemical model ...................................................................................... 199 7.3 Results and Discussion ................................................................................... 202 7.3.1 Reaction of C H O with HO ................................................................ 202 2 5 2 2 7.3.2 Reaction of CH C(O)O with HO .......................................................... 209 3 2 2 7.4 Comparison with literature data ..................................................................... 229 7.4.1 Branching ratios ...................................................................................... 229 7.5 Conclusions, atmospheric implications and further work .............................. 231 7.6 References ...................................................................................................... 233 x
Description: