Name Date Period Workbook Activity 1 Chapter 1,Lesson 1 Arithmetic and Algebra EXAMPLE 16 + 2 = 22 false 10 ÷5 = 2 true 33 – n= 12 open Directions Write trueif the statement is true or falseif it is false.Write openif the statement is neither true nor false. 1. 11 + 5 = 16 ___________________ 16. 50 – 5 = 45 ___________________ 18 2. 11 + 3 = 16 ___________________ 17. (cid:2)(cid:2)= 6 ___________________ 3 3. 7 – 7 = 0 ___________________ 18. 30 + 30 = 60 ___________________ 4. 6 • 6 = 36 ___________________ 19. 22n= 44 ___________________ 5. 12 + n= 17 ___________________ 20. 27 ÷9 = 3 ___________________ 6. 32 ÷8 = 4 ___________________ 21. 27 – 9 = 18 ___________________ 7. 2 • 3 = 5 ___________________ 22. 6 • 6 = 38 ___________________ 22 8. (cid:2)(cid:2)= 3 ___________________ 23. 11 + n= 35 ___________________ 11 9. 100 + 10 = 120 ___________________ 24. 15 ÷3 = 4 ___________________ 10. 7n= 49 ___________________ 25. 18 ÷9 = 2 ___________________ 11. 7 • 7 = 49 ___________________ 26. 8n= 112 ___________________ 12. 37 – n= 12 ___________________ 27. 4 • 4 = 8 ___________________ n 13. (cid:2)(cid:2)= 6 ___________________ 28. 14 – n= 1 ___________________ 2 6 14. 60 – 60 = 10 ___________________ 29. (cid:2)(cid:2)= 3 ___________________ 2 15. 17 • 1 = 18 ___________________ 30. 7 + 27 = 35 ___________________ ©AGS Publishing. Permission is granted to reproduce for classroom use only Algebra Name Date Period Workbook Activity 2 Chapter 1,Lesson 2 Representing Numbers Using Letters EXAMPLE Numerical expressions: 33 – 13 (cid:2)36(cid:2) 12 Algebraic expressions: 2m÷5 8d+ 2 Variables: nin 7n+ 7 kin k– 3 Operations: Multiplication and addition in 2y+ 3 Division in (cid:2)14(cid:2) 2 Directions Name the variable in each algebraic expression. r 1. 4y+ 12 __________ 7. (cid:2)(cid:2) __________ 4 2. k– 6 __________ 8. 14k– 10 __________ 3. 2x+ 7 __________ 9. x– 100 __________ 4. 7n __________ 10. 3 ÷p __________ 2m 5. (cid:2)(cid:2) __________ 11. 4 + y __________ 4 6. 3(d) __________ 12. 2m÷5 __________ Directions Fill in the table.For each expression,write the expression type—numericalor algebraic—and list the operation or operations. Expression Expression Type Operation(s) 16 ÷2 13. 14. 8d 15. 16. 5 + 11 17. 18. 36 (cid:2)(cid:2) 19. 20. 12 2p– 1 21. 22. 4k+ 4 23. 24. Directions Solve the problem. 25. Only 17 members of Mr.Ricardo’s class are going on the class trip. The class has a total of kstudents.Write an algebraic expression for the number of students who are notgoing on the trip. __________________________ ©AGS Publishing. Permission is granted to reproduce for classroom use only Algebra Name Date Period Workbook Activity 3 Chapter 1,Lesson 3 Integers on the Number Line ↓ ↓ EXAMPLE (cid:3)8 (cid:3)7 (cid:3)6 (cid:3)5 (cid:3)4 (cid:3)3 (cid:3)2 (cid:3)1 0 1 2 3 4 5 6 7 8 • All the numbers on this number line are examples of integers. • An example of a negative integeris –5 (see arrow). • An example of a positive integeris 5 (see arrow). • The number 0 is neither negative nor positive. • |–5| = 5. In other words, –5 is 5 units from 0 (count the units). • |5| = 5. In other words, 5 is 5 units from 0 (count the units). Directions Identify each integer as either negative,positive,orzero. 1. 6 ____________ 5. 8 ____________ 9. 20 ____________ 2. 13 ____________ 6. –9 ____________ 10. 1 ____________ 3. –2 ____________ 7. 0 ____________ 11. 7 ____________ 4. 11 ____________ 8. –33 ____________ 12. –1 ____________ Directions Write each absolute value. 13. |–5| __________ 17. |+18| __________ 21. |12| __________ 14. |6| __________ 18. |5| __________ 22. |4| __________ 15. |–2| __________ 19. |–11| __________ 23. |–9| __________ 16. |2| __________ 20. |–12| __________ 24. |9| __________ Directions Solve this problem. 25. On the number line,how could you represent $5 that you earned? How could you represent $5 that you had to pay? __________________ ©AGS Publishing. Permission is granted to reproduce for classroom use only Algebra Name Date Period Workbook Activity 4 Chapter 1,Lesson 4 Adding Integers EXAMPLE Add 2 + (–5). Start at 2, move 5 units to the left.The answer is –3. –5 (cid:3)8 (cid:3)7 (cid:3)6 (cid:3)5 (cid:3)4 (cid:3)3 (cid:3)2 (cid:3)1 0 1 2 3 4 5 6 7 Add –3 + 7. Start at –3, move 7 units to the right.The answer is 4. +7 (cid:3)8 (cid:3)7 (cid:3)6 (cid:3)5 (cid:3)4 (cid:3)3 (cid:3)2 (cid:3)1 0 1 2 3 4 5 6 7 Directions Answer the questions. 1. To add a negativenumber,in which direction do you count on the number line? ______________ 2. To add a positivenumber,in which direction do you count on the number line? ______________ Directions Write each sum on the blank. 3. –4 + 4 __________ 12. –2 + (–4) __________ 4. 1 + (–7) __________ 13. –6 + 6 __________ 5. 1 + 5 __________ 14. 6 + (–6) __________ 6. 0 + 6 __________ 15. –4 + 8 __________ 7. –1 + (–5) __________ 16. –6 + 12 __________ 8. 5 + (–11) __________ 17. –2 + 6 __________ 9. –5 + 3 __________ 18. –3 + 9 __________ 10. –6 + 3 __________ 19. 7 + 7 __________ 11. 11 + (–12) __________ 20. 2 + (–8) __________ ©AGS Publishing. Permission is granted to reproduce for classroom use only Algebra Name Date Period Workbook Activity 5 Chapter 1,Lesson 5 Subtracting Integers EXAMPLE Find the difference: 14 – (–15) Rule To subtract in algebra, add the opposite. 15 is the opposite of –15. 14 + 15 = 29 Directions Rewrite each expression as addition.Solve the new expression. 1. –4 – (–11) ________________________ 10. –5 – (–5) ________________________ 2. 9 – (+3) ________________________ 11. 2 – (+9) ________________________ 3. –1 – 13 ________________________ 12. 1 – (+4) ________________________ 4. –6 – (+10) ________________________ 13. 6 – 8 ________________________ 5. 7 – (–10) ________________________ 14. –8 – (–3) ________________________ 6. 4 – (+4) ________________________ 15. –3 – (+7) ________________________ 7. 2 – (+8) ________________________ 16. 8 – (–7) ________________________ 8. –11 – (–1) ________________________ 17. 10 – (+5) ________________________ 9. 6 – (+2) ________________________ 18. 5 – 6 ________________________ Directions Solve these problems.Write an expression and the answer. 19. Dara’s kite is flying 67 feet high.Jill’s is flying 40 feet high.What is the difference between the heights of these two kites? ________________________________ 20. A helicopter hovers 60 m above the ocean’s surface.A submarine is resting 30 m underwater,directly below the helicopter. What is the difference between the positions of these two objects? ________________________________ ©AGS Publishing. Permission is granted to reproduce for classroom use only Algebra Name Date Period Workbook Activity 6 Chapter 1,Lesson 6 Multiplying Integers