ebook img

Cephalopod evolution: A new perspective - Implications from two Early Cretaceous ammonoid suborders (Northern Calcareous Alps, Upper Austria) PDF

2007·1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cephalopod evolution: A new perspective - Implications from two Early Cretaceous ammonoid suborders (Northern Calcareous Alps, Upper Austria)

© Biologiezentrum Linz, download unter www.biologiezentrum.at Cephalopod evolution: A new perspective – Implications from two Early Cretaceous ammonoid suborders (Northern Calcareous Alps, Upper Austria) A. LUKENEDER Abstract:ThestatusoftwoEarlyCretaceousammonoidgroupsfromUpperAustria(NorthernCalcareousAlps)isexaminedwith respecttotheevolutionoftheirshapeaswellastotheirmorphologyandenvironmentalpreference.TheValanginianOlcoste- phanusguebhardi(VerrucosumZone,137mya)showstheevolutionaryseparationofsexintwodifferentenvironmentsandhas adapteditsshapetothesomewhatdifferentenvironmentalconditions.TheheteromorphBarremianammonoidKarstenicerastern- bergense(CoronitesZone,124mya)isshowntohaveevolvedduringtimeswithintermittentoxygen-depletedconditionsassocia- tedwithstable,salinity-stratifiedwatermasses.Basedonlithologicalandgeochemicalanalysiscombinedwithinvestigationsof tracefossils,microfossilsandmacrofossils,aninvasionofanopportunistic(r-strategist)Karstenicerasbiocoenosisduringunfavou- rableconditionsisassumed.BothexamplesarechosentodemonstrateevolutionarytrendsintheEarlyCretaceouswhichcanbe observedinthecephalopodgroupasawhole. Keywords:Evolution,ammonoids,palaeobiology,NorthernCalcareousAlps,EarlyCretaceous. Introduction phologicalchangeandthereforeappearsasanewevo- lutionary trend. Radial or linear evolutions are the ABEL (1916) was the first to show a strong corres- mainevolutionarydirectionsandpathways,butareon- pondence and interaction between the environment lydescriptivemirrorsformoreimportantprocessesthat andthenewlyevolvingshapes,morphologiesandstruc- morecephalopodworkersshouldrecognize(seeHOUSE tures of cephalopods. That seminal paper on the & SENIOR 1980). Spectacular evolutionary radiation palaeobiologyofcephalopodsunderlinedthatcephalo- andstepsforwardmostlytookplacewhentheenviron- podevolutionistypicallycloselyrelatedwithchanging mentchangeddrastically.Thepresentpaperexamines environmentalconditionsinthesea.Itisevidenttoday theproblemofammonoidevolutionfromapalaeobio- thatthedifferentfieldstreatedbycephalopodworkers logicalpointofview,usingtwocephalopodcasestudies like evolution, biodiversity, ecology and palaeobiology from the Early Cretaceous of Upper Austria. These are blending into one another. Evolution moulds the showstrikingevidencefortheevolutionofnewforms geneticprogrammingofcephalopodsand,indoingso, due to environmental changes or due to adaption of alsomouldsthepotentialforadaptation(YOUNGetal. habittothepreferredhabitat.Theadaptivestrategyis 1998;YACOBUCCI1999).Adaptationisthemajormo- clearlyprovenbythechangeofmorphologyinthefos- torforevolution,asituationrecognizedbyABEL(1916) silrecordandtheembeddingfauna. whenheerectedthenewfieldknownaspalaeobiology. Palaeobiology shows how important the animal-envi- Casestudy1showstheEarlyCretaceousmass-occur- ronmentinteractionisforpromotingevolution. rence(KB1A=Klausrieglerbach1,sectionA,Ternberg Nappe,oftheNorthernCalcareousAlps-NCA;Upper Do ammonoids speciate profusely because internal Austria)withdominatingOlcostephanus(Olcostephanus) factors enhance variability and reproductive success? guebhardi KILIAN morph. querolensis BULOT, from the Or do ammonoids respond passively to environmental Saynoceras verrucosum Zone (Late Valanginian) changes and therefore react after changes of the envi- (LUKENEDER2004;LUKENEDER&HARZHAUSER2003). ronment?Thesequestionsgobeyondthescopeofthis paper,buttheproblemsassociatedwiththesemajoris- Casestudy2showsanEarlyCretaceousmass-occur- Denisia20, sues in cephalopod research can be highlighted by di- renceofammonoidsintheTernbergNappeoftheNCA zugleichKatalogeder oberösterreichischen verse papers expressing different points of views. The (Upper Austria), which is described for the first time. Landesmuseen adoptionofnewhabitsinteractswithlong-lastingmor- Themass-occurrence(sectionKB1B=Klausrieglerbach NeueSerie66(2007): 395-404 © Biologiezentrum Linz, download unter www.biologiezentrum.at Fig.1:LocalitymapofUpperAustria showingtheoutcropofLowerCretaceous sediments(black)aroundthesection investigatedwithintheNorthern CalcareousAlps.Positionsofthesynclines aregiveninthetectonicmapontheleft. (1)LosensteinSyncline,(2)Schneeberg Syncline,(3)AnzenbachSyncline,(4) EbenforstSyncline.ThepositionoftheKB1 A(blue)andKB1B(yellow)sectionis markedbyacross(x). 1, section B) dominated by Karsteniceras ternbergense logical, palaeoecological and sedimentological investi- LUKENEDER is of Early Barremian age (Coronite darsi gations,combinedwithstudiesoflithofaciesinthinsec- Zone)(LUKENEDER2003;LUKENEDER&TANABE2002). tions,peelsfrompolishedrocksurfacesandgeochemical investigations (CaCO, TOC, S), yielded information The main aim of this contribution is to show the 3 abouttheenvironmentalconditionsintheareaofdep- significanteffectofsynecologicalstress,causedeitherby osition.Inparticular,‘parameters’suchasoxygen-level environmentalchangesofabioticfactorssuchasoxygen (deduced not measured), total organic carbon (TOC) content,salinityanddepth,orbyautecologicalstressas- content and sulphide contents help to solve the ques- sociatedwithbioticcompetitorsoccupyingthesameen- tionofautochthonousversusallochthonousdeposition vironment. oftheammoniteshells.Sulphuranalysesconfirmthere- sults of many other methods used to test for anoxic or Material and methods oxic conditions (e.g. TOC, HI). Thus, the sulphur Section KB1 A.Theolcostephanid-dominatedma- analysismethodsdevelopedbyKOMA(1978)andothers appeartobeapplicableforthestudyofanoxic-dysoxic terial originates from section KB1 A in the Losenstein eventbedselsewhere. Syncline. Ammonoids represent almost the totality of the macrofauna (98 per cent). The very abundant but Thetotalsulphurcontent(weightpercent)ofsam- generallypoorlypreservedLateValanginianassemblages plesfromtheKB1sectionwasanalysedusingX-rayflu- consist of 9 genera. About 200 specimens of Ol- orescence and wet methods. All the chemical analyses costephanusguebhardi(BULOT)between10and102mm were carried out in the Laboratory of the Institute of in maximum diameter were investigated. Many of the Forest Ecology at the University of Vienna. Calcium specimensarefragmented.Twogroupsofvaryingmaxi- carbonatecontentwasdeterminedusingthecarbonate mumsizeanddifferentaperturesaredistinguishable.The bombtechnique.Totalcarboncontentwasdetermined smaller group represents the microconchs (up to 42 using a LECO WR-12 analyser. Total organic carbon mm),whereasthelargerspecimensaremacroconchs(up (TOC) content was calculated as the difference be- to102mm).Duetothelargenumberofspecimens,ex- tweentotalcarbonandcarbonatecarbon,assumingthat traordinarily well-preserved specimens (e.g. lappets of allcarbonateispurecalcite. microconchs)couldbecollected.Theircasts(sculpture moulds), with perfectly preserved sculpture, are usually Geographical setting compressed.Nosuturelinesarevisibleonthesteinkerns. Both occurrences are located within the same log Section KB1 B. About 300 specimens of KB1.ThesectionissituatedintheTernbergNappein KarstenicerasternbergenseLUKENEDERbetween5and37 UpperAustria.Theexactpositionisabout7kmwestof mmindiameterwereinvestigatedfromtheKB1Bsec- Losenstein, 1 km south of Kienberg and 500 m south- tion.Mostofthespecimensareobservableononeside westoftheKlausrieglerinn(652m,ÖK1:50000,sheet only;mostareentireandshownofragmentation.Juve- 69 Großraming, Fig. 1). The stream outcrop fixed by nilestagesandtheventralareaarevisibleinjustafew GPS data (global positioning system: N 47°54’32“, E specimens.Twogroupsshowingthickmainribsbutdif- 14°21’10“) crosses the western part of the east-west ferent maximum size are distinguishable. The very striking Losenstein Syncline at a line between the abundantsmallheteromorphsaregenerallypoorlypre- Kreuzmauer(853m)tothenorthandthePfaffenmauer served. Their casts (sculpture moulds), with perfectly (1218m)tothesouth.Fordetaileddescriptionsofthe preservedsculpture,areusuallypyritized. investigation area see LUKENEDER (1997, 1998, 1999). Bed-by-bed collecting and a systematic-taxonomic Thissectionwasthestartingpointforalateralanalysis studyprovidethebasicdataforstatisticalanalysisofthe of the distribution of the reported ammonite mass-oc- ammonite faunas from KB1 A and KB1 B. Palaeonto- currence. 396 © Biologiezentrum Linz, download unter www.biologiezentrum.at The Olcostephanus occurrence (KB1 A) is situated intheuppermostpartoftheKB1ravine(800m).The fossiliferous limestone, comprising the Olcostephanus- bearinginterval,islocatedontheleftwallofthegorge (dipping080/70).TheKarstenicerasoccurrence(KB1B) issituatedinthemiddleoftheKB1ravine(717m,dip- ping080/70). Geological setting TheLosensteinSynclineissituatedinthesouthern- mostpartoftheTernbergNappeoftheNorthernCal- careous Alps. This is followed directly to the south by theSchneebergSyncline,theAnzenbachSynclineand thentheEbenforstSynclineoftheReichramingNappe (NorthernCalcareousAlps),allofwhichareconstitut- ed by Lower Cretaceous sediments. At the section in- vestigated, the Early Cretaceous is represented by four formations, from bottom to top the Steinmühl Forma- tion (c. 20 m, Early Berriasian to late Early Valangin- ian), the Schrambach Formation (c. 160-200 m, Late Valanginian to Late Barremian), and the Tannheim Formation(c.40m,EarlyAptiantoLateAptian)and theLosensteinFormation(c.20m,Albian(Fig.2). Theinvestigatedammonite‘mass-occurrences’,rep- resentingtheOlcostephanusLevelandtheKarsteniceras Level, are situated in the lowermost part (KB1 A, Ol- costephanus,LateValanginian)andtheupperpart(KB1 B, Karsteniceras, Early Barremian) of the Schrambach Formation(LUKENEDER1997,1998)(Fig.3). Case study 1: KB1 A Facies-relatedevolutionand sexualdimorphicpairs The mass-occurrence of Olcostephanus (Olcostepha- nus)guebhardimorph.querolensis(Fig.4)overaninterval ofalmost3metres(KB1A)isinterpretedtobetheresult ofacombinationofalong-termaccumulationfromthe watercolumn(autochthonousparts)duringafavourable time interval and redepositonal phases (allochthonous parts) of the Late Valanginian (S. verrucosum Zone, LUKENEDER 2004). The abundant olcostephanids reflect lessoffshoreinfluencesandnearnessofshallowenviron- ments.PartsoftheOlcostephanusmass-occurrence(accu- mulation beds) show some similarities to a ‘Kondensat- Lagerstätte’.Anenrichmentbyredeposition,currentsor turbiditesisproposedforonlyafewmarlylayerswithac- cumulated fragmented olcostephanids. The ol- costephanidsweredepositedwithinaphyllocrinid-ophi- Fig.2:PositionoftheoutcropattheKB1section(centre),situatedinthe SchrambachFormation,withindicatedexposureoftheinvestigateddetailed urid association. Irregular echinoids proved soft bottom logsKB1A(topphoto)andKB1B(bottomphoto). conditions of the secondary allochthonous depositional environment(LUKENEDER2004).TheabundanceofOl- costephanusattheKB1Asectionseemstoberelatedto 397 © Biologiezentrum Linz, download unter www.biologiezentrum.at Fig.3:Stratigraphiclogofthe REHÁKOVÁ2004).‘Faunalturnover’,‘mass-occurrence’, investigatedsection,consistingof and‘migrations’havealwaysbeenconsideredtobecon- theSteinmühl-,theSchrambach- trolled by transgressive and regressive cycles in various andtheTannheimformations, indicatingthepositionoftheKB1A Early Cretaceous ammonite groups (RAWSON 1981, andKB1Bsections. HOEDEMAEKER1990). A huge rise in sea level took place in the Late Valanginian (Verrucosum Zone) succession (HOEDE- MAEKER1990)ofthelowermostSchrambachFormation (KB1), containing the Olcostephanus Level, which is dominated by the migrated genus Olcostephanus. The presence of Olcostephanus in the Losenstein Syncline andespeciallyattheKB1-Asectionisapparentlyrelat- ed to transgressive facies, presumably associated with sea-levelrises. This was probably within the Late Valanginian trangressionphase,whichalsoledtoaworld-wide(e.g. Argentina, Mexico, Colombia, Spain, France, Italy, Switzerland,N.Germany,Austria,CzechRepublic,Ro- mania,Bulgaria,Russia,Tunisia,Algeria,SouthAfrica, Madagascar,Pakistan)spreadingorevenexplosionand occupation of new regions (e.g. Boreal Realm) by the Olcostephanusgroup.Thismostlyreflectsthecreationor renewalofsea-ways.Comparingfieldevidenceandpub- lished data from the Vocontian Trough (e.g. BULOT 1993)supportstheproposalofafaciesdependence(e.g. depth, outer-inner shelf) of Olcostephanus (Ol- costephanus) guebhardi morph. querolensis also for the Austrian KB1-A occurrence (Fig. 5). The descendants aremostprobablyinhabitantsoftheoutershelfandre- lated areas. It is also suggested that Olcostephanus (Ol- costephanus) guebhardi morph. querolensis has its acme withintheS.verrucosumZone,whereastheancientOl- costephanus (Olcostephanus) guebhardi s. str. is most abundant in the latest Early Valanginian (Inostranzewi Zone)(BULOT1992;LUKENEDER2004). Among ammonoid genera of Tethyan origin, Ol- costephanus(whichapparentlyoriginatedinthewestern Mediterranean area during the Early Valanginian) was dispersed over many parts of the world by the mid- Valanginiansea-levelrise,whenthe‘guebhardichrono- cline’ extended to Mexico, Argentina, the Antarctic Peninsula,SouthAfrica,Madagascar,andintotheBo- real Realm (especially the West European Province) (BULOT 1990), although it never penetrated into truly borealareas(RAWSON1993). transgressivefacies,presumablyassociatedwithsea-level OnthenorthernmarginoftheTethystheammonite rises. assemblages of the outer platform areas in southern Lithological differences observed around the Ol- SpainandProvence(southernFrance)aredominatedby costephanus-Levelareclearlyconsequencesofanaltered Olcostephanus and by Neocomitidae (COMPANY 1987; palaeooceanographyandthereforereflectsea-levelfluc- BULOT1993;REBOULET1996).BULOT(1993)hasshown tuationsduringtheEarlyCretaceous,especiallywithin distinct geographic distributions in some species of the the Berriasian and Valanginian stages (LUKENEDER & Olcostephanidaeinplatformorbasinenvironments. 398 © Biologiezentrum Linz, download unter www.biologiezentrum.at Studies carried out in south-east France provided bution when neocomitids (e.g. Neocomites appears in goodevidenceofammonitedistributionlinkedtofacies. theEarlyValanginian)wererareorabsentinthesame AmongtheAmmonitina,theOlcostephaninaeandthe area, which leads to the well-known “bottle neck“ ef- Neocomitidaeyieldedthebestexamplesoffaunalassem- fects in the evolution of the olcostephanid group. The blagevariationsbetweenthebasinandoutershelf(BU- olcostephanids may have inhabited more shallow seas LOT1993;REBOULET1996;REBOULET&ATROPS1997). thantheneocomitids.Incontrast,theneocomitidswere DuringmostoftheValanginian,Olcostephanuswassplit able to live in deeper areas. The living realm of both into two different ‘lineages’: Olcostephanus (Ol- ammonoid groups were therefore shifted against each costephanus) guebhardi (KILIAN) and related species are other. Due to the ecological stress caused by the other restricted to the outer shelf facies, while Olcostephanus ammonoidgenus,thedifferentammonoidsevolvedin- (Olcostephanus) tenuituberculatus (BULOT) and its de- tofreenichesoftheshallowerordeepersea.Thelatter scendantscorrespondtothebasinfacies(BULOT1993). fact most probably explains why we can observe only one genus (Olcostephanus) in the shallowest facies, al- The splitting into two facies-linked olcostephanid thoughthissituationrequiresfurtherinvestigation. lineagesduringtheValanginianclearlyshowstheevo- lution within the olcostephanids. Starting from the Sexual dimorphism in ammonoid cephalopods is Berriasianuni-facial,deeper-watergenusSpiticeras(e.g. discussed in detail for example by DAVIS et al. (1996) S. multiforme DJANÉLIDZÉ), followed by the still uni-fa- and COOPER (1981). The latter author precisely de- cialolcostephanidancestorOlcostephanus(O.)drumen- scribed sexual dimorphism in Olcostephanus. In Ol- sisKILIANintheearlymostValanginian,thekeyevolu- costephanus,asinotherammonoids,theontogeneticde- tionary point follows in the middle Early Valanginian. velopment of the shell is similar in both antidimorphs The evolutionarily important split into a deep-water (sensuDAVIS1972)untiltheonsetofmaturity. lineageandamoreshallow-waterlineagewithintheol- Within the KB1-A olcostephanid fauna, sexual di- costephanids markedly changes the picture of ol- morphism is very apparent due to the unusually large costephaniddistributionandsystematics. size attained by the macroconch forms (M; measured One lineage evolved the shelf forms from Early specimens=adultsize),someofwhichexceed102mm ValanginianOlcostephanusguebhardis.str.,overtheLate in diameter. In contrast, the largest confirmed micro- Valanginian Olcostephanus guebhardi morph. type conch(m)sofarrecordedfromthesebedsmeasureson- querolensisuptoHauterivianspecieslikeOlcostephanus lyslightlymorethan42mmindiameter,withtheaver- densicostatus(WEGNER). agebeingfarless(LUKENEDER2004).Themacroconchs Thesecondlineageinhabitedthebasinsandevolved range in size from 82 to 100 mm and the microconchs fromOlcostephnausdrumensis,continuingovertheEarly 20to42mm,indicatingasizeoverlapbetweenantidi- Valanginian Olcostepanus stephanophorus (MATHERON) morphs of approximately 20 % of the total combined intotheLateValanginianspeciesofOlcostephanustenu- size range of the two antidimorphs. The microconchs ituberculatus (BULOT), Olcostephanus balestrai (RODI- show at the aperture a final constriction coupled with GHIERO)andOlcostephanusnicklesiWIEDMANN&DIENI. laterallappets,whereasthemacroconchshaveonlyafi- ThislineageendswiththeendoftheValanginian. nal constriction. In Olcostephanus guebhardi, sexual di- morphism is expressed by differences not only in adult This differentation in Olcostephanus ended in the shape, size and ornament but also in the form of the EarlyHauterivianwithevolvingspecieslinkedtoboth aperturalmargin(Fig.4). basin and shelf facies. These are Olcostephanus densi- costatus and its descendants Olcostephanus astierianus (ORBIGNY), Olcostpephanus sayni KILIAN and Jeanno- Case study 2: KB1 B ticeeas jeannoti (ORBIGNY) for the Early Hauterivian. Oxygenasimpulseforevolutionin Other data from various places of the western Tethys heteromorphr-strategists confirm this facies-linked distribution of Olcostephanus About300specimensofKarstenicerasternbergensebe- (NorthernCaucasus,KVANTALIANI&SAKHAROV1986; tween5mmand37mmindiameterwereinvestigated. Spain,COMPANY1987;Switzerland,BULOT1989,1992) Juveniles, adults, including micro- and macroconchs, and therefore underline a general trend for the entire couldbeseparated.AsexualdimorphisminKarsteniceras TethysRealm(BULOT&COMPANY1990). canbeobserved.Anenrichmentbyredepositionthrough Various evidence points to the fact that the evolu- currents or turbidites can be clearly ruled out based on tionoftheEarlyCretaceousolcostephanidswasclosely theautochthonouscharacterofthenearlymonospecific linked to the evolution and concurrent appearance of benthic macrofauna (e.g. Inoceramus, Propeamussium), theneocomitids.Olcostephanidshadtheirwidestdistri- the preservation of fragile parts and the extraordinary 399 © Biologiezentrum Linz, download unter www.biologiezentrum.at Fig.4:Karsteniceras light-greybioturbated,organic-depletedlimestonessug- ternbergense gests that the oxic and dysoxic conditions episodically specimensfromcase changed.Ahighlydynamicenvironment,controlledby study2(KB1B):(A) short-andlong-termfluctuationsinoxygenlevels,and NHMW 2001z0170/0002,x1; poorcirculationofbottom-watercurrentswithinaniso- (B)holotype,NHMW lated,basin-likeregion,ledtotheaccumulationofthe 2001z0170/0001,x1; KarstenicerasLevel.Thelaminationgenerallyindicates (C)NHMW a very quiet depositional environment, which was not 2001z0170/0004,x1; (D)NHMW disturbedbycurrents(LUKENEDER2003). 