ebook img

Centrality-dependent forward $J/\psi$ production in high energy proton-nucleus collisions PDF

0.27 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Centrality-dependent forward $J/\psi$ production in high energy proton-nucleus collisions

EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2016 6 1 0 Centrality-dependent forward J/ψ production in high energy 2 proton-nucleus collisions n a J 5 B.Ducloué1,2,T.Lappi1,2,andH.Mäntysaari3 2 1DepartmentofPhysics,UniversityofJyväskylä,P.O.Box35,40014UniversityofJyväskylä,Finland 2HelsinkiInstituteofPhysics,P.O.Box64,00014UniversityofHelsinki,Finland ] h 3PhysicsDepartment,BrookhavenNationalLaboratory,Upton,NY11973,USA p - p Abstract.ForwardJ/ψproductionandsuppressioninhighenergyproton-nucleuscolli- e sionscanbeanimportantprobeofgluonsaturation. Inanearlierworkwestudiedthis h process in the Color Glass Condensate framework and showed that using the Glauber [ approachtoextrapolatethedipolecrosssectionofaprotontoanucleusleadstoresults 1 closer to experimental data than previous calculations in this framework. Here we in- v vestigatethecentralitydependenceofthenuclearsuppressioninthismodelandshowa 7 comparisonofourresultswithrecentLHCdata. 5 5 6 0 1 Introduction . 1 0 The study of the nuclear suppression of forward J/ψ production in high energy proton-nucleus col- 6 lisions can be a valuable tool to better understand saturation dynamics. Indeed, it probes the target 1 : nucleusatveryhighdensities,wheresaturationeffectsshouldbeenhanced,andthecharmquarkmass v is small enough to be sensitive to these dynamics while being large enough to provide a hard scale i X allowingaperturbativetreatment. J/ψmesonsalsohavecleanexperimentalsignaturesandtheirpro- r duction and suppression have been the subject of many experimental studies. In a recent work [1] a were-evaluatedthenuclearsuppressionofforward J/ψproductionathighenergyintheColorGlass Condensate(CGC)framework,showingthatusingtheopticalGlaubermodeltorelatethedipolecross sectionofanucleustotheoneofaprotonleadstoasmallersuppressionforminimumbiaseventsthan inpreviousworksinthesameformalism[2]andresultsclosertoexperimentaldata1. Inthisworkwe discusstherelationbetweentheexplicitimpactparameterdependenceoftheopticalGlaubermodel andcentralityandwecompareourresultswithrecentdataonthecentralitydependenceof J/ψsup- pressionattheLHCpresentedbytheALICECollaboration[4]. 2 Formalism Theformalismforgluonandquarkpairproductioninthedilute-denselimitoftheColorGlassCon- densatehasbeenstudiedinRefs.[5,6](seealsoRef.[7])andappliedinseveralworks,suchas[2,8– 11].Thisallowstocomputethecrosssectionforcc¯pairproduction,whichisthecentralobjectneeded 1Theauthorsof[2]haverecentlypresentedupdatedresults[3]similartothoseobtainedin[1]. EPJWebofConferences tostudy J/ψproduction. TheexpressionforthiscrosssectioncanbefoundinRef.