Certain Number-Theoretic Episodes in Algebra Second Edition Certain Number-Theoretic Episodes in Algebra Second Edition Sivaramakrishnan. R CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20190220 International Standard Book Number-13: 978-1-138-49578-4 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Dedicatedtothememoryofmybelovedbrother RamakrishnaiyerRaman(1933–2015) whowasamanofdeepconvictions,committedtohardworkand unwaveringpursuitofprofessionalgoals. Imisshisguidance. Sivaramakrishnan. R CONTENTS Preface................................................. ..xv Acknowledgment....................................... ..xxi AbouttheAuthor ..................................... ..xxiii Chapter-WiseDescriptionoftheContents............... ..xxv SectionI-ELEMENTSOFTHETHEORYOFNUMBERS..1 1.FromEuclidtoLucas: ElementaryTheoremsRevisited.. ..3 Introduction............................................ ..3 1.1. ThequotientringZ/rZ (r > 1)..................... ..6 1.2. Congruencesmoduloaprime...................... ..11 1.3. Fermat’stwo-squarestheorem..................... ..16 1.4. Lagrange’sfour-squarestheorem .................. ..19 1.5. Worked-outexamples ............................ ..22 / 1.6. Notes Remarks ................................. ..26 Exercises........................................... ..29 References.......................................... ..30 2.SolutionsofCongruences,PrimitiveRoots............. ..33 Introduction........................................... ..33 2.1. Theoremsoncongruences......................... ..34 2.2. Worked-outexamples ............................ ..37 / 2.3. Notes Remarks ................................. ..38 Exercises........................................... ..39 References.......................................... ..40 3.TheChineseRemainderTheorem..................... ..41 3.1. Introduction..................................... ..41 3.2. TheChineseRemainderTheorem.................. ..44 3.3. Worked-outexamples ............................ ..47 / 3.4. Notes Remarks ................................. ..48 vii viii Exercises........................................... ..49 References.......................................... ..52 4.Mo¨biusInversion..................................... ..53 Introduction........................................... ..53 4.1. AbstractMo¨biusinversion ........................ ..54 4.2. Deduction: Mo¨biusinversionofnumbertheory ..... ..58 4.3. ThepowersetP(X)ofafiniteset X ................ ..60 4.4. Aworked-outexample ........................... ..62 / 4.5. Notes Remarks ................................. ..63 Exercises........................................... ..64 References.......................................... ..68 5.QuadraticResidues(modr)(r > 1) .................... ..69 Introduction........................................... ..69 5.1. Preliminaries: Gauss’lemma...................... ..70 5.2. Eisensteinlemma ................................ ..72 5.3. Quadraticreciprocitylaw......................... ..75 5.4. FirstSupplementtoquadraticreciprocitylaw....... ..75 5.5. Secondsupplementtoquadraticreciprocitylaw..... ..76 5.6. TheJacobisymbol............................... ..76 5.7. Worked-outexamples ............................ ..77 / 5.8. Notes Remarks ................................. ..79 Exercises........................................... ..80 References.......................................... ..81 6. Decomposition of a Number as a Sum of Two or Four Squares .............................................. ..83 Introduction........................................... ..83 6.1. Gaussianintegers ................................ ..86 6.2. Integralquaternions.............................. ..87 6.3. Landau’sTheorem ............................... ..90 6.4. Worked-outexamples ............................ ..90 / 6.5. Notes Remarks ................................. ..92 Exercises........................................... ..93 References.......................................... ..94 7.DirichletAlgebraofArithmeticalFunctions ........... ..95 Introduction........................................... ..95 ix 7.1. Arithmeticalconvolutions......................... ..96 7.2. Arithmeticfunctions ............................. ..97 7.3. Mo¨biusinversion(anotherform)................... ..98 7.4. Unitaryconvolution............................. ..100 7.5. UFDpropertyoftheringofarithmeticfunctions... ..101 7.6. Worked-outexamples ........................... ..105 / 7.7. Notes Remarks................................ ..108 Exercises.......................................... ..110 References ........................................ ..112 8.ModularArithmeticalFunctions ..................... ..115 Introduction.......................................... ..115 8.1. Eckford Cohen’s orthogonal property for Ramanujan sums.............................................. ..117 8.2. FiniteFourierseriesrepresentationsofevenfunctions (modr)............................................ ..121 8.3. Anapplication.................................. ..124 8.4. Aworked-outexample .......................... ..125 / 8.5. Notes Remarks................................ ..126 Exercises.......................................... ..128 References ........................................ ..129 9.AGeneralizationofRamanujanSums................ ..131 Introduction.......................................... ..131 9.1. Jordan’stotient J (r) ............................ ..132 k 9.2. Residuesystems(modk,r)....................... ..133 9.3. AgeneralizationofC(n,r)....................... ..134 9.4. Anapplication.................................. ..137 9.5. Worked-outexamples ........................... ..138 / 9.6. Notes Remarks................................ ..140 Exercises.......................................... ..140 References ........................................ ..143 10. Ramanujan Expansions of Multiplicative Arithmetic Functions ........................................... ..145 Introduction.......................................... ..145 10.1. Averagesofevenfunctions(modr).............. ..148 10.2. Seriesexpansions.............................. ..151 10.3. Worked-outexamples.......................... ..152