2001z0170/0003,x1; WithintheSchrambachFormation,dysaerobic(not (E)NHMW 2001z0170/0005,x1; anaerobic) conditions prevailed, allowing endobenthic (F)NHMW colonization of the incompletely bioturbated sediment 2001z0170/0007,x1. byChondrites(accompaniedbyPlanolitesinsomebeds). Olcostephanus (Olcostephanus) Increasing levels of dissolved oxygen in bottom waters guebhardimorph.type over time are suggested by well-bioturbated, pale grey querolensisspecimens limestone beds, whereas dysaerobic conditions are ex- fromcasestudy1(KB1 pressed through thin, black, laminated limestones A):(G)macroconch, 2002z0070/0001,x1; (‘black shales’). The Karsteniceras mass-occurrence is (H)microconch, situated in the laminated horizons. The following fea- 2002z0070/0002,x1, tures are observable: (1) high TOC, (2) high sulphur (I)macro-and content,(3)concentrationsofpyrite,(4)phosphaticsi- microconch 2002z0070/0003,x1. phunclestructures,(5)indistinctlamination,(6)almost monospecific trace fossil community (e.g. Chondrites), (7)fishremains,(8)extremelyrarebenthos(e.g.inoce- ramids, ‘paper pectens’), (9) rare microfauna, (10) ‘mass-mortality’ of Karsteniceras, very abundant and smallinsize,(11)nearly‘monospecific’faunalspectrum and(12)insituaptychi. It is assumed that, based on the described features fromKB1Bandliteraturedata,Karstenicerasmostprob- ablyhadanopportunistic(r-strategist)modeoflifeand was adapted to dysaerobic sea-water. These ancylocer- atidsmostlikelyinhabitedregionsreachingfromthesea floortoatleastafewtensofmetersintotheoverlying water-column, based on the in situ aptychi and the nearlymonospecificfaunalassemblageofsmallhetero- morphs. Most of the associated other ammonoids (e.g. Barremitescf.difficilis)showdifferentovergrowthstages (serpulids).Thesecanbeexplainedasareflectionoflife in the upper, oxygenated water-column, with subse- quent sinking to the sea floor or drifting after death. Karsteniceras probably inhabited areas of water stagna- tion with low dissolved oxygen, showing abundance peaksduringtimesofoxygendepletion,whichhindered otherinvertebratesfromcolonisingsuchenvironments. ThedescribedautochthonousKarstenicerasmass-occur- rence features fit well into the scheme of a ‘Konservat preservationofinsituaptychiwithinthebodychambers Lagerstätte’(LUKENEDER2003). ofKarstenicerasternbergense(Fig.4). Interbeddingofsedimentsalternatelyrichandpoor The geochemical results indicate that the assem- inorganicmattercanbetheresultofeitherdifferential blage was deposited under conditions of intermittent preservationoforganicmatter,differentialratesofsup- oxygen-depletion associated with stable water masses. ply of organic matter, different sources of primary pro- The rhythmicity of laminated black shale layers and duction,and/ordifferentialsedimentationrates.Differ- 400 © Biologiezentrum Linz, download unter www.biologiezentrum.at entpreservationcanresultifbottomwatersattheaccu- mulationsitearealternatelyoxicanddysoxic(ornear- anoxic).Cyclicvariationintheamountoforganicmat- ter accumulating at a continental margin site may be explainedbycyclicfluctuationsinthethicknessandin- tensityofamidwateroxygen-minimumlayer.Bothde- positional models (basin deoxygenation as well as ex- pansionandestablishmentofanoxygen-minimumlay- er)havebeenproposedtoexplaintheaccumulationof organiccarbon-richstrata. Oxygenisabio-limitingelementformetazoansand is among the key factors influencing species diversity and abundance in the marine realm. Reduced concen- trationsofdissolvedoxygencanhavedisastrousconse- quencesformarinelife,reducingdiversityandultimate- lyleadingtomass-mortality. Factors associated with low diversity include high stress and ecological immaturity. Most opportunists (r- strategists) are characterized by small size and a short lifespan.Thelatterfactsalsohintatpositivemutations. The small-sized leptoceratids seem to be resistant against oxygen depletion in the sea water. The robust small-sized forms evolved morphologies and evolution- ary adaptations which allowed them to inhabit such hostileenvironments.Theybecameaccustomedtosuch conditions, occurring in masses and becoming geo- graphically widespread (LUKENEDER 2003). The body size of the leptoceratids was therefore reduced to give risetootherfeaturesimportantforlivinginoxygen-de- pletedwaters,andtheopportunistic(r-strategist)mode of life was perfectly adapted to dysaerobic sea-water. This was the sense in which the word “Paläobiologie“ wasoriginallymeantbyitsfounderO.ABEL(1916).He Fig.5:ThestratigraphicpositionofthecasestudiesKB1A(blue)andKB1B noticed almost 100 years ago for the cephalopods in (yellow)withintheEarlyCretaceous(Valanginian–Barremian)oftheKB11 general the same relation shown for the special cases faunaintheLosensteinSyncline.TableafterHOEDEMAEKERetal.(2003,with presentedherein.Thechangeinbodysizeandmorphol- modifications). ogyinKarstenicerasisaccompaniedcausallybythespe- cialisationoftheanimalduringenvironmentalchanges. differentmorphologiesandsizes.Theyalloriginatefrom This phenomenon can be detected through the the Late Hauterivian genus Veveysiceras VA Í EK & ŠČ whole Early Cretaceous. The phylogenetically totally WIEDMANN (VA Í EK & WIEDMANN 1994). The three ŠČ separated Berriasian Leptoceratoides (THIEULOY 1966) important lineages are: 1) Karsteniceras (criocone), 2) show the same facies-linked distribution as that of the Hamulinites (ancylocne) and 3) Eoheteroceras (ancylo- muchyoungerBarremianVeveysicerasdescendants.The cone)togetherwithManoloviceras(slightlycurved).All favoured sediments are clayey, dark to laminated marls ofthesearoseintheEarlyBarremian.Eoheterocerasmost withincreasingcontentoforganicmatterandpyrite. probablywastheancestoroftheLateBarremianHete- roceras.Karstenicerasformsthecentralstock,withmost A typical group of such opportunistic small-sized descendantsupintotheearlyLateBarremian. hetermorph ammonoids is the monophyletic subfamily LeptoceratoidinaeTHIEULOY.Thelattersubfamilyisas- Thephylogeneticallyandstratigraphicallyseparated signedtothefamilyAncyloceratidaeGILL.Withinthe group around UHLIG’S (1883) type species Leptoceras latter,threeevolutionarylinesarerecognized;thehere- brunneri belongs to an unrelated earlier group from the in-described Karsteniceras ternbergense is a member of BerriasiantoValanginian(THIEULOY1966).Noleptocer- oneoftheselines.Theselineagesareseparatedthrough atidtransitionalformsareknownfromtheHauterivian. 401 © Biologiezentrum Linz, download unter www.biologiezentrum.at Fig.6:Cretaceous The ancestral stock of the second and totally separated shapeexamplesfor later micromorph Barremian group the Leptoceratoid- “normal“coiledam- inae(beforeVeveysiceras),isstillobscure.Notransitional monoids:(A)phos- forms can be observed and the ancestor is unknown. phatizedPlacenticeras meeki(BOEHM)with Veveysiceras occurred first with Pseudothurmannia in the shellpreservation, latestHauterivian.Theevolutionarycentreexpandsina Campanian,Alberta, longitudinal east-west region from central/southeastern Canada,NHMW- 2006z0260/0001and EuropetoJapan(VA Í EK&WIEDMANN1994). ŠČ (B)Placenticeraspla- In the field, researchers should therefore look for centa(DEKAY)showing sutureline,South thin, relatively widespread (but isochronous) horizons Dakota,USA,NHMW- dominated by one species of body or trace fossil. The 2002z0066/0001. thin, black laminated layers with mass-occurrences of Heteromorpham- Karstenicerasareacaseinpoint.The‘normal-accumula- monoidsare:(C)Dis- tion’ofKarsteniceraswithinsuchblack,laminatedsedi- coscaphitesgulosus (MORTON)withshell mentsisinterpretedtobetheresultofspecialpalaeoen- preservation,Maas- vironmental conditions (e.g. poor oxygen, low to no trichtian,SouthDako- currents).Here,Karsteniceras,asamemberofanoppor- ta,USA,NHMW- tunistic (r-strategist) ammonite group, sought the un- 2006z0260/0002,and (D)Didymocerasne- favourable, oxygen-limited environmental conditions brascense(MEEK& thatotherammonitegroupswereunabletotolerate. HAYDEN)withshell preservation,Campan- Takingintoaccountthespeculationsonammonoid ian,SouthDakota, life-habitats, the demersal forms, feeding on the sea USA,NHMW floor, should be very rare or even absent in the anoxic 1980/0023/0000. levels (BATT 1993). VA Í EK & WIEDMANN (1994) al- ŠČ readynotedthepossibilitythatthebiotopeoftheLepto- ceratoidinae was close to stagnant, poorly oxygenated environments,wheretheyusuallyoccurredconcentrated in‘nests’dominatingthefaunalspectrum.Thishasbeen recentlyinterpretedtoreflectopportunisticbehaviourof some taxa (Bochianitidae and leptoceratoids) in un- favourable environments (CECCA 1998). Leptoceratoid andspiroceratidecology,palaeobiologyandlife-habitats were discussed by UHLIG (1883), NIKOLOV (1960), THIEULOY (1966), DIETL (1973, 1978), RIEBER (1977), VA Í EK (1977), WESTERMANN (1990), VA Í EK & ŠČ ŠČ WIEDMANN (1994), CECCA (1997) and AVRAM (1999). Summarizingthevariousopinionsonleptoceratoidecol- ogy, clear differences are evident between those of THIEULOY (1966; autochthonous life assemblage), RIEBER (1977; nektonic above anoxic bottom) and LUKENEDER (2003, nektonic in dysoxic water column), WESTERMANN(1990,1996;distalshelf),andVA Í EK& ŠČ WIEDMANN(1994;autochthonousbetweenturbidites). Concluding remarks This contribution shows the significant effect that synecological stress – caused either by environmental changes of abiotic factors as oxygen content, salinity and depth or by autecological stress from biotic com- petitorsoccupyingthesameenvironment–hasonthe shape and morphology of Cretaceous ammonoids. Ex- amples for different Cretaceous ammonoid shapes are giveninFigure6. 402 © Biologiezentrum Linz, download unter www.biologiezentrum.at Two contrary examples (Olcostephanus and Acknowledgements Karsteniceras)wereselectedtoshowevolutionarytrends Thanks are due to the Austrian Science Fund inammonoids.Theoldercasestudy(Valanginian)deals (FWF) for financial support (project P16100-Geo.). with “normal“ coiled Olcostephanus. A number of facts The author is grateful to Herbert Summesberger and show that the evolution of the Early Cretaceous ol- MathiasHarzhauser(bothNaturalHistoryMuseum,Vi- costephanids was closely linked to the evolution and enna)fortheirthoughtfulandvaluablecomments.Pho- concurrent appearance of the neocomitids. Due to the tographs were taken by Alice Schumacher (Natural ecological stress generated by the neocomitids, the ol- HistoryMuseum,Vienna). costephanidsevolvedintofreenichesoftheshalloweror deeper sea. The split into two facies-linked ol- costephanid lineages during the Valanginian clearly References shows the evolution within this group. The ol- costephanids reacted to the stress created for them by ABELO.