ebook img

cfd modelling of dam spillway aerator PDF

51 Pages·2015·1.55 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview cfd modelling of dam spillway aerator

Master Thesis TVVR 15/5014 CFD MODELLING OF DAM SPILLWAY AERATOR _______________________________________________ Raphaºl Damiron Division of Water Resources Engineering Department of Building and Environmental Technology Lund University CFD MODELLING OF DAM SPILLWAY AERATOR By: Raphaºl Damiron Master Thesis Division of Water Resources Engineering Department of Building & Environmental Technology Lund University Box 118 221 00 Lund, Sweden Water Resources Engineering TVVR-15/5014 ISSN 1101-9824 Lund 2015 www.tvrl.lth.se Master Thesis Division of Water Resources Engineering Department of Building & Environmental Technology Lund University English title: CFD modelling of dam spillway aerator Author(s): Raphaºl Damiron Supervisor: Magnus Larson James Yang Examiner: Rolf Larsson Language English Year: 2015 Keywords: <spillway; aerator; CFD;VOF; 3D flow> i LUND UNIVERSITY Abstract Lunds Tekniska H¨ogskola Department of Building and Environmental Technology Master of Science Thesis CFD MODELLING OF DAM SPILLWAY AERATOR by Rapha¨el DAMIRON Thepurposesofthismasterthesisarethesimulationoftheaeratorairflowdrivenbythe spillway water flow in the Bergeforsen dam and the behavior of the flow in the stilling basin. Aerators are employed to supply air at critical locations in the flow where low pressure and cavitation may occur in order to protect the structure. The simulations were carried out, first in 2D and then in 3D, with the software FLUENT/GAMBIT describing the spillway and the stilling basin. Results were mainly concentrate on the interfacebetweenphases,airentrainmentbutalsovelocityandpressureoftheflow. Lim- ited data from laboratory experiments were available; however, their usefulness might be limited due to scale effects occurring in such two-phase flow problems. Acknowledgements This work was carried out during my time as a student at the Faculty of Engineering, Lund University. I would like to thank all persons who supported me in Lund and contributed to the achievement of this master thesis, in particular: Thank you to Prof. Magnus Larson for introducing and supervising this project, for his interest and contribution using his practical experience. Many thanks to Prof. James Yang from Vattenfall who initiated the project and assist me with the help of his Phd. student: Penghua Teng. I am grateful to Ali Al Sam from the Division of Fluid Mechanics who took on his time to help me with the simulation. ii Contents Abstract i Acknowledgements ii 1 Introduction 1 1.1 Project description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.6 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Literature review 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Cavitation on spillways . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Method to reduce cavitation damage . . . . . . . . . . . . . . . . . . . . . 6 2.3.1 Effect of air content . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Air entrainment on spillways . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.1 Self-aerated flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.2 Artificial aeration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.2.1 Types of aerators . . . . . . . . . . . . . . . . . . . . . . 10 2.4.2.2 Aerator submergence . . . . . . . . . . . . . . . . . . . . 14 3 Theory 15 3.1 Governing equations for CFD . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Turbulence Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 VOF Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Bergeforsen dam 20 4.1 Site description and adaptations . . . . . . . . . . . . . . . . . . . . . . . 20 5 Numerical model and setup 23 5.1 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Computational domain and grid . . . . . . . . . . . . . . . . . . . . . . . 23 5.2.1 2D-cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2.1.1 2D-case without aerator . . . . . . . . . . . . . . . . . . . 24 5.2.1.2 2D-case with aerator. . . . . . . . . . . . . . . . . . . . . 25 iii iv 5.2.2 3D-cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6 Results and discussion 29 6.1 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.1.1 Necessity of an aerator . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.1.2 Water surface profile . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.1.3 Velocity and flow circulation . . . . . . . . . . . . . . . . . . . . . 32 6.1.4 Pressure at the bottom . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1.5 Air entrainment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.2 Discussion and accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2.1 Verification of the model . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2.2 Uncertainty and error in CFD simulations . . . . . . . . . . . . . . 38 7 Conclusion 40 Bibliography 41 Symbols, Constants v Symbols a Local speed of sound C Mean air concentration of developed aeration a d Depth of flow at the beginning of the ramp 0 e Total energy o k Turbulent Kinetic Energy (TKE) per unit mass m˙ Mass transfer from phase q to phase p qp m˙ Mass transfer from phase p to phase q pq M Turbulent Mach number t n;n+1 Time step p pressure intensity p Local pressure 0 p Vapor pressure of water v P Production of turbulent kinetic energy due to k the mean velocity gradients P Production of turbulence kinetic energy due to b buoyancy q Unit discharge of air a q Unit discharge of water w S User-defined source terms of k k S User-defined source terms of ǫ ǫ ∗ S Traceless viscous strain-rate tensor component ij S User-defined mass source for each phase αq t Time t Ramp height r t Offset/duct height s u Velocity magnitude i ′ u Fluctuating component of velocity magnitude i U ,u¯ Average flow velocity i i V Volume flux through a face based on normal ve- f locity V Volume of cell X Horizontal distance from end of ramp to jet i impact location X Horizontal distance from end of ramp to n centerline of jet at impact location Symbols, Constants vi Y Elevation at impact point i Y Elevation of centerline of jet at impact point n Y Contribution of the fluctuating dilatation to ǫ M α Ramp angle α Volume fraction of a fluid in a cell q β Air entrainment coefficient β Coefficient of thermal expansion Buoyancy δ Kronecker delta ij ǫ Turbulence dissipation rate per unit mass σ Cavitation number (index) θ Spillway slope µ Dynamic viscosity µ Eddy/Turbulent viscosity t ρ Density τ Viscous stress tensor component ij Constants k - ǫ Model Constants C = 1.44 1ǫ C = 1.90 2 C = 0.33 3ǫ − Turbulent Prandtl numbers σ = 1.00 k σ = 1.20 ǫ Abbreviations CFD Computational Fluid Dynamics RANS Reynolds-Averaged Navier-Stokes VOF Volume Of Fluid

Description:
spillway water flow in the Bergeforsen dam and the behavior of the flow in the stilling . Although aerators have been investing during . Self aeration is assured when the chute is long enough to allow a complete .. Variables and properties in any cell are either representative of one of the phases,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.