[2]. Weusethe simplecolorevaporationmodeltodescribethehadronizationoftheproducedcc¯pairsinJ/ψmesons. Inthismodel,afixedfractionofthecc¯pairsproducedwithaninvariantmassbetween2m and2M , c D where m is the charm quark mass and m is the D-meson mass, is assumed to hadronize into J/ψ c D mesons. Thus the cross section for J/ψ production with transverse momentum P and rapidity Y ⊥ reads dσJ/ψ = F (cid:90) 4MD2 dM2 dσcc¯ , (1) d2P dY J/ψ d2P dYdM2 ⊥ 4m2c ⊥ where d2P⊥dσdYcc¯dM2 isthecrosssectionfortheproductionofacc¯ pairwithtransversemomentum P⊥, rapidityY andinvariantmass M. InthisexpressionF isanon-perturbativeconstantwhichcanbe J/ψ extractedfromdata. Inthefollowingwewillfocusonratiosofcrosssectionsforwhichthevalueof thisparameterplaysnorole. In forward J/ψ production, the projectile proton is probed at relatively large x which justifies the use of the collinear approximation on this side. The gluon density in the projectile can thus be describedusingacollinearpartondistributionfunction. HerewewillusetheMSTW2008[12]LO parametrization for this purpose. On the other hand, when working at forward rapidity, the target, whichcanbeeitheraprotonoranucleus,isprobedatverysmall x. Theinformationaboutitsgluon densityiscontainedinthefunction 1 (cid:68) (cid:69) S (x −y )= TrU†(x )U(y ) , (2) Y ⊥ ⊥ N ⊥ ⊥ c where U(x ) is a fundamental representation Wilson line in the target color field. The evolution of ⊥ S (r )isgovernedbytherunningcouplingBalitsky-Kovchegov(rcBK)equation[13–15], whichis ⊥ Y solvednumerically.WeuseasaninitialconditiontheMVeparametrization[16]whichinvolves,asthe AAMQS[17]one,parameterswhichareextractedfromDISmeasurements. IntheMVeparametriza- tiontheinitialconditionforaprotontargetreads Sp (r )=exp(cid:20)− r⊥2Q2s0 ln(cid:32) 1 +e ·e(cid:33)(cid:21), (3) Y=ln 1 ⊥ 4 |r |Λ c x0 ⊥ QCD withx =0.01. Theexpressionfortherunningcouplingis 0 12π αs(r)= (cid:18) (cid:19). (4) (33−2N )log 4C2 f r2Λ2 QCD Inthiscasethereisnoexplicitdependenceontheimpactparameterandtheintegrationover b can ⊥ besimplyreplacedby (cid:90) σ d2b → 0 , (5) ⊥ 2 where σ0 corresponds to the effective proton transverse area measured in DIS experiments. The 2 valuesoftheparametersintheseexpressionsobtainedinRef.[16]byafittoHERADISdata[18]are Q2 = 0.060GeV2,C2 = 7.2, e = 18.9and σ0 = 16.36mb. Togeneralizethedipolecrosssection s0 c 2 from a proton to a nucleus we use, as in Ref. [16], the optical Glauber model. In this approach the initialconditiontothercBKequationreads SA (r ,b )=exp(cid:34)−AT (b )σ0 r⊥2Q2s0 ln(cid:32) 1 +e ·e(cid:33)(cid:35), (6) Y=ln 1 ⊥ ⊥ A ⊥ 2 4 |r |Λ c x0 ⊥ QCD PhysicsOpportunitiesatanElectron-IonCollider wheretheonlyadditionalquantityinvolvedcomparedtotheprotoncase(3)isthestandardWoods- SaxondistributionT (b ),whereb istheimpactparameter: A ⊥ ⊥ (cid:90) n TA(b⊥)= dz (cid:34)√ (cid:35) , (7) 1+exp b⊥2+z2−RA d withd =0.54fm,R =(1.12A1/3−0.86A−1/3)fmandnisanormalizationconstantdefinedsuchthat (cid:82) A d2b T (b ) = 1. Besides T , all the parameters take the same value as in the proton case. The ⊥ A ⊥ A rcBK equation is then solved independently for each value of b . In principle this explicit impact ⊥ parameter dependence can be related to the centrality classes used by experiments in the following way:intheopticalGlaubermodelaclass(c −c )%wouldbedefinedbylimitingtheintegrationover 1 2 b betweenb andb definedsuchthat ⊥ 1 2 1 (cid:90) b2 (c −c )%= d2b p(b ). (8) 1 2 σpinAel b1 ⊥ ⊥ HereσpA isthetotalinelasticproton-nucleuscrosssection,givenby inel (cid:90) σpA = d2b p(b ), (9) inel ⊥ ⊥ withthescatteringprobabilityatimpactparameterb being ⊥ p(b⊥)≈1−e−ATA(b⊥)σinel, (10) whereσ isthetotalinelasticnucleon-nucleoncrosssection. Theparticleyieldinagivencentrality inel classisthengivenby dN = (cid:82)bb12d2b⊥dd2NP(⊥bd⊥Y) , (11) d2P⊥dY (cid:82)b2d2b p(b ) b1 ⊥ ⊥ wherethevaluesofb andb aredefinedasinEq.(8).However,ifweusethisprocedureandcompare 1 2 thevaluesoftheaveragenumberofbinarynucleon-nucleoncollisions,giveninthismodelby (cid:82)b2d2b N (b ) (cid:104)N (cid:105) = b1 ⊥ collopt. ⊥ , (12) coll opt. (cid:82)b2d2b p(b ) b1 ⊥ ⊥ where N (b )= AT (b )σ , (13) collopt. ⊥ A ⊥ inel with the values of (cid:104)N (cid:105) estimated by ALICE [4] in each centrality class, we find a disagreement coll betweenthetwoascanbeseenfromTable1. Inthefollowing, forafirstcomparison, wedecideto performourcalculationineachcentralityclassatafixedimpactparameter b definedsuchthatthe ⊥ numberofbinarycollisionsintheopticalGlaubermodelcorrespondstoitsaveragevalueestimated by ALICE, i.e. N (b ) = (cid:104)N (cid:105) . A more consistent comparison would require the use collopt. ⊥ coll ALICE of distributions in impact parameter space but for this one would need to have access to the N coll distributionsatexperimentsandnotonlyto(cid:104)N (cid:105). coll EPJWebofConferences Centralityclass (cid:104)N (cid:105) (cid:104)N (cid:105) coll opt. coll ALICE 2–10% 14.7 11.7±1.2±0.9 10–20% 13.6 11.0±0.4±0.9 20–40% 11.4 9.6±0.2±0.8 40–60% 7.7 7.1±0.3±0.6 60–80% 3.7 4.3±0.3±0.3 80–100% 1.5 2.1±0.1±0.2 Table1.AveragenumberofbinarycollisionsineachcentralityclassasobtainedintheopticalGlaubermodel comparedwiththevalueestimatedbyALICE[4]. 3 Results TheALICEcollaborationrecentlymeasuredthenuclearsuppressionofJ/ψproductioninproton-lead √ collisionsindifferentcentralityclassesat s =5TeV[4]. Tocompareourresultswiththesedata NN weuse,asexplainedpreviously,afixedimpactparameterdefinedsuchthatN (b )=(cid:104)N (cid:105) coll.opt ⊥ coll ALICE ineachcentralityclassconsideredbyALICE.Thisprocedurewouldleadforthe80–100%classtoan impactparameterforwhichthesaturationscaleofthenucleuswouldfallbelowtheoneoftheproton. Forthisreasonwewillnotconsiderthisclassinthefollowing. InFig.1weshowthecomparisonof ourresultsandALICEdataforthenuclearmodificationfactorQ ,definedas pPb dNpPb Q = d2P⊥dY , (14) pPb A(cid:104)T (cid:105) dσpp A d2P⊥dY asafunctionofP inthefivemostcentralclassesconsideredbyALICE.Weincludeintheuncertainty ⊥ band the variation of m between 1.2 and 1.5 GeV and of the factorization scale between M /2 (cid:113)c ⊥ and 2M with M = M2+P2 where M is the cc¯ pair’s invariant mass. The description of the ⊥ ⊥ ⊥ data is quite good in the first three bins but our calculation predicts values of Q which approach pPb unity too quickly when N decreases. This too strong dependence on centrality in our calculation coll can also be seen in Fig. 2, where we show the nuclear modification factor integrated over P as ⊥ wellasthetransversemomentumbroadening,definedasthedifferenceof(cid:104)P2(cid:105)inproton-leadandin ⊥ proton-protoncollisions,asafunctionN . However,oneshouldkeepinmindthatthevalueofN coll coll indicatedforALICEdataisanaveragewhileinourcalculationitisafixedvalue.Takingintoaccount thefluctuationsinourcalculationcouldhaveasignificantimpact. 4 Conclusions In this work we have studied the centrality dependence of forward J/ψ nuclear suppression in the ColorGlassCondensate. Forthisweused,asinRef.[1],theopticalGlaubermodeltogeneralizethe dipolecrosssectionofaprotontonuclei. InRef.[1]thismodelwasfoundtoleadtovaluesforthe nuclear modification factor in minimum bias collisions closer to experimental results than previous calculationsinasimilarframework.However,whenstudyingthecentralitydependenceinthismodel, we found here that this dependence appears to be much stronger than in recent ALICE data [4]. Nevertheless,westressthattheresultsshownherehavebeenobtainedusingafixedimpactparameter forwhich, intheopticalGlaubermodel, thenumberofbinarycollisionscorrespondstotheaverage valueofthisquantityestimatedbyALICE.Foramoreconsistentcomparisonwithexperimentaldata, PhysicsOpportunitiesatanElectron-IonCollider QpPb QpPb 1.4 1.4 CGC CGC 1.2 ALICE 1.2 ALICE 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 Ncoll=11.7 0.2 Ncoll=11 0 P [GeV] 0 P [GeV] 0 1 2 3 4 5 6 7 8 ⊥ 0 1 2 3 4 5 6 7 8 ⊥ QpPb QpPb 1.4 1.4 CGC CGC 1.2 ALICE 1.2 ALICE 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 Ncoll=9.6 0.2 Ncoll=7.1 0 P [GeV] 0 P [GeV] 0 1 2 3 4 5 6 7 8 ⊥ 0 1 2 3 4 5 6 7 8 ⊥ QpPb 1.4 CGC 1.2 ALICE 1 0.8 0.6 0.4 0.2 Ncoll=4.3 0 P [GeV] 0 1 2 3 4 5 6 7 8 ⊥ Figure1.NuclearmodificationfactorQ asafunctionofP indifferentcentralitybinscomparedwithALICE pPb ⊥ data[4]. itwouldbenecessarytousedistributionsinimpactparameterspace,butthiswouldrequireaccessto the typical size of the fluctuations of the number of binary collisions in the experimental centrality classes. Acknowledgments T. L. and B. D. are supported by the Academy of Finland, projects 267321 and 273464. H. M. is supportedunderDOEContractNo. DE-SC0012704.ThisresearchusedcomputingresourcesofCSC –ITCenterforScienceinEspoo,Finland. WewouldliketothankC.HadjidakisandI.Lakomovfor discussionsontheALICEdata. EPJWebofConferences QpPb h6P⊥2ipPb−hP⊥2ipp[GeV2] 1.4 CGC 5 CGC 1.2 ALICE ALICE 4 1 0.8 3 0.6 2 0.4 1 0.2 0 0 0 2 4 6 8 10 12 14 16 Ncoll -1 0 2 4 6 8 10 12 14 16 Ncoll Figure2.NuclearmodificationfactorQ (left)andnucleartransversemomentumbroadening(cid:104)P2(cid:105) −(cid:104)P2(cid:105) pPb ⊥ pPb ⊥ pp (right)asafunctionofN comparedwithALICEdata[4]. coll References [1] B.Ducloué,T.Lappi,H.Mäntysaari,Phys.Rev.D91,114005(2015),1503.02789 [2] H.Fujii,K.Watanabe,Nucl.Phys.A915,1(2013),1304.2221 [3] H.Fujii,K.Watanabe(2015),1511.07698 [4] J.Adametal.(ALICE),JHEP11,127(2015),1506.08808 [5] J.P.Blaizot,F.Gelis,R.Venugopalan,Nucl.Phys.A743,13(2004),hep-ph/0402256 [6] J.P.Blaizot,F.Gelis,R.Venugopalan,Nucl.Phys.A743,57(2004),hep-ph/0402257 [7] D.Kharzeev,E.Levin,K.Tuchin,Nucl.Phys.A924,47(2014),1205.1554 [8] H.Fujii,F.Gelis,R.Venugopalan,Eur.Phys.J.C43,139(2005),hep-ph/0502204 [9] H.Fujii,F.Gelis,R.Venugopalan,Nucl.Phys.A780,146(2006),hep-ph/0603099 [10] H.Fujii,K.Watanabe,Nucl.Phys.A920,78(2013),1308.1258 [11] Y.Q.Ma,R.Venugopalan,H.F.Zhang,Phys.Rev.D92,071901(2015),1503.07772 [12] A.Martin,W.Stirling,R.Thorne,G.Watt,Eur.Phys.J.C63,189(2009),0901.0002 [13] I.Balitsky,Nucl.Phys.B463,99(1996),hep-ph/9509348 [14] Y.V.Kovchegov,Phys.Rev.D61,074018(2000),hep-ph/9905214 [15] I.Balitsky,Phys.Rev.D75,014001(2007),hep-ph/0609105 [16] T.Lappi,H.Mäntysaari,Phys.Rev.D88,114020(2013),1309.6963 [17] J.L. Albacete, N. Armesto, J.G. Milhano, P. Quiroga-Arias, C.A. Salgado, Eur. Phys. J. C71, 1705(2011),1012.4408 [18] F.Aaronetal.(H1andZEUS),JHEP1001,109(2010),0911.0884

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.