(1916):PaläobiologiederCephalopodan.AusderGrup- pederDibranchiaten.—VerlagGustavFischer,Jena:1-281. otherantagonists(e.g.neocomitids). AVRAME.(1999):Somenewspeciesofthesubfamily‘Leptocera- Theyoungercasestudy(Barremian)dealswiththe todinae’ (Ancyloceratina, Ammonoidea) in uppermost hetermorphammonoidgrouparoundKarsteniceras.Re- HauterivianandlowerBarremiandepositsfromRumania. ducedconcentrationsofdissolvedoxygenhaveobvious —ScriptaGeol.,Spec.3:31-43. consequencesformarinelife,reducingdiversitybutgiv- BATTR.J.(1993):Ammonitemorphotypesasindicatorsofoxyge- ingrisetonewformswhichareresistanttooxygen-de- nationinaCretaceousepicontinentalsea.—Lethaia26: 49-63. pleted waters. Most opportunists (r-strategists) such as Karstenicerasarecharacterizedbysmallsizeandashort BULOT L. (1989): Les Olcostephaninae (Ammonitina, Cephalo- poda)dansleCrétacéinférieurduJuraSuisseetFrancais. life span. The robust small-sized forms evolved mor- —In:DECROUEZD.(Ed.),RéunionCommuneAPF-SPS,résu- phologies and evolutionary adaptations which allowed més:1-5. them to inhabit such hostile environments. They be- BULOTL.G.(1990):Révisiondestypesetfiguresdelacollection cameaccustomedtosuchconditions,occurredinmass- Matheron. 2. Olcostephanus (Olcostephanus) perinflatus es and were geographically widespread. The change in (MATHERON,1878)etOlcostephanus(Olcostephanus)?mit- body size and morphology in Karsteniceras is accompa- treanus(MATHERONnonD’ORBIGNY,1850).—Mésogée5:3-8. niedcausallywiththespecialisationoftheanimalover BULOTL.(1992):LesOlcostephaninaeValanginiensethauteriv- thecourseofenvironmentalchanges. iens (Ammonitina, Cephalopoda) du JuraFranco-Suisse: Systematiqueetinteretbiostratigraphique.—Rev.Paléo- bio.11(1):149-166. Zusammenfassung BULOTL.(1993):Stratigraphicalimplicationsofthereklations- hipsbetweenammoniteandfacies:examplestakenfrom Der Status zweier Unterkreide Ammoniten Grup- the Lower Cretaceous (Valanginian-Hauterivian) of the pen aus Oberösterreich (Nördliche Kalkalpen) wird, westernTethys.—In:HOUSEM.R.(Ed.),TheAmmonoidea: mitbesondererRücksichtaufdieEvolutionihrerForm, Environment,ecologyandevolutionarychange.Syst.Ass. derMorphologieundderenUmwelt-Präferenzen,aufge- Spec.Vol.47:243-266. zeigt. Olcostephanus guebhardi aus dem Valanginium BULOT L. & M. COMPANY (1990): Les Olcostephanus du groupe (Verrucosum Zone, 137 Mio.) zeigt die evolutionäre atherstoni(Ammonitina,Cephalopoda):potentiald’utilisa- TrennungderbeidenGeschlechterinzweiunterschied- tionpourlescorrelationsbiostratigraphiquesàlonguedis- tance.—InVIjornadasdelaSociedadEspanoladePaleon- liche Umweltbereiche und deren Anpassung der Form tologia,résumés:1-34. an die verschieden Umweltbedingungen. Es wird ge- zeigt, dasssich der heteromorpheAmmonit Karstenice- CECCAF.(1997):LateJurássicandEarlyCretaceousuncoiledam- monites:trophism-relatedevolutionaryprocesses.—C.R. ras ternbergense aus dem Barremium (Coronites Zone, Acad.Sci.Paris,sér.II325:629-634. 124 Mio.) in Perioden zeitweiligen Sauerstoffmangels CECCAF.(1998):Hypothesisabouttheroleofthetrophisminthe gekoppelt mit stabilen, geschichteten Wassermassen, evolutionoftheuncoiledammonites:theadaptiveradia- entwickelte. Basierend auf lithologischen und geoche- tionsoftheAncyloceratina(Ammonoidea)attheendof mischen Analysen, welche mit Untersuchungen von theJurassicandintheLowerCretaceous.—Rend.Fis.Acc. Spurenfossilien, Mikro- und Makrofossilien gekoppelt Lincei9.Rom:213-226. wurden,wirdeineInvasioneineropportunistischen(r- COMPANYM.(1987):LosAmmonitesdelValanginiensedelsector Strategen)KarstenicerasBiozönosewährendungünstiger orientaldelasCordillerasBéticas(SEdeEspana).—Tesis Doctorale,Univ.Granada.:1-294. Bedingungen angenommen. Beide Beispiele wurden ausgewähltumevolutionäreTrendsinderUnterkreide COOPERM.R.(1981):RevisionoftheLateValanginianCephalo- poda from the Sundays river Formation of South Africa, aufzuzeigen,welcheindergesamtenGruppederCepha- with special reference on the Genus Olcostephanus. — lopodenbeobachtetwerdenkönnen. Ann.S.Afr.Mus.83(7):147-366. 403 © Biologiezentrum Linz, download unter www.biologiezentrum.at DAVISR.A.(1972):Maturemodificationanddimorphisminse- Northern Calcareous Alps, Upper Austria). — Cret. Rea- lectedlatePaleozoicammonoids.—Bull.Am.Pal.62:23- search23:15-24. 130. NIKOLOVT.G.(1960):Lafaunad’ammonitesdansleValanginien DAVISR.A.,LANDMANNN.H.,DOMMERGUESJ.L.,MARCHANDD.&H. duPrébalkanOriental.Trav.Géol.Bulgarie.—SériePaléo. BUCHER (1996): Mature modifications and Dimorphism in 2:143-264. AmmonoidCephalopods.—In:LANDMANNN.,TANABEK.&A. RAWSONP.F.