KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT FARMACEUTISCHE WETENSCHAPPEN SYNTHESIS AND PROPERTIES OF AMINOPROPYL NUCLEOSIDES AND NUCLEIC ACIDS PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE FARMACEUTISCHE WETENSCHAPPEN door Ding Zhou LEUVEN 2006 Monday, September 25, 2006 at 17:00h, Auditorium of the Arenberg Castle, Kasteelpark Arenberg 1, Heverlee. Leuven 2006 Promotor: Prof. Piet. Herdewijn Co-promotor: Prof. Arthur. Van Aerschot Faculteit Farmaceutische Wetenschappen Laboratorium voor Medicinale Scheikunde Rega Instituut Minderbroedersstraat, 10 B-3000 Leuven Acknowledgments This thesis is the result of four years of work whereby I have been accompanied and supported by many people. It is a pleasant aspect that I have now the opportunity to express my gratitude for all of them. The first person I would like to thank is my promoter, Prof. Piet Herdewijn of the Medicinal Chemistry Laboratory at Rega Institute of KUL. I have been in his group since 2001 when I started my MSc assignment. During these years I have known Prof. Piet as a sympatic, hard- working and principle-centered person. His overly enthusiasm, professional and integral view on research and his mission for providing 'only high-quality work and not less', has made a deep impression on me. I owe him lots of gratitude for having me shown this way of research. He could not even realize how much I have learned from him. I would like to thank my co-promotor Professor Arthur Van Aerschot of the Medicinal Chemistry Laboratory at Rega Institute of KUL who kept an eye on the progress of my work and always was available when I needed his advice. Especially the strict and extensive comments and the many discussions and the interactions with Professor Arthur had a direct impact on the final form and quality of this thesis. He was even available during the weekend when he provided valuable comments on the thesis. I am also very grateful to my co-promotor of my MSc degree, Dr Irene Lagoja, who led me to go into the door of Medicinal Chemistry. She gave me many discussions, advice and tips that helped me a lot in staying at the right track. I also appreciate Prof. Erik De Clercq and Prof. Christophe Pannecouque for examining the biological activity of compounds in chapter 2, Prof. Roger Busson for checking the NMR, Prof. Jef Rozenski for making the Mass analysis and Luk Baudemprez for doing 2D NMR spectrums. I thank Guy Schepers who synthesized lots of oligonucleotides and did lots of T m determinations. I also want to thank Kristof Mullens who did part of T determinations and m Luc Kerremans who taught me many pratical operations and gave me support to complete my research. I also want to thank Chantal Biernaux for excellent editorial help in getting things formal in a correct way. I am also very grateful to Prof. Helmut Rosemeyer, visiting professor from University of Osnabrück, Germany, who gave me very important help when I was looking for a job. I would like to express my gratitude to all those who gave me support, help, interest and valuable hints in my research work. Especially I am obliged to Prof. Eveline Lescrinier, Mikhail Abramov, Mathy Froeyen, Damien Marchand, Martin Hradilek, Alberto Di Salvo, András Horváth, Fengwu Liu, Bart Ruttens, Mariola Kozlowska, Olga Adelfinskaya, Natalia Dyubankova, Gert Emmerechts, Pieter Van de Vijver, Peter Buzder-Lantos, Marleen Renders, Miyeon Jang, Joris Segers, Quiya Huang, Katrijn Bockstael, Catia Lambertucci, Antonietta Iaconinoto and Sonia Mertens. We not only enjoy the happy time of coffee breaks but also shared the happiness and sorrow from chemistry together. I thank you all for having shared many experiences and thoughts with me throughout the last years. I had the pleasure to work with Tongfei Wu, Lavinia Brennan, Johny Wehbe, Evalina Colacino, Dolores Viña Castelao, Filip Borgions, Sara Vijgen, Tomasz Ostrowski, Dequn Sun, Thierry Lioux, Dorothee Bardiot, Ping Gu. Although they already left the lab, their scientific and friendly help still affect me. I also want to thank my friends in Leuven. They give me nice memory and happiness all through my stay in Leuven. I feel a deep sense of gratitude for my parents who formed part of my vision and taught me the good things that really matter in life. I am very grateful for my wife Qing Wang, for her love and patience during the PhD period. One of the best experiences that I lived through in this period was stay with my son Yiquan Zhou, who provided an additional and joyful dimension to our life mission. The chain of my gratitude would be definitely incomplete if I would forget to thank the first cause of this chain, James Zhang, who introduced me to this lab five years ago. Publications 1. Ding Zhou, I. M. Lagoja, J. Rosenski, R. Busson, A. Van Aerschot and P. Herdewijn. “Synthesis and Properties of Aminopropyl Nucleic Acids (APNAs)”, Chembiochem, 2005, 6, 2298-2306. 2. Ding Zhou, I. M. Lagoja, A. Van Aerschot and P. Herdewijn. “Synthesis of Aminopropyl Phosphonate Nucleosides with Purine and Pyrimidine Bases”. Collect. Czech. Chem. Commun. 2006, 71(1), 15-34. 3. Ding Zhou, M. Froeyen, J. Rosenski, A. Van Aerschot and P. Herdewijn. “Chemical Etiology of Nucleic Acids: Aminopropyl Nucleic Acids”. Accepted by Chemistry & Biodiversity. ABBREVIATIONS ACV acyclovir AIDS human acquired immunodeficiency syndrome AMP adenosine monophosphate ANP acyclic nucleoside phosphonate ANPpp acyclic nucleoside triphosphate APN aminopropyl nucleoside APNA aminopropyl nucleic acids AZT 3'-azidothymidine BCH-189 2'-deoxy-3'-thiacytidine Boc tert-butyloxycarbonyl Bpoc 2-(biphenyl-4-yl)propan-2-yloxycarbonyl t-Bumeoc 1-(3,5-di-tert-butylphenyl)-1-methylethoxycarbonyl BVdU brivudin; 5-bromovinyl-2’-deoxyuridine BzCl benzoyl chloride CC cytotoxic concentration 50 CMV cytomegalovirus CXCR4 chemokine (C-X-C motif) receptor 4 dATP 2’-deoxyadenosine 5’-triphosphate DCM dichloromethane dCTP 2’-deoxycytidine 5’-triphosphate ddC 2',3'-dideoxycytidine ddI 2',3'-dideoxyinosine Ddz 2-(3,(-dimethoxyphenyl)propan-2-yloxycarbonyl DIAD diisopropyl azodicarboxylate DIPEA diisopropylethylamine DMDC 2’-deoxy-2’-methylidene-cytidine DMDFC 2’-deoxy-2’-methylidene-5-fluorocytidine DMF dimethylformamide DMSO dimethylsulfoxide DMTr dimethoxytrityl DNA deoxyribonucleic acid dNTPs 2´-deoxynucleoside 5´-triphosphates d4T 2',3'-didehydro-2',3'-dideoxythymidine dUTP deoxyuridine triphosphate EBV Epstein-Barr virus EdU 5-ethyl –2’-deoxyuridine ESI electrospray-ionization Et N triethylamine 3 EtOAc ethyl acetate 3´-Fd4A 3´-fluoro-2',3'-dideoxy-2',3'-didehydroadenosine FDA food and drug administration 3´-Fd4C 3´-fluoro-2',3'-dideoxy-2',3'-didehydrocytidine β-L-Fd4C 2',3'-dideoxy-2',3'-didehydro-β-L-5-fluorocytidine FddClU 5-chloro-2',3'-dideoxy-3'-fluorouridine FEAU 1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-ethyluracil FeLV feline leukemia virus FIAU 2’-fluoro-2’-deoxy-β-D-arabinofuranosyl-5-iodouridine FIV feline immunodeficiency virus FLT 3'-fluoro-3'-deoxythymidine FMAU 1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-methyluracil F-OddC 1,3-dioxolane-5-fluorocytidine FPMP N-[3-fluoro-2-(phosphonomethoxy)propyl] FTC 5-fluoro- β-L-thiocytidine GMP guanosine monophosphate GNA glycol nucleic acid HBV hepatitis B virus HCMV human cytomegalovirus HCV hepatitis C virus HHV human herpes virus HIV human immunodeficiency virus Homo-DNA hexopyranosyl-(4' 6') DNA HPLC high pressure liquid chromatography HPMP N-(S)-(3-hydroxy-2-phosphonylmethoxypropyl) (S)-HPMPA (S)-9-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine (S)-HPMPC (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine; cidofovir HPMPCpp cidofovir diphosphate HSV herpes simplex virus IDU 5-iodo-2’-deoxyuridine IMP inosine 5'-monophosphate MesCl mesitylenesulfonyl chloride MMTrCl (4-methoxyphenyl)diphenylmethyl chloride MSV moloney murine sarcoma virus NDP nucleoside diphosphate NMI 1-methylimidazole NRTIs nucleoside reverse transcriptase inhibitors NTPs nucleoside triphosphates L-OddC β-L-dioxolane cytosine Ph P triphenylphosphine 3 PK protein kinase PME N-(2-phosphonylmethoxyethyl) PMEA 9-[(2-phosphonomethoxy)ethyl]adenine PMEApp adefovir diphosphate PMP N-[(2-phosphonomethoxy)propyl (R)-PMPA (R)-9-[(2-phosphonomethoxy)propyl]adenine; tenofovir PMPA-DAPy (2-phosphonylmethoxypropyl)oxy-2,4-diaminopyrimidine PMPApp tenofovir diphosphate PNAs peptide nucleic acids RNA ribonucleic acid p-RNA hexopyranosyl RNA RT reverse transcriptase SAH S-adenosylhomocysteine TBAF tetrabutylammonium fluoride TBDMSCl tert–butyldimethylsilyl chloride 3TC β-L-thiocytidine TEAB triethylammonium bicarbonate TFA triflouroacetic acid TFT 5-trifluoromethyl-2’deoxyuridine THF tetrahyfrofuran 4´-thio-F-araA 2´-fluoro-4´-thioarabinofuranosyladenine 4’-thio-F-araDAP 2´-fluoro-4´-thioarabinofuranosyldiaminopurine 4’-thio-F-araG 2´-fluoro-4´-thioarabinofuranosylguanine TK thymidine kinase Tm melting temperature, the temperature at which 50 % of a duplex is dissociated TMS tetramethylsilane TMSBr bromotrimethylsilane TNA (L)-α-threofuranosyl nucleic acids TPS-Cl 2,4,6-triisopropylbenzenesulfonyl chloride TsOH toluenesulfonic acid VV vaccinia virus VZV varicella zoster virus CONTENTS Acknoledgement Abbreviations Pubulications Contents CHAPTER 1 GENERAL INTRODUCTION......................................................................................1 1.1. NUCLEOSIDES AND NUCLEOTIDES AS ANTIVIRAL AGENTS........................................1 1.1.1. INTRODUCTION...........................................................................................................................1 1.1.2. TARGETS FOR ANTIVIRAL THERAPY............................................................................................2 1.1.3. NUCLEOSIDE ANALOGS AS THERAPEUTIC AGENTS4.....................................................................3 1.1.4. GENERAL MODE OF ACTION OF NUCLEOSIDE ANALOGS..............................................................3 1.1.5. SUGAR-MODIFIED NUCLEOSIDE ANALOGS..................................................................................5 1.1.5.1. 2´-Deoxynucleosides and related drugs.............................................................................5 1.1.5.2. 2’,3’-Dideoxynucleoside analogs and Carbocyclic nucleoside analogs............................6 1.1.5.3. Acyclic nucleoside analogs................................................................................................8 1.1.6. ACYCLIC NUCLEOSIDE PHOSPHONATES....................................................................................10 1.1.6.1. Mechanism of antiviral action.........................................................................................12 1.2. CHEMICAL ETIOLOGY OF THE NUCLEIC ACID STRUCTURE....................................14 1.2.1. INTRODUCTION.........................................................................................................................14 1.2.2. RNA WORLD............................................................................................................................15 1.2.3. CHEMICAL ETIOLOGY OF NUCLEIC ACID STRUCTURE..............................................................17 1.2.3.1. Hexopyranosyl-(4' 6') Oligonucleotide Systems (Homo-DNA).....................................18 1.2.3.2. Pentopyranosyl-(2' 4') Oligonucleotide Systems (p-RNA)............................................20 1.2.3.3. (L)-α-threofuranosyl oligonucleotides (TNA, NH-TNA)..................................................21 1.2.3.4. Peptide nucleic acids (PNAs)...........................................................................................23 1.2.3.5. Acylic flexible backbone- glycol nucleic acid (GNA).......................................................24 1.3. RATIONALE AND OBJECTIVES OF THE STUDY...............................................................25 1.3.1. SYNTHESIS OF AMINOPROPYL PHOSPHONATE NUCLEOSIDES WITH PURINE AND PYRIMIDINE BASES.................................................................................................................................................25 1.3.2 THE SIMPLEST NUCLEIC ACID ALTERNATIVE: AMINOPROPYL NUCLEIC ACIDS (APNAS)............26 REFERENCES.......................................................................................................................................28 CHAPTER 2 SYNTHESIS OF AMINOPROPYL PHOSPHONATE NUCLEOSIDES WITH PURINE AND PYRIMIDINE BASES................................................................................................33 2.1. INTRODUCTION............................................................................................................................33 2.2. RESULTS AND DISCUSSION..........................................................................................................34 2.2.1. Synthesis of Aminopropyl Phosphonate Nucleosides 1a-d:................................................34 2.2.2. Synthesis of Aminopropyl Phosphonate Nucleosides 2a-d:................................................36 2.2.3. Synthesis of Aminopropyl Phosphonate Nucleosides 3a-d:................................................37 2.2.4. HPLC purification and analysis of all aminopropyl phosphonate nucleosides 1, 2 and 3.39 2.3. BIOLOGICAL RESULTS..................................................................................................................40 2.4. CONCLUSION...............................................................................................................................41 2.5. EXPERIMENTAL PART..................................................................................................................41 CHAPTER 3 SYNTHESIS AND PROPERTIES OF AMINOPROPYL NUCLEIC ACIDS (APNA)..................................................................................................................................................60 3.1. INTRODUCTION............................................................................................................................60 3.2. RESULTS AND DISCUSSION..........................................................................................................62 3.2.1. SYNTHESIS OF PROTECTED (R)-ACYCLIC NUCLEOSIDES........................................62 3.2.2. SYNTHESIS OF PROTECTED (S)-ACYCLIC NUCLEOSIDES.........................................64 3.2.3. SYNTHESIS OF THE DIMERS WITH ACYCLIC NUCLEOSIDES....................................65 3.2.3.1. Solution phase synthesis of dimer with phosphoramidite methodology......................................65 3.2.3.2. Solution phase synthesis of dimer with phosphotriester methodology........................................66 3.2.4. SYNTHESIS OF DIMERS FOR OLIGONUCLEOTIDE SYNTHESIS................................67 3.2.5. SYNTHESIS OF OLIGONUCLEOTIDES WITH AYCLIC 3’NH-PHOSPHORAMIDATE LINKAGE......................................................................................................................................68 3.2.6 PAIRING PROPERTIES OF OLIGONUCLEOTIDE SEQUENCES CONTAINING A 3’- NH- PHOSPHORAMIDATE LINKAGE.......................................................................................69 3.3. CONCLUSION...............................................................................................................................72 3.4. ADDENDUM: NUCLEOSIDE ANALOGS...........................................................................................73 3.4.1. Synthesis of new acyclic universal nucleoside analogs with 5-nitroindazole.....................73 3.4.2. Synthesis of oligonucleotides with new nucleoside analogs................................................74 3.4.3 Pairing properties of oligonucleotide sequences containing universal nucleosides............75 3.4.4. Conclusion..........................................................................................................................76 3.5. EXPERIMENTAL PART..................................................................................................................77 REFERENCES.......................................................................................................................................96 CHAPTER 4 CHEMICAL ETIOLOGY OF NUCLEIC ACID STRUCTURE: AMINOPROPYL NUCLEIC ACIDS (APNAS)...............................................................................................................97 4.1. INTRODUCTION............................................................................................................................97 4.2. RESULTS AND DISCUSSION...........................................................................................................99 4.2.1. Synthesis of amino protecting group t-Bumeoc (1-(3,5-di-tert-butylphenyl)-1- methylethoxycarbonyl) for the building blocks...........................................................................100 4.2.2. Synthesis of protected (R)- and (S)-3’-acyclic nucleosides (3’-APNs)..............................102 4.2.3. Synthesis of protected (R)- and (S)-2’-aminopropyl nucleosides. (2’-APNs)....................103 4.2.4. Synthesis of oligonucleotides with ayclic 3’ or 2’NH -phosphoramidate linkages...........105 4.2.4.1. Synthesis of oligonucleotides with incorporation of 3’-aminopropyl thymidine 19b – Test reactions.................................................................................................................................................106 4.2.4.2. Synthesis of fully modified oligonucleotides with acyclic 3’ or 2’NH -phosphoramidate linkages ...............................................................................................................................................................109 4.2.5. Pairing properties of the acyclic phosphoramidates.........................................................114 4.3. CONCLUSION.............................................................................................................................116 4.4. EXPERIMENTAL PART................................................................................................................117 REFERENCES.....................................................................................................................................132 GENERAL CONCLUSIONS AND SUMMARY............................................................................133 PART 1: SYNTHESIS OF AMINOPROPYL PHOSPHONATE NUCLEOSIDES WITH PURINE AND PYRIMIDINE BASES...............................................................................................................................................133 PART 2: SYNTHESIS AND PROPERTIES OF AMINOPROPYL NUCLEIC ACIDS (APNA)..........................134 REFERENCE......................................................................................................................................136 SAMENVATTING.............................................................................................................................137 DEEL 1 : SYNTHESE VAN AMINOPROPYL FOSFONAAT NUCLEOSIDE ANALOGEN MET EEN PURINE OF PYRIMIDINE BASE.............................................................................................................................137 DEEL 2 : SYNTHESE EN EIGENSCHAPPEN VAN AMINOPROPYL NUCLEÏNEZUREN (APNA)................138 REFERENTIE......................................................................................................................................140
Description: