ETH Library In the minds of STEM beginners: On cognitive abilities, working memory, and first year mathematics Doctoral Thesis Author(s): Berkowitz Biran, Michal Publication date: 2017 Permanent link: https://doi.org/10.3929/ethz-b-000201896 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. DISS. ETH NO. 24631 In the minds of STEM beginners: On cognitive abilities, working memory, and first year mathematics A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Michal Berkowitz Biran MA, Tel-Aviv University born on 19.01.1975 citizen of Israel accepted on the recommendation of Prof. Dr. Elsbeth Stern Prof. Dr. Klaus Oberauer Prof. Dr. Norbert Hungerbühler 2017 Acknowledgements I would like to thank first and foremost my supervisor Elsbeth Stern for giving me the opportunity to carry out this research project. I am grateful for her support and advice along the way, for allowing me a great deal of freedom to shape the project and for her confidence in it. I wish to thank Jessica Büetiger, Samuel Winiger, Nicole Bruegger and Anita Wildi for their very helpful assistance with data collection and processing. I am very grateful to Martin Frick for programming in Matlab and for invaluable assistance in setting up the working memory battery. I am very grateful to members and faculty from the departments of mechanical engineering, math and physics at ETH, for their wonderful cooperation: Maddalena Velonà, Chiara Daraio, Mirko Meboldt, Quentin Lohmeyer, Norbert Hungerbühler, Alexander Caspar, Giovanni Felder, Joseph Teichmann, Manfred Einsiedler, Dietmar Salamon, Urs Lang, Emmanuel Kowalski, Sara Uberi-Papapietro, Eva Künti, Marion Allemann-Kodlinsky, Andreas Vaterlaus, Rainer Wallny and Niklas Mohr. Many thanks to my colleagues Ursina Markwalder, Bruno Ruetsche, Peter Edelsbrunner, Sarah Hofer and Anne Deiglmayr for discussions, methodological advice and for translations into German. Special thanks to Klaus Oberauer for sharing WM tasks and answering many questions; to Alexander Caspar for sharing the School-mathematics Knowledge Test and related data; to Claudia Quaiser-Pohl for sharing her test ‘Schnitte’ and related information; and to Emiko Tsutsumi for sharing the Mental Cutting Test. I also thank David Uttal and Nora Newcombe for their interest and feedback on this study. The study was funded by the Dr. Donald C. Cooper-Fonds, to which I am very grateful. Finally, I deeply thank my husband Paul Biran for his support and for his input as a mathematician. I dedicate this work to our children Zohar and Schachar. I Abstract This research project investigated individual differences in basic cognitive abilities of undergraduate students in Science, Technology, Engineering and Mathematics (STEM). Previous research has emphasized spatial thinking abilities as crucial for STEM learning. In this study, the predictive validity of spatial abilities for STEM achievements was tested while accounting for reasoning abilities in other domains, and with respect to several areas of achievements. The main focus was on achievements in mathematics and math intensive areas during the first undergraduate year, which constitute a central part in most study programs in STEM. A main question was whether spatial abilities are important to math achievements as they are to areas in which spatial tasks are central (e.g., in engineering design courses). Additionally, the study examined which working memory components are related to performance on different ability tests, and whether this has implications on achievement prediction. Finally, the study also examined the interplay between cognitive factors and prior knowledge in mathematics in predicting STEM achievements. A prospective cohort study was conducted in a sample of first-year students at ETH Zurich (N=317) from the departments mechanical engineering, math and physics. Multiple measures of cognitive abilities and working memory were included, and structural equation modelling with latent variables was the main method of statistical analysis. Spatial abilities uniquely predicted achievements in an introductory to engineering design course, but not in math and math-based courses. Mathematics was best predicted by numerical, verbal and general reasoning abilities, and was weakly related to spatial abilities. Overall, the findings indicated high domain-specificity of the link between spatial abilities and achievements. Working memory was correlated with achievements in several cases. Differential patterns of correlations were found between study groups, indicating differing cognitive demands even within mathematics. Numerical reasoning ability was most strongly related to working memory, even though students’ highest scores were on these scales. Implications for research on working memory and intelligence are discussed. Prior knowledge in mathematics explained some, but not all of the effects of cognitive measures on achievements. II Zusammenfassung Die vorliegende Dissertation hatte zum Ziel, individuelle Unterschiede in den grundlegenden kognitiven Fähigkeiten von neu eintretenden Studierenden an der ETH zu untersuchen. Zahlreiche Arbeiten betonen die Wichtigkeit von räumlichem Denken für das Lernen in MINT Fächern. In der vorliegenden Arbeit wurde unter Berücksichtigung des schlussfolgernden Denkens und Tests zu Arbeitsgedächtnisfunktionen die Vorhersagevalidität von räumlichem Denken für die akademische Leistung in MINT Fächern untersucht. Dabei wurde neben der Mathematikleistung auch Inhaltsbereiche einbezogen, die im ersten Studienjahr der ETH zur Kernausbildung gehören und die in der Basisprüfung erfasst werden. Eine zentrale Forschungsfrage war, ob räumliches Denken für das Erlangen von hoher Kompetenz in Mathematik ebenso zentral ist, wie es für andere Fächer postuliert wird (beispielsweise in Maschinenbau Designkurse). Zusätzlich wurde untersucht, ob und wie Komponenten des Arbeitsgedächtnisses mit der Leistung in unterschiedlichen Fähigkeitstest zusammenhängen und ob ein solcher Zusammenhang Auswirkungen auf die Leistungsvorhersage hat. Ein weiteres Ziel der Dissertation war es, das Zusammenspiel von kognitiven Faktoren und Vorwissen in Mathematik als Vorhersagevariablen für die Leistung in den MINT Fächern zu untersuchen. Dazu wurde eine Prospektive Kohortenstudie mit N=317 neu eingetretenen Studierenden aus den Departementen Maschinenbau, Mathematik und Physik der ETH Zürich durchgeführt. Es wurden diverse Messinstrumente in den Bereichen kognitive Fähigkeiten und der Leistung des Arbeitsgedächtnisses eingesetzt. Für die Auswertung wurden Strukturgleichungsmodelle mit latenten Variablen gewählt. Räumliches Denken sagte zwar die Leistung für Maschinenbau Designkurse vorher, jedoch nicht für Mathematik und ihr nahesehende Bereiche. Mathematik konnte am besten durch numerisches, verbales und generelles schlussfolgerndes Denken vorhergesagt werden. Lediglich ein schwacher Bezug zu räumlichem Denken konnte festgestellt werden. Allgemein kann gesagt werden, dass die Resultate eine stark domänenspezifische Beziehung zwischen räumlichem Denken und Leistungen im MINT-Bereich andeuten. Tests zu Arbeitsgedächtnisfunktionen hingegen korrelierten mit Leistungen in verschiedenen MINT Bereichen. Die zwischen den Studiengängen gefundenen Unterschiede in den Korrelationsmustern deuten auf unterschiedliche kognitive Anforderungen an die Mathematikleistung hin. Numerisches schlussfolgerndes Denken und die Leistungen in den Tests zu Arbeitsgedächtnisfunktionen korrelierten erstaunlich hoch. Dies war angesichts der hohen Durchschnittsleistung in den numerischen Tests bemerkenswert. Vorwissen in III Mathematik konnte zwar einen substantiellen Teil der Varianz in der Basisprüfung erklären, aber psychometrische und kognitive Tests leisteten einen eigenständigen Beitrag. Implikationen für die weitere Forschung werden diskutiert. IV Table of contents ACKNOWLEDGEMENTS ..................................................................................................................................... I ABSTRACT ........................................................................................................................................................ II ZUSAMMENFASSUNG .....................................................................................................................................III GENERAL INTRODUCTION ................................................................................................................................ 1 CHAPTER 1 SPATIAL ABILITIES FOR SCIENCE AND MATHEMATICS: A REVIEW AND EMERGING QUESTIONS ...................... 5 1.1 SPATIAL ABILITIES IN INTELLIGENCE RESEARCH .......................................................................................................... 7 1.2 MULTIDIMENSIONALITY IN ABILITY TESTS ................................................................................................................ 8 1.3 SPATIAL ABILITIES OF STEM NOVICES IN ‘SPATIAL’ DOMAINS ...................................................................................... 9 1.4 SPATIAL ABILITIES AND MATHEMATICS ................................................................................................................. 12 1.4.1 Elementary spatial cognition and elementary mathematics: The fundamental math-space link ..... 13 1.4.2 Elementary spatial cognition and school mathematics ...................................................................... 14 1.4.3 Higher order spatial cognition and mathematics: The complex math-space link ............................... 15 1.4.4 State of research on SAs and advanced mathematics ........................................................................ 16 CHAPTER 2 THE PRESENT STUDY: METHOD AND DATA SET.............................................................................................. 19 2.1 METHOD ....................................................................................................................................................... 20 2.1.1 Sample ................................................................................................................................................ 20 2.1.2 Measures ............................................................................................................................................. 22 2.1.3 Procedure ............................................................................................................................................ 32 2.2 THE DATA SET ................................................................................................................................................. 33 2.2.1 Sample ................................................................................................................................................ 33 2.2.2 Data screening and missing data ........................................................................................................ 34 2.2.3 Descriptive statistics............................................................................................................................ 35 2.2.4 Group differences ................................................................................................................................ 38 2.3 APPROACH TO DATA ANALYSIS ............................................................................................................................ 45 CHAPTER 3 SPATIAL AND NON-SPATIAL COGNITIVE ABILITIES AMONG STEM BEGINNERS: WHAT MATTERS FOR MATHEMATICS? .......................................................................................................... 46 3.1 METHOD ....................................................................................................................................................... 47 3.2 RESULTS ........................................................................................................................................................ 48 3.2.1 Latent structure of cognitive abilities.................................................................................................. 48 3.2.2 Multiple group invariance ................................................................................................................... 53 3.2.3 Prediction of academic achievements ................................................................................................. 54 3.2.4 Post-hoc analyses ................................................................................................................................ 60 3.2 DISCUSSION.................................................................................................................................................... 66 CHAPTER 4 DOMAIN GENERAL AND DOMAIN SPECIFIC EFFECTS OF WORKING MEMORY ON COGNITIVE ABILITIES: INSIGHTS FROM THE HIGH ABILITY RANGE. ................................................................................................... 78 4.1 INTRODUCTION ............................................................................................................................................... 78 4.2 RESEARCH QUESTIONS ...................................................................................................................................... 85 4.3 METHOD ....................................................................................................................................................... 85 4.4 RESULTS ........................................................................................................................................................ 89 V
Description: