ebook img

Chapter 7. Inclusion-Exclusion aka The Sieve Formula PDF

24 Pages·2017·1.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chapter 7. Inclusion-Exclusion aka The Sieve Formula

Chapter 7. Inclusion-Exclusion a.k.a. The Sieve Formula Prof. Tesler Math 184A Winter 2017 Prof. Tesler Ch. 7. Inclusion-Exclusion Math 184A / Winter 2017 1 / 24 !"#$%&'($)*+'& Venn diagram and set sizes 5& 6& { } A = 1, 2, 3, 4, 5 B = {4, 5, 6, 7, 8, 9} /-!-0& ,-.& 1-2-3-4& { } A ∪ B = 1, . . . , 9 { } A ∩ B = 4, 5 /7-//-/!-/0-/,-/.& c { } (A ∪ B) = 10, . . . , 15 8& | | | | A + B counts everything in the union, but elements in the | | intersection are counted twice. Subtract A ∩ B to compensate: | | | | | | | | A ∪ B = A + B − A ∩ B 9 = 5 + 6 − 2 Size of outside region: | c| | | | | | | | | | | | | (A ∪ B) = S − A ∪ B = S − A − B + A ∩ B 6 = 15 − 9 = 15 − 5 − 6 + 2 Prof. Tesler Ch. 7. Inclusion-Exclusion Math 184A / Winter 2017 2 / 24 Size of a 3-way union !"!# !"!#$#!%!# !"!#$#!%!#$#!&!# "# &# "# %# "# %# $%# $%# ('# &'# ('# *(# )(# *(# $%# &'# '(# $%# ('# ('# )(# )(# -./0123# *(# ,(# '# )# &# (# *# +# | | | | | | | | | | | | A A + B A + B + C 2x means the region is counted times. Prof. Tesler Ch. 7. Inclusion-Exclusion Math 184A / Winter 2017 3 / 24 Size of a 3-way union !"!#!$!#!%!&!"∩!"$!!#'!$!#!%!&!"∩!$"!!&!#"!$∩!#%!!%'!&!"∩$!&!"∩%!&!$∩%!' "' $' "' $' "' $' *)' *)' *)' ()' ()' ()' *)' *)' *)' ()' ()' ()' ()' ()' ()' *)' *)' *)' ,-./012' *)' ,-./012' ()' +,-./01' *)' +)' +)' ()' %' %' %' 3' 3' 2' | | | | | | | | | | | | | | | | | | A + B + C A + B + C A + B + C | | | | | | − A ∩ B − A ∩ B − A ∩ B | | | | − A ∩ C − A ∩ C | | − B ∩ C Prof. Tesler Ch. 7. Inclusion-Exclusion Math 184A / Winter 2017 4 / 24 Size of a 3-way union ∩ ∩ ∩ !"!#!$!#!%!&!" $!&!" %!&!$ %! ∩ ∩ #''!" $ %!' "' $' ()' ()' ()' | | | | | | | | A ∪ B ∪ C = ( A + B + C ) ()' | | | | | | − ( A ∩ B + A ∩ C + B ∩ C ) ()' ()' | | + A ∩ B ∩ C +,-./01' ()' *)' %' 2' Prof. Tesler Ch. 7. Inclusion-Exclusion Math 184A / Winter 2017 5 / 24 ∩ ∩ ∩ !"!#!$!#!%!&!" $!&!" %!&!$ %! ∩ ∩ #''!" $ %!' Size of a 3-way union "' $' ()' ()' ()' | | | | | | | | A ∪ B ∪ C = ( A + B + C ) ()' | | | | | | − ( A ∩ B + A ∩ C + B ∩ C ) ()' ()' | | + A ∩ B ∩ C +,-./01' ()' = N − N + N *)' 1 2 3 %' 2' where N is the sum of sizes of i-way intersections: i | | | | | | N = A + B + C 1 | | | | | | N = A ∩ B + A ∩ C + B ∩ C 2 | | N = A ∩ B ∩ C 3 This is called inclusion-exclusion since we alternately include some parts, then exclude parts, then include parts, . . . Prof. Tesler Ch. 7. Inclusion-Exclusion Math 184A / Winter 2017 6 / 24 Size of complement of a 3-way union !"!#$%!&!'!(!'!)!$ ∩ ∩ ∩ $$$$$$$$$#!& (!#!& )!#!( )!'! ∩ ∩ & ( )!*$ &$ ($ | c| | | | | (A ∪ B ∪ C) = S − A ∪ B ∪ C +,$ +,$ +,$ | | = S +,$ | | | | | | − ( A + B + C ) +,$ +,$ | | | | | | + ( A ∩ B + A ∩ C + B ∩ C ) | | ./01234$ +,$ − A ∩ B ∩ C -,$ )$ "$ = N − N + N − N 0 1 2 3 | | where N = S . 0 Prof. Tesler Ch. 7. Inclusion-Exclusion Math 184A / Winter 2017 7 / 24 Inclusion-Exclusion Formula for size of union of n sets a.k.a. The Sieve Formula Inclusion-Exclusion Theorem: Let A , . . . , A be subsets of a finite set S. 1 n | | Let N = S and N be the sum of sizes of all j-way intersections 0 j (cid:88) | | N = A ∩ A ∩ · · · ∩ A for j = 1, . . . , n j i i i 1 2 j (cid:54) (cid:54) 1 i <i <···<i n 1 2 j Then (cid:88)n | | j−1 A ∪ · · · ∪ A = N − N + N − N · · · ± N = (−1) N 1 n 1 2 3 4 n j j=1 (cid:88)n | c| j (A ∪ · · · ∪ A ) = N − N + N − N + N · · · ∓ N = (−1) N 1 n 0 1 2 3 4 n j j=0 Prof. Tesler Ch. 7. Inclusion-Exclusion Math 184A / Winter 2017 8 / 24 !"#$%&'$&'('%)'*+"',"*,' Proof of Inclusion-Exclusion Formula -' .' /' 0' The yellow region is inside k = 2 sets (B and C) and outside n − k = 3 − 2 = 1 set (A). Which j-way intersections among A,B,C contain the yellow region? The ones that only involve B and/or C. None that involve A. (cid:0) (cid:1) k For each j, it’s in j-way intersections: j (cid:0) (cid:1) 2 j = 1: = 2 B alone and C alone 1 (cid:0) (cid:1) 2 j = 2: = 1 B ∩ C 2 (cid:0) (cid:1) 2 j = 3: = 0 None 3 Prof. Tesler Ch. 7. Inclusion-Exclusion Math 184A / Winter 2017 9 / 24 !"#$%#"&'%("$)*("+$,'-." Proof of Inclusion-Exclusion Formula 4" 5" /03" /02" /03" /01" /02" /02" -8%#'9$" /07" 6" /03" :" A region in exactly k of the sets A , . . . , A is counted in 1 n N − N + N − · · · this many times (shown for n = 3): 1 2 3 N − N + N 1 2 3 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) k k k Contribution − + = 1 2 3 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) 0 0 0 k = 0 : − + = 0 − 0 + 0 = 0 1 2 3 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) 1 1 1 k = 1 : − + = 1 − 0 + 0 = 1 1 2 3 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) 2 2 2 k = 2 : − + = 2 − 1 + 0 = 1 1 2 3 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) 3 3 3 k = 3 : − + = 3 − 3 + 1 = 1 1 2 3 Prof. Tesler Ch. 7. Inclusion-Exclusion Math 184A / Winter 2017 10 / 24

Description:
Venn diagram and set sizes. A = {1,2,3,4,5}. B = {4,5,6,7,8,9}. A U B = {1,,9}. A n B = {4,5}. (A U B) c. = {10,,15}. 4,5. 1,2,3. 6,7,8,9. A. B. 10,11,12,13,14,15. S. |A| + |B| counts everything in the union, but elements in the intersection are counted twice. Subtract |A n B| to compensate: |A U B
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.