(1981):EarlyCretaceousammonitebiostratigraphy DAVIS(Eds),AmmonoidPaleobiology,Volume13ofTopics andbiogeography.—In:HOUSEM.R.&J.R.SENIOR(Eds),The inGeobiology,NewYork,PlenumPress:463-539. Ammonoidea, Systematics Association Special Volume, DIETL G. (1973): Middle Jurassic (Dogger) heteromorph am- ASSP18:499-529. monites.—In:HALLAMA.(Ed.),Atlasofpalaeobiogeogra- phy.Elsevier,Amsterdam:283-285. REBOULETS.(1996):L’evolutiondesammonitesduValanginien- HauterinieninférieurdubassinVocontienetdelaplate- DIETL G. (1978): Die heteromorphen Ammoniten des Dogger formeprovencale(Sud-EstdelaFrance):relationsavecla (Stratigraphie,Taxonomie,Phylogenie,Ökologie).—Stutt. stratigraphie séquentielle et implications biostratigraphi- Beitr.Naturkunde33:1-76. ques.—Doc.Lab.Géo.Lyon137:1-371. HOEDEMAEKERP.J.(1990):TheNeocomianboundariesoftheTe- REBOULETS.&F.ATROPS(1999):Commentsandproposalsabout thyanRealmbasedonthedistributionofammonites.— theValanginian-LowerHauterivianammonitezonationof Cret.Research11:331-342. south-easternFrance.—EclogaeGeol.Helv.92:183-197. HOEDEMAEKERP.J.,REBOULETS.,AGUIRRE-URRETAM.B.,ALSENP.,AOU- TEM M., ATROPS F., BARRAGÁN R., COMPANY M., GONZÁLEZ C., RIEBERH.(1977):EineAmmonitenfaunaausderoberenMaiolica der Breggia-Schlucht (Tessin/Schweiz). — Eclogae geol. KLEINJ.,LUKENEDERA.,PLOCHI.,RAISOSSADATN.,RAWSONP.,RO- Helv.70(3):777-787. POLOP.,VA Í EKZ.,VERMEULENJ.&M.WIPPICH(2003):Report ŠČ on the 1st International Workshop of the IUGS Lower THIEULOYJ.P.(1966):LeptocèresberriasiensdumassifdelaGran- CretaceousAmmoniteWorkingGroup,the‘KilianGroup’ de-Chartreuse.—Trav.Lab.Géol.Fac.Sci.l’Univ.Grenoble (Lyon,11September2002).—Cret.Research24:89-94. 42:281-295. HOUSEM.R.&J.RSENIOR(1980)(Eds):TheAmmonoidea.TheEvo- UHLIG V. (1883): Die Cephalopodenfauna der Wernsdorfer- lution,Classification,ModeofLifeandGeologicalUseful- schichten. — Denkschr. Österr. Akad. Wiss., math.-natur- nessofaMajorFossilGroup.—TheSystematicsAssociati- wiss.Kl.46:127-290. on,SpecialVolumes18,AcademicPress,London:1-593. VA Í EK Z. (1977): Hukvaldy – die neue makrofaunistische KOMAT.(1978):Sulfurcontentanditsenvironmentalsignifican- ŠČLokalitätderSchlesischenEinheit(Hauterive).—Cas.Slez. ceofPaleogenemuddysedimentsinapartoftheIshikari Muz.,Sér.A26:129-136. CoalField,centralHokkaido,northernJapan.—Jour.Jap. Assoc.Petrol.Technol.43:10-18. VA Í EKZ.&J.WIEDMANN(1994):TheLeptoceratoidinae:Small ŠČ heteromorphammonitesfromtheBarremian.—Palaeon- KVANTALIANII.V.&A.S.SAKHAROV(1986):ValanginianAmmonites tology37:203-239. oftheNorthernCaucasus(Russ.).—Geol.Balcanica163: 55-68. WESTERMANNG.E.G.(1990):NewdevelopmentsinecologyofJu- LUKENEDERA.(1997):ZurUnterkreideStratigraphiederSchram- rassic-Cretaceousammonoids.—In:PALLINIG.,CELLAF.,CRE- bachschichtenaufBlatt69Großraming.—Jb.Geol.B.-A. STAS.&M.SANTANTONIO(Eds),Fossili.Evoluzione,Ambiente, 140(3):370-372. AttiIIConvegnoPergola,Tecnostampa,Pergola:459-478. LUKENEDERA.(1998):ZurBiostratigraphiederSchrambachFor- WESTERMANNG.E.G.(1996):AmmonoidLifeandHabitat.—In: mationinderTernbergerDecke(O.-ValanginiumbisApti- LANDMANN.H.,TANABEK.&R.A.DAVIS(Eds),“Ammonoidpa- um des Tiefbajuvarikums-Oberösterreich). — Geol. Palä- leobiology“ Topics in Geobiology 13, Plenum Press, New ont.Mitteil.Innsbruck23(5.JahrestagungderÖPG,Lunz York:607-707. 1998):127-128. YACOBUCCI M.M. (1999): Plasticity of developmental timing as LUKENEDERA.(1999):Acrothoracica-BohrspurenaneinemBelem- underlyingcauseofhighspeciationratesinammonoids.— nitenrostrum (Unterkreide, Obervalanginium; Oberöster- In:F.OLORIZ&F.J.RODRÌGUEZ-TOVAR(Eds),Advancingresearch reich).—Ann.Naturhist.Mus.Wien101A:137-143. onlivingandFossilcephalopods.ProceedingsoftheIVIn- ternationalSymposiumoncephalopods:PresentandPast. LUKENEDERA.(2003):TheKarstenicerasLevel:Dysoxicammono- Granada,Spain,KluwerAcademic/PlenumPublishers,New idbedswithintheEarlyCretaceous(Barremian,Northern CalcareousAlps,Austria).—Facies49:87-100. York,1999:59-76. LUKENEDERA.(2004):TheOlcostephanusLevel:AnUpperValan- YOUNGR.E.,VECCHIONEM.&D.T.DONOVAN(1998):Theevolution ginian ammonoid mass-occurrence (Lower Cretaceous, ofcoloidcephalopodsandtheirpresentbiodiversityand NorthernCalcareousAlps,Austria).—ActaGeol.Polonica ecology. — In: PAYNE A.I.L., LIPINSKI M.R., CLARKE M.R. & 54(1):23-33. M.A.C.ROELEVELD(Eds),cephalopoddiversity,Ecologyand Evolution.S.Afr.J.mar.Sci.20:393-420. LUKENEDERA.&M.HARZHAUSER(2003):Olcostephanusguebhardi as cryptic habitat for an Early Cretaceous coelobite-com- Addressoftheauthor: munity (Valanginian, Northern Calcareous Alps, Austria). —Cret.Research24:477-485. Dr.Mag.AlexanderLUKENEDER LUKENEDERA.&D.REHÁKOVÁ(2004):LowerCretaceoussectionof Geological-PalaeontologicalDepartment theTernbergNappe(NorthernCalcareousAlps,UpperAus- NaturalHistoryMuseumVienna tria):Facies-changes,biostratigraphyandpaleoecology.— Burgring7 Geol.Carpathica55(3):227-237. 1010Vienna,Austria LUKENEDERA.&K.TANABE(2002):Insitufindsofaptychiinthe E-Mail:[email protected] Barremian of the Alpine Lower Cretaceous (Barremian, 404

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.