ebook img

Centro-affine differential geometry, Lagrangian submanifolds PDF

66 Pages·2012·1.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Centro-affine differential geometry, Lagrangian submanifolds

Conicoptimizationandbarriers Barriersandcentro-affinegeometry Lagrangiansubmanifoldsinpara-Kählerspace Openproblems Centro-affine differential geometry, Lagrangian submanifolds of the reduced paracomplex projective space, and conic optimization RolandHildebrand UniversitéGrenoble1/CNRS June5,2012/DifferentialGeometry2012,Be˛dlewo RolandHildebrand Centro-affinedifferentialgeometryandconicoptimization Conicoptimizationandbarriers Barriersandcentro-affinegeometry Lagrangiansubmanifoldsinpara-Kählerspace Openproblems Outline 1 Conicoptimizationandbarriers Convexprograms Barriers onconvex sets Conicprograms Logarithmicallyhomogeneousbarriers 2 Barriers andcentro-affinegeometry Splitting theorem Centro-affineequivalentsof barriers Applications 3 Lagrangiansubmanifoldsin para-Kählerspace Cross-ratio manifold Objectsdefinedbycones Barriers andLagrangiansubmanifolds Applications RolandHildebrand Centro-affinedifferentialgeometryandconicoptimization Conicoptimizationandbarriers Barriersandcentro-affinegeometry Lagrangiansubmanifoldsinpara-Kählerspace Openproblems Outline 1 Conicoptimizationandbarriers Convexprograms Barriers onconvex sets Conicprograms Logarithmicallyhomogeneousbarriers 2 Barriers andcentro-affinegeometry Splitting theorem Centro-affineequivalentsof barriers Applications 3 Lagrangiansubmanifoldsin para-Kählerspace Cross-ratio manifold Objectsdefinedbycones Barriers andLagrangiansubmanifolds Applications RolandHildebrand Centro-affinedifferentialgeometryandconicoptimization Conicoptimizationandbarriers Barriersandcentro-affinegeometry Lagrangiansubmanifoldsinpara-Kählerspace Openproblems Outline 1 Conicoptimizationandbarriers Convexprograms Barriers onconvex sets Conicprograms Logarithmicallyhomogeneousbarriers 2 Barriers andcentro-affinegeometry Splitting theorem Centro-affineequivalentsof barriers Applications 3 Lagrangiansubmanifoldsin para-Kählerspace Cross-ratio manifold Objectsdefinedbycones Barriers andLagrangiansubmanifolds Applications RolandHildebrand Centro-affinedifferentialgeometryandconicoptimization Conicoptimizationandbarriers Convexprograms Barriersandcentro-affinegeometry Barriersonconvexsets Lagrangiansubmanifoldsinpara-Kählerspace Conicprograms Openproblems Logarithmicallyhomogeneousbarriers Convex optimization problems minimize linearobjective function withrespect to convex constraints min f(x) x X ∈ f = c,x , X convex h i X Rn is called the feasible set ⊂ RolandHildebrand Centro-affinedifferentialgeometryandconicoptimization Conicoptimizationandbarriers Convexprograms Barriersandcentro-affinegeometry Barriersonconvexsets Lagrangiansubmanifoldsinpara-Kählerspace Conicprograms Openproblems Logarithmicallyhomogeneousbarriers Regular convex sets Definition A regularconvex setX Rn is a closed convex sethaving ⊂ nonemptyinteriorandcontainingnolines. can assume thefeasible set to beregular RolandHildebrand Centro-affinedifferentialgeometryandconicoptimization Conicoptimizationandbarriers Convexprograms Barriersandcentro-affinegeometry Barriersonconvexsets Lagrangiansubmanifoldsinpara-Kählerspace Conicprograms Openproblems Logarithmicallyhomogeneousbarriers Definition of barriers Definition LetX Rn bea regularconvex set. A ν-self-concordantbarrier ⊂ for X is a smoothfunction F :Xo Rsuch that → F (x) 0 (convexity) 00 (cid:31) lim F(x) = + (boundarybehaviour) x ∂X → ∞ F hi 2 νF hihj forall h T Rn (gradientinequality) ,i ,ij x | | ≤ ∈ F hihjhk 2(F hihj)3/2 for allh T Rn ,ijk ,ij x | | ≤ ∈ (self-concordance) F definesa Hessianmetric onXo 00 usesonlythe affine connectionon Rn affine invariance ⇒ RolandHildebrand Centro-affinedifferentialgeometryandconicoptimization Conicoptimizationandbarriers Convexprograms Barriersandcentro-affinegeometry Barriersonconvexsets Lagrangiansubmanifoldsinpara-Kählerspace Conicprograms Openproblems Logarithmicallyhomogeneousbarriers Interior-point methods using barriers min c,x x X h i ∈ constrainedconvex program letF(x) = + for allx Xo ∞ 6∈ min τ c,x +F(x) x h i unconstrainedprogram,τ > 0 a parameter by convexity andboundarybehaviourofF this programis convex the minimizerx ofthe unconstrainedprogramtendsto the τ∗ minimizerx oftheconstrained programasτ + ∗ → ∞ RolandHildebrand Centro-affinedifferentialgeometryandconicoptimization Conicoptimizationandbarriers Convexprograms Barriersandcentro-affinegeometry Barriersonconvexsets Lagrangiansubmanifoldsinpara-Kählerspace Conicprograms Openproblems Logarithmicallyhomogeneousbarriers Interior-point methods using barriers min c,x x X h i ∈ constrainedconvex program letF(x) = + for allx Xo ∞ 6∈ min τ c,x +F(x) x h i unconstrainedprogram,τ > 0 a parameter by convexity andboundarybehaviourofF this programis convex the minimizerx ofthe unconstrainedprogramtendsto the τ∗ minimizerx oftheconstrained programasτ + ∗ → ∞ RolandHildebrand Centro-affinedifferentialgeometryandconicoptimization Conicoptimizationandbarriers Convexprograms Barriersandcentro-affinegeometry Barriersonconvexsets Lagrangiansubmanifoldsinpara-Kählerspace Conicprograms Openproblems Logarithmicallyhomogeneousbarriers Interior-point methods using barriers min c,x x X h i ∈ constrainedconvex program letF(x) = + for allx Xo ∞ 6∈ min τ c,x +F(x) x h i unconstrainedprogram,τ > 0 a parameter by convexity andboundarybehaviourofF this programis convex the minimizerx ofthe unconstrainedprogramtendsto the τ∗ minimizerx oftheconstrained programasτ + ∗ → ∞ RolandHildebrand Centro-affinedifferentialgeometryandconicoptimization

Description:
Conic optimization and barriers Barriers and centro-affine geometry Lagrangiansubmanifolds in para-Kähler space Open problems Centro-affine differential geometry
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.