EXAMPLE Notice the possible combinations for multiplying positive and negative integers. positive (positive) = positive 4(4) = 16 positive (negative) = negative 4(–4) = –16 negative (positive) = negative –4(4) = –16 negative (negative) = positive –4(–4) = 16 Multiplying any integer, positive or negative, by 0 gives 0 as the product. Directions Tell whether the product is positive,negative,or zero. 1. (4)(–7) _____________ 6. (5)(–3) _____________ 11. (–3)(–9) _____________ 2. (–6)(3) _____________ 7. (–15)(–1) _____________ 12. (4)(6) _____________ 3. (–7)(0) _____________ 8. (0)(14) _____________ 13. (11)(–2) _____________ 4. (–9)(–9) _____________ 9. (–5)(7) _____________ 14. (2)(9) _____________ 5. (2)(–11) _____________ 10. (–8)(–2) _____________ 15. (–6)(4) _____________ Directions Find each product.Write the answer. 16. (2)(9) __________ 25. (–11)(–2) __________ 17. (–5)(9) __________ 26. (–4)(8) __________ 18. (3)(–9) __________ 27. (–10)(–8) __________ 19. (–10)(2) __________ 28. (5)(–5) __________ 20. (–9)(–7) __________ 29. (–1)(–1) __________ 21. (–5)(10) __________ 30. (7)(10) __________ 22. (12)(2) __________ 23. (–32)(0) __________ 24. (6)(–4) __________ ©AGS Publishing. Permission is granted to reproduce for classroom use only Algebra Name Date Period Workbook Activity 7 Chapter 1,Lesson 6 Integers Data from a climbing expedition is shown in this table. Elevation in Feet (Compared to Sea Level) Base Camp –384 Camp 1 +5,027 Camp 2 +7,511 Camp 3 +8,860 Camp 4 +10,103 Camp 5 +10,856 Camp 6 +11,349 Summit +12,015 During the climb,some climbers began at base camp and climbed to the summit. Other climbers also began at base camp but did not reach the summit—these climbers moved back and forth between camps carrying supplies and other necessities. Directions The movements of various climbers in the expedition are shown below.Find the number of feet climbed by each climber. 1. Climber A:Base Camp to Camp 1 to Base Camp __________________________ 2. Climber C:Base Camp to Camp 5 to Base Camp __________________________ 3. Climber F:Base Camp to Camp 3 to Base Camp __________________________ 4. Climber B:Base Camp to Camp 2 to Base Camp __________________________ 5. Climber H:Base Camp to Camp 6 to Base Camp __________________________ 6. Climber E:Base Camp to Summit to Base Camp __________________________ 7. Climber G:Base Camp to Camp 4 to Base Camp __________________________ 8. Climber D:Base Camp to Camp 5 to Camp 3 to Camp 4 to Base Camp _________________________ 9. Climber I:Base Camp to Camp 2 to Camp 1 to Camp 6 to Base Camp __________________________ 10. How many feet above base camp is the summit? __________________________ ©AGS Publishing. Permission is granted to reproduce for classroom use only Algebra Name Date Period Workbook Activity 8 Chapter 1,Lesson 7 Dividing Positive and Negative Integers EXAMPLE Notice the possible combinations for dividing positive and negative integers. positive ÷positive = positive 6 ÷2 = 3 positive ÷negative = negative 6 ÷–2 = –3 negative ÷positive = negative –6 ÷2 = –3 negative ÷negative = positive –6 ÷–2 = 3 Dividing 0 by any integer, positive or negative, produces 0 as the quotient. Directions Tell whether the quotient is positive,negative,or zero. 1. 16 ÷–4 __________________ 9. –27 ÷3 __________________ 2. –63 ÷–9 __________________ 10. 0 ÷–4 __________________ 3. –10 ÷2 __________________ 11. –81 ÷–9 __________________ 4. 33 ÷11 __________________ 12. 19 ÷–1 __________________ 5. –12 ÷4 __________________ 13. 56 ÷8 __________________ 6. 100 ÷10 __________________ 14. 500 ÷5 __________________ 7. 36 ÷–9 __________________ 15. 32 ÷–8 __________________ 8. 15 ÷–5 __________________ Directions Find and write each quotient. 16. 36 ÷12 __________ 24. –50 ÷10 __________ 17. 21 ÷–7 __________ 25. 27 ÷–9 __________ 18. 18 ÷–3 __________ 26. –14 ÷2 __________ 19. –35 ÷7 __________ 27. 0 ÷16 __________ 20. –24 ÷2 __________ 28. –72 ÷–9 __________ 21. –16 ÷–8 __________ 29. –1 ÷–1 __________ 22. 45 ÷–9 __________ 30. 9 ÷3 __________ 23. –200 ÷–200 __________ ©AGS Publishing. Permission is granted to reproduce for classroom use only Algebra Name Date Period Workbook Activity 9 Chapter 1,Lesson 8 Simplifying Expressions—One Variable EXAMPLE Simplify 2n+ 2 + 4n. 1. Look for like terms. 2nand 4nare like terms, because they have the same variable, n. 2. Combine the terms: 2n+ 4n= 6n 3. Rewrite the whole expression: 6n+ 2 Now you are finished, because 6ncannot combine with 2. Directions In each expression,underline the like terms. 1. 3k– 8 + 2k 6. –2 + 11c+c 4 2. p+ 12 + p 7. (cid:2)(cid:2)+ 2m+ 3m 7 3. 100 + 4w+ 4w 8. 2y– (–3y) + 7 4. 5m– 3 + 2m 9. 4x– 13 + 5x 5. 7x + 5x– 12 10. 8r + (–3r) Directions Simplify each expression. 11. 3b+ b ___________________ 21. 2y+ (–2y) + 5 ___________________ 12. 11y+ 2y+ y ___________________ 22. –5 + 6n– 4n ___________________ 13. 7j+ 3j– 2j ___________________ 23. 2x+ 11x– 13 ___________________ 14. 2k– 17 + k ___________________ 24. –h+ 7h ___________________ 15. 11x+ x– 14 ___________________ 25. –11 – (–3k) + k ___________________ 16. 22 + 2d+ 8d ___________________ 26. 7d– d+ 40 ___________________ 17. 9g+ (–2g) + 4 ___________________ 27. 8 + 3m– (–m) ___________________ 18. 14h– 3 – 2h ___________________ 28. 3w+ (–5w) ___________________ 19. 2m+ (–8m) ___________________ 29. 2 + 5x– 2x ___________________ 20. 3 + 4k– 3k ___________________ 30. 8g+ (–5g) – 6 ___________________ ©AGS Publishing. Permission is granted to reproduce for classroom use only Algebra Name Date Period Workbook Activity 10 Chapter 1,Lesson 9 Simplifying Expressions—Several Variables EXAMPLE Simplify 2j + 4 + j– 1 + 3k. 1. Scan for variables. The expression has two: jand k. 2. Combine jterms: 2j + j= 3j 3. Combinekterms: 3k (no combining required) 4. Combine integers: 4 + (–1) = +3 5. Rewrite the whole expression: 3j+ 3k+ 3 Now you are finished, because you cannot combine unlike terms. Directions Check the column or columns to show which kinds of terms each expression includes. Expression x terms yterms Integers 1. 3x+ 2x+ 3 + 6y 2. 3y – 14 3. x+ 2y– 10 + 3y 4. 72 – 68 5. x– 8 Directions Combine like terms.Simplify each expression. 6. 3k– 2k+ 12 + 5r ____________________ 7. 2c+ 3b+ 8b+ c ____________________ 8. 5k+ 3 + 2j– 2 – k ____________________ 9. 7 + 4p– 6 + 2m– 2p ____________________ 10. –4n+ 4 – (–2d) + n– 5 ____________________ 11. 18 + (–4x) + 1 – 3x+ 8y ____________________ 12. 2w+ (–11) + 18y+ 2w– 11 ____________________ 13. 6h– 12 – 9h+ 8k+ (–3k) ____________________ 14. 3 – 3m– 3m– 8p– 3p ____________________ 15. 14x– 7 + 3y– 7x– 7x ____________________ ©AGS Publishing. Permission is granted to reproduce for classroom use only Algebra
Description: