ebook img

characterisation of acoustic waves in optical waveguides PDF

234 Pages·2017·11.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview characterisation of acoustic waves in optical waveguides

City Research Online City, University of London Institutional Repository Citation: Sriratanavaree, S. (2014). The characterisation of acoustic waves in optical waveguides. (Unpublished Doctoral thesis, City University London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/11795/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Sriratanavaree, Suchara (2014). The characterisation of acoustic waves in optical waveguides. (Unpublished Doctoral thesis, City University London) City Research Online Original citation: Sriratanavaree, Suchara (2014). The characterisation of acoustic waves in optical waveguides. (Unpublished Doctoral thesis, City University London) Permanent City Research Online URL: http://openaccess.city.ac.uk/3483/ Copyright & reuse City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages. Versions of research The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper. Enquiries If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at [email protected]. CHARACTERISATION OF ACOUSTIC WAVES IN OPTICAL WAVEGUIDES BY Suchara SRIRATANAVAREE A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT CITY UNIVERSITY LONDON PHOTONICS MODELLING GROUP SCHOOL OF ENGINEERING AND MATHEMATICAL SCIENCES NORTHAMPTON SQUARE, LONDON EC1V 0HB UNITED KINGDOM JANUARY 2014 TABLE OF CONTENTS List of Tables............................................................................................................... vi List of Figures ............................................................................................................ vii Symbols and Abbreviations ...................................................................................... xiv Acknowledgements .................................................................................................. xvii Declaration… .......................................................................................................... xviii Abstract……… ......................................................................................................... xix 1 INTRODUCTION ............................................................... 1 1.1 Introduction to Acoustic Waves.................................................................... 2 1.1.1 Properties of Acoustic plane wave - Wavelength, Frequency and Velocity and their interaction with optical wave ......................... 2 1.2 Nonlinear Scattering Effects ......................................................................... 3 1.3 Stimulated Brillouin Scattering (SBS) and basic theory ............................... 4 1.3.1 Basic Theory ....................................................................................... 5 1.3.2 Physical process .................................................................................. 5 1.3.3 Applications of SBS Phenomenon ...................................................... 7 1.4 Numerical methods ....................................................................................... 8 1.5 Photonics ..................................................................................................... 10 1.6 Aims and Objectives ................................................................................... 10 1.7 Structure of the thesis .................................................................................. 12 1.8 Summary ..................................................................................................... 14 2 ACOUSTIC THEORY ...................................................... 15 2.1 Introduction ................................................................................................ 15 2.2 Sound Wave in Nonpiezoelectric Materials: One Dimensional Theory ..... 16 2.2.1 Stress ................................................................................................. 17 i Table of contents 2.2.2 Displacement and Strain in One Dimensional .................................. 18 2.2.3 Equation of Motion ........................................................................... 19 2.3 Tensor Notation and Constitutive Relations Materials ............................... 19 2.3.1 Displacement and Strain ................................................................... 20 2.3.2 Stress in a Rectangular Cube ............................................................ 20 2.3.3 Hooke’s Law and Elasticity .............................................................. 23 2.3.4 Tensor Notation ................................................................................ 24 2.3.5 Reduced Subscript Notation ............................................................. 25 2.4 Waves in Isotropic Media .......................................................................... 27 2.4.1 Lamb Constants ............................................................................... 27 2.4.2 Shear and Longitudinal Waves ........................................................ 28 2.5 Refraction and Snell's Law ........................................................................ 29 2.5.1 Plane Wave Reflection and Refraction ............................................. 30 2.6 Modes of Sound Wave Propagation ........................................................... 33 2.7 Surface Waves ............................................................................................ 35 2.7.1 Rayleigh Wave in an Isotropic Medium ........................................... 36 2.8 2D Acoustic Waveguide ............................................................................. 38 2.9 Properties of Waves in Waveguide ............................................................. 41 2.10 Mode Classification .................................................................................... 43 2.10.1 Pure Longitudinal Mode ................................................................. 43 2.10.2 Pure Transverse Modes ................................................................... 45 Torsional Mode .......................................................................... 47 Radial Mode ............................................................................... 48 Torsional-Radial Mode .............................................................. 50 2.10.3 Quasi-acoustic Modes ..................................................................... 52 Quasi-Longitudinal ..................................................................... 52 Quasi-Transverse ........................................................................ 53 2.11 Summary ............................................................................................................ 55 3 FINITE ELEMENT METHOD ...................................... 56 3.1 Introduction ................................................................................................ 56 ii Table of contents 3.2 Variational Formulations ............................................................................ 58 3.2.1 Generalization of an Element............................................................ 59 3.3 Discretization of the Problem ..................................................................... 59 3.4 Interpolation Functions and the Shape Function......................................... 60 3.5 Triangle Coordinates in Two dimensions ................................................... 62 3.6 Implementation of the Acoustic Waveguide Code with FEM .................... 64 3.6.1 Finite Element Formulation .............................................................. 66 3.6.2 Generalised Coordinate and the Order of the Polynomials .............. 66 3.6.3 Effect of Crystal Symmetry on Elastic Constants............................. 69 3.7 Benchmarking - Steel Waveguide .............................................................. 73 3.7.1 Comparison of the FEM Numerical Results ..................................... 74 3.7.2 Bending Mode ................................................................................... 78 3.7.3 Torsional Mode ................................................................................. 82 3.7.4 Hybridness ........................................................................................ 85 3.8 Summary ..................................................................................................... 86 4 SILICA FIBRES ................................................................ 87 4.1 Introduction ................................................................................................ 87 4.2 Weakly Guiding Silica Fibres ..................................................................... 88 4.2.1 Case 1: Shear Modes ......................................................................... 88 4.2.2 Case 2: Longitudinal Modes ............................................................. 95 4.2.3 Case 3: ∆V /V ≪1 and ∆V /V ≪1 ................................................ 96 L L S S 4.3 Silica Nanowires ....................................................................................... 100 4.3.1 Silica Nanowire with an Acoustic Low Index Cladding ................ 100 4.3.2 Studied of the Optical Waveguide for the Designs of Acousto-optic Interaction ....................................... 101 4.3.3 The Analysis of the Acousto-optic Interaction with Waveguide Mode at Radius, R=0.6 μm .......................................... 102 4.3.4 Stimulated Brillouin Scattering (SBS) Generation ......................... 105 4.4 Summary .................................................................................................. 107 iii Table of contents 5 SILICA RECTANGULAR WAVEGUIDE .................. 108 5.1 Introduction ............................................................................................... 108 5.2 Weakly Guiding SiO Rectangular Waveguide ........................................ 109 2 5.2.1 The Comparison of Two Different Dimensions of Waveguides .... 110 5.2.2 Effect of the Width Variation ......................................................... 118 5.2.3 Variation of the Waveguide Widths with Different Frequencies ... 119 5.2.4 Results of the Overlap Between Optical and Acoustic Modes ....... 121 5.3 Strongly Guiding Silica Rectangular Waveguide ..................................... 128 5.3.1 Waveguide Structure ....................................................................... 128 5.4 Acousto-optic Interaction .......................................................................... 146 5.4.1 Study of the Waveguide when H is Varied ..................................... 148 5.4.2 Study of the Waveguide when W is Varied .................................... 151 5.5 Strip waveguide ........................................................................................ 154 5.5.1 Study of Longitudinal modes in Porous Silicon Waveguide .......... 154 5.5.2 Study of Overlap Between Optical and Acoustic Modes ............... 157 5.5.3 Study of Shear modes in Silicon Strip Waveguide ......................... 161 5.5.4 Study of the PS Waveguide when Width (W) is Varied ................. 164 5.6 Summary ................................................................................................... 166 6 SLOT WAVEGUIDE ...................................................... 167 6.1 Introduction ............................................................................................... 167 6.2 Analysis of the Slot Waveguide ................................................................ 168 6.2.1 Waveguide Structure ....................................................................... 168 6.2.2 Study of Slot Waveguide Acoustic Modes ..................................... 170 6.3 Acousto-optic Interaction in Slot Waveguide ........................................... 176 6.3.1 Effect of Slot Width (W ) ............................................................... 178 S 6.3.2 The SBS Frequency ........................................................................ 178 6.3.3 Varied Height (H) of the Slot.......................................................... 181 6.3.4 Varied Width W (Si) on the Side of Slot ........................................ 182 6.4 Summary ................................................................................................... 184 iv Table of contents 7 CONCLUSION AND SUGGESTIONS FOR FURTHER WORK ......................................................... 185 7.1 Conclusion .................................................................................................. 185 7.2 Suggestions for future work ........................................................................ 192 Appendix A: Stress, Strain and Reduced Notation ............................................... 193 Appendix B: References ....................................................................................... 206 v LIST OF TABLES Chapter 2 Table 2.1 Tensor and vector components .................................................................................. 25 Table 2.2 Example of the reduced tensor notation ..................................................................... 25 Table 2.3 Relations between the various elastic constants and Poisson’s ratio σ for an isotropic solid .................................................................................................. 28 Table 2.4 Summarized possible wave modes in solid ................................................................ 34 Chapter 3 Table 3.1 Material properties of steel and xenon gas used in this work .................................... 74 Table 3.2 The eigenfrequency of the first two Steel waveguide modes with Atkin's extrapolation calculation and comparison with references papers ................. 74 Chapter 4 Table 4.1 Material properties of a silica waveguide used in this work ...................................... 88 Table 4.2 Material properties of silica and xenon waveguide.................................................. 100 Chapter 5 Table 5.1 Material properties of silica with 3% Ge doped silica ............................................. 109 Table 5.2 Material properties and elastic stiffness constants for the strip waveguide ............. 154 Table 5.3 The material properties of the waveguide ................................................................ 161 Chapter 6 Table 6.1 Material properties and elastic stiffness constants for the slot waveguide ............... 169 vi LIST OF FIGURES Chapter 1 Figure 1.1 Spontaneous Brillouin scattering top and Stimulated Brillouin scattering bottom phenomenon .............................................. 5 Chapter 2 Figure 2.1 (a) Longitudinal wave propagation, (b) shear wave propagation (full cube not shown) ....................................................... 16 Figure 2.2 (a) Stress in the longitudinal direction for a slab of length l, (b) stress in the shear direction .................................................................................... 17 Figure 2.3 Application of general stress components ................................................................... 20 Figure 2.4 The diagram of reflected and refracted longitudinal (V ) wave .................................. 29 L Figure 2.5 Longitudinal wave incident on a free surface. There are two reflected waves: "longitudinal wave" and "shear wave" ........................................................................ 30 Figure 2.6 Shear wave incident on a free surface .......................................................................... 32 Figure 2.7 Longitudinal and shear wave direction of propagation ................................................ 33 Figure 2.8 Configuration for acoustic surface wave analysis ........................................................ 36 Figure 2.9 Isotropic Rayleigh wave velocity V as a function of the bulk shear wave R velocity V and the bulk longitudinal wave velocity V .............................................. 37 s L Figure 2.10 The 2D acoustic waveguide with the propagation direction (a) rectangular and (b) circular ............................................................................................................. 38 Figure 2.11 Wave motion of guided waves in plates for (a) symmetric mode and (b) antisymmetric mode ........................................................................................ 42 Figure 2.12 Wave motion of guided waves in bars or pipes for (a) longitudinal mode, (b) flexural mode and (c) torsional mode ..................................................................... 42 Figure 2.13 U profile of the longitudinal L mode or U mode .................................................... 43 z 01 z Figure 2.14 Higher order longitudinal (a) L (b) L of the U modes ........................................... 44 11 21 z Figure 2.15 Fundamental shear S along y-axis for the U displacement (a) Uy mode, 01 y (b) U displacement (c) propagation in the y direction in fibre .................................... 45 y Figure 2.16 Fundamental shear S for the U displacement (a) Ux mode, 01 x (b) the displacement in the x direction in fibre along x-axis ........................................ 46 Figure 2.17 Fundamental shear S for the vector plot U U U ......................................... 46 01 t x y Figure 2.18 Shear S for the Torsional mode (T) (a) U (b) U displacement in fibre ................... 47 11 x y Figure 2.19 Shear S for the Torsional mode (T) (a) vector plot U U U , 11 t x y (b) the rotation of the twist in the fibre ........................................................................ 48 Figure 2.20 S for the Radial mode (R) (a) U (b) U displacement in fibre .................................. 48 11 x y vii

Description:
5.5.3 Study of Shear modes in Silicon Strip Waveguide . Figure 2.15 Fundamental shear S01 along y-axis for the Uy displacement (a) Uy mode, CHAPTER 1. INTRODUCTION. 10. 1.5 Photonics. Photonics is one of the key enabling technologies (KET) playing an important role in the shaping of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.