ebook img

Cellulose Nanomaterials—Binding Properties and Applications PDF

24 Pages·2017·5.09 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cellulose Nanomaterials—Binding Properties and Applications

molecules Review Cellulose Nanomaterials—Binding Properties and Applications: A Review AliH.Tayeb1,2,*,EzatollahAmini1,2,ShokoofehGhasemi1,2andMehdiTajvidi1,2 1 SchoolofForestResources,UniversityofMaine,5755NuttingHall,Orono,ME04469,USA; [email protected](E.A.);[email protected](S.G.);[email protected](M.T.) 2 AdvancedStructuresandCompositesCenter,UniversityofMaine,35FlagstaffRoad,Orono,ME04469,USA * Correspondence:[email protected];Tel.:+1-207-581-9516 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:18September2018;Accepted:13October2018;Published:18October2018 Abstract: Cellulosenanomaterials(CNs)areofincreasinginterestduetotheirappealinginherent propertiessuchasbio-degradability,highsurfacearea,lightweight,chiralityandtheabilitytoform effectivehydrogenbondsacrossthecellulosechainsorwithinotherpolymericmatrices. Extending CNself-assemblyintomultiphasepolymerstructureshasledtousefulend-resultsinawidespectrum of products and countless innovative applications, for example, as reinforcing agent, emulsion stabilizer, barrier membrane and binder. In the current contribution, after a brief description of salient nanocellulose chemical structure features, its types and production methods, we move to recent advances in CN utilization as an ecofriendly binder in several disparate areas, namely formaldehyde-freehybridcompositesandwood-basedpanels,papermaking/coatingprocesses,and energystoragedevices,aswellastheirpotentialapplicationsinbiomedicalfieldsasacost-effective andtissue-friendlybinderforcartilageregeneration,woundhealinganddentalrepair. Theprospects ofawiderangeofhybridmaterialsthatmaybeproducedviananocelluloseisintroducedinlight of the unique behavior of cellulose once in nano dimensions. Furthermore, we implement some principlesofcolloidalandinterfacialsciencetodiscussthecriticalroleofcellulosebindinginthe aforesaidfields. EventhoughtheCNfacetscoveredinthisstudybynomeansencompassthegreat amountofliteratureavailable, theymayberegardedasthebasisforfuturedevelopmentsinthe binderapplicationsofthesehighlydesirablematerials. Keywords:nanocellulosebinders;cellulosenanofibrils;cellulosenanocrystals;biopolymericbinder; bacterialcellulose;particleboard;energystoragedevices;papercoating;boneregeneration;biomedical 1. Introduction BackgroundandMotivation Serious environmental concerns about the consumption of fossil-fuel based materials, such as green gas emissions, long degradation time, human health issues, etc., have forced technology to seek to employ sustainable nature-friendly materials as a replacement for petroleum-derived products. Among existing biopolymers, the straight-chain polysaccharide cellulose has long been recognized as the most abundant renewable organic polymer in the biosphere, having excellent mechanicalcharacteristics,economicproductionandyetfairlyfunctionalizable. Whetherintheform offibersorderivatives,celluloseconstitutesnearlyonetrilliontonsoftheworld’sannualbiomass production[1],andtodate,ithashadamajorimpactonthedevelopmentofnumerouseco-friendly materials. Recently,therehasbeenaresurgenceininterestinutilizingcellulosetoproduceadvanced materialsandundoubtedly,itwillplayacriticalroleinthefutureofthe(bio)economy. Celluloseis a fibrous water-loving polymer, essential in the structure of plant cell walls and naturally formed Molecules2018,23,2684;doi:10.3390/molecules23102684 www.mdpi.com/journal/molecules Molecules2018,23,2684 2of24 through the plant cellular development process and cellulose biogenesis, fixed by van der Waals forces and hydrogen bonds [2,3]. It is also found in some marine creatures (e.g., tunicates), fungi, invertebrates,andalgae,aswellasbacteria[4]. Twodistinguishedregionswithincellulosefibrilsare thecrystallineandamorphousparts. Byapplyingchemicalprocesses,cellulosenanocrystals(CNCs) canbeproducedthroughtheisolationofcrystallinedomains. Mechanicaltreatmentsontheother handgeneratecellulosenanofibrils(CNFs)[3]. Lately,utilizationofCNFsandCNCswithnanoscale lateral dimensions has garnered increasing attention, not only for their intrinsic biodegradability andabundance,butalsoduetounsurpassedquintessentialproperties,suchasstiffness,lowdensity, flexibility,largeaspectratioanduniquerheology,whichare,inpart,duetotheircrystallineassembly viahydrogenbonds[3,5–10]. Alsotheirhighchemicalfunctionalityisduetotheabundantprimary andsecondaryhydroxyls(referredtoascellulosealcohols)onthesurface,whichcanbeeasilymodified withbio-polymersandyieldcellulosederivativesorbygraftingtodifferentmaterials[11]. TheseOH groupscanattracteachotherelectrostatically(viahydrogenbonds),causingthechainstobuildan ordered structure [2]. Such hydrogen bonding throughout the polysaccharide has a key function inbinderapplicationsrelatedtoadhesionbetweencellulosenanoparticlesandothermaterials[12], forexample, inhybridcompositeandpaperproduction[13–16], environmentalandwater-related areas[17],biomedicalapplications[18],aswellasenergystoragedevices[19,20]. In the present work, first we briefly introduce the structures, types and pertinent production methods of cellulose nanomaterials and then review some of the recent studies on CN-based binders in four separate areas, namely hybrid composites and wood panels (in light of recent efforts to replace common carcinogenic industry adhesive ingredients, particularly formaldehyde, by CNs), papermaking/coating processes, energy storage devices and finally, the potential usage of nanocellulose in biomedical fields as a cost-effective and tissue-friendly binder for cartilage regeneration,woundhealinganddentalrepair. ThekeypropertiesofCNfortheintendedbinding applications will be delineated separately in the corresponding sections but overall their bio- and tissue-friendly nature, high aspect ratio, excellent mechanical attributes and ability to establish extensiveHbondswithinvariouspolymericmatricesareamongthemostimportantfeatures. Also relevanttoitsbindingperformance,theyarecapableofbuildingawiderangeofCN-basedhybrids viaself-ordirected-assembly[3,10,13,21,22]. 2. ChemistryofNanocelluloseandItsProductionMethods Cellulose is a linear-chain homopolymer composed of repeating ringed anhydro-D-glucose monomers with the general formula of (C H O ) , (n < 20,000). Each repeating unit is rotated 6 10 5 n 180degreesaroundtheaxisofthecellulosebackbonerelativetotheneighboringring,linkingtogether viaaβ-(1,4)-glyosidicbond[21,23,24]; theC1atomofthefirstringisattachedtotheC4oneofan adjacentglucosethroughacovalentoxygenbond. AsillustratedinFigure1,theelectrostaticattractionsbetweenoxygenandhydrogenatomsof the adjacent rings, inducing intra-molecular hydrogen bonding, cause more stabilized glycosidic linkage motifs, linear-chain configuration, in addition to feeble solubility in polar solvents [24]. Also, inter-chain hydrogen bonds (occurring between polymer chains), along with van der Waals forces,promoteparallelstacking,knownascelluloseelementaryfibrils,whichcanfurtheraggregate intomicron-scalepredecessors[24]. Theseintra-andinter-chainnon-covalentattractionsarevital forthestabilityandfirmstructureofcellulose, thelatterofwhichisessentialforplantsandsome marinecreatures. Dependingontheprimaryandsecondaryalcoholsonthesurface;C2-OH,C3-OH andC6-H OH,cellulosemayhavedifferentdegreesofhydrogenbonding. Forexample,regenerated 2 cellulose(celluloseII)whichisproducedviaamercerizationprocess,demonstratesalteredhydrogen bondingmotifs,withastrongerandmoresolidstructurecomparedtonaturalcellulose(celluloseI)[25]. Molecules2018,23,2684 3of24 Molecules 2018, 23, x FOR PEER REVIEW 3 of 24 Figure1.Cellulosestructureandintra/intermolecularhydrogenbondingpattern(top).Exampleimages Figure 1. Cellulose structure and intra/intermolecular hydrogen bonding pattern (top). Example summarizingthetopicalfocusofcurrentreview,whereintherecentdevelopmentofnanocellulose images summarizing the topical focus of current review, wherein the recent development of materialsandtheirbinding-relatedapplicationsinparticleboards,papercoating,electronicdevicesand nanocellulose materials and their binding-related applications in particle boards, paper coating, biomedicalscience(e.g.,incartilageregeneration)iscovered(bottom).Imageslabeledas“Electronics” electronic devices and biomedical science (e.g., in cartilage regeneration) is covered (bottom). Images and“Biomedical”arereprintedwithpermissionfrom[26].Copyright2009Elsevierand[27].Copyright labeled as “Electronics” and “Biomedical” are reprinted with permission from [26]. Copyright 2009 2015AmericanChemicalSociety,respectively. Elsevier and [27]. Copyright 2015 American Chemical Society, respectively. Withincellulosefibrils,therearetwodiscretedomains:highlyordered(crystalline)anddisordered Within cellulose fibrils, there are two discrete domains: highly ordered (crystalline) and (amorphous)structures. Byapplyingdifferenttechniques,twocommonlyusedformsofnanocellulose, disordered (amorphous) structures. By applying different techniques, two commonly used forms of cellulosenanocrystals(CNCs)andcellulosenanofibrils(CNFs)canbeseparatedfromthecellulosic nanocellulose, cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) can be separated from source. Athirdform,bacterialcellulose(BC)issynthesizedbysomeGram-negativebacterialspecies the cellulosic source. A third form, bacterial cellulose (BC) is synthesized by some Gram-negative anddiffersfromthetwoothertypesinthatitisnaturallyformedbyabottom-upprocessasopposed bacterial species and differs from the two other types in that it is naturally formed by a bottom-up tothetop-downapproachesusedtoproduceCNCandCNF[7]. Collectively,alltypesofcellulose process as opposed to the top-down approaches used to produce CNC and CNF [7]. Collectively, all nanomaterialscanbecalledcellulosenanoparticles(CNs). Inadditiontotheiruniquephysiochemical types of cellulose nanomaterials can be called cellulose nanoparticles (CNs). In addition to their features(whichwillbediscussedlaterinthisreview),CNshavehighpotentialassubstituentsfor unique physiochemical features (which will be discussed later in this review), CNs have high syntheticpetroleum-basedbindersandadhesives. Inthenextsection,wefocusonthepreparation potential as substituents for synthetic petroleum-based binders and adhesives. In the next section, we techniquesalongwiththepropertiesofeachgroup. focus on the preparation techniques along with the properties of each group. 2.1. CelluloseNanofibrils(CNFs) 2.1. Cellulose Nanofibrils (CNFs) CNFsarenano-scalefibrilswithhighaspectratio;theirwidthvariesfrom2to60nm(beingseveral CNFs are nano-scale fibrils with high aspect ratio; their width varies from 2 to 60 nm (being micrometersinlength)andareformedasaresultofcellulosechain-stacking,inducedbyhydrogen several micrometers in length) and are formed as a result of cellulose chain-stacking, induced by bonds [28]. These nanoparticles (also known as nanofibrillated cellulose, NFC, or microfibrillated hydrogen bonds [28]. These nanoparticles (also known as nanofibrillated cellulose, NFC, or cellulose, MFC) which consist of both crystalline and amorphous domains, can be produced by microfibrillated cellulose, MFC) which consist of both crystalline and amorphous domains, can be liberatingthefibrilsfromtheintegralmicrofiberbundlesthroughvigorousmechanicalfibrillation produced by liberating the fibrils from the integral microfiber bundles through vigorous mechanical processes [21,29]. By far, many reviews have discussed their exceptional characteristics, such as fibrillation processes [21,29]. By far, many reviews have discussed their exceptional characteristics, biodegradability, excellent mechanical properties, high surface area, light weight, etc. [3,5,6,21,30]. such as biodegradability, excellent mechanical properties, high surface area, light weight, etc. The hydrogen bonds between the hydroxyl groups prompt a highly ordered conformation of the [3,5,6,21,30]. The hydrogen bonds between the hydroxyl groups prompt a highly ordered cellulosechainsinelementaryfibrilsthatfurtherfacilitateadhesionwithotherpolymericcomponents, conformation of the cellulose chains in elementary fibrils that further facilitate adhesion with other e.g.,withligninorproteins,toformnetworksinaqueousmedia[12,31]. Sinceanenergy-intensive polymeric components, e.g., with lignin or proteins, to form networks in aqueous media [12,31]. Since mechanical grinding is required to separate the stacked fibrils, different types of pretreatments, an energy-intensive mechanical grinding is required to separate the stacked fibrils, different types of suchasalkaline[32,33],radiation[32],chemical[34,35],andenzymatic[36,37]aretypicallyapplied pretreatments, such as alkaline [32,33], radiation [32], chemical [34,35], and enzymatic [36,37] are prior to the fibrillation process to remarkably lower the cost and energy. For this reason, CNF typically applied prior to the fibrillation process to remarkably lower the cost and energy. For this manufacturing at an industrial scale was not feasible until recently [38]. A production technique reason, CNF manufacturing at an industrial scale was not feasible until recently [38]. A production whichhasbeenusedfrequentlyispre-oxidationusing(2,2,6,6,-tetramethylpiperidin-1-yl)oxidanyl, technique which has been used frequently is pre-oxidation using (2,2,6,6,-tetramethylpiperidin-1-yl) abbreviated as TEMPO, to reduce the grinding cycles prior to applying the vigorous mechanical oxidanyl, abbreviated as TEMPO, to reduce the grinding cycles prior to applying the vigorous mechanical fibrillation by microfluidization or homogenization. The resulting nanoparticles give a Molecules2018,23,2684 4of24 Molecules 2018, 23, x FOR PEER REVIEW 4 of 24 gel-like appearance at low solid concentrations (1–2%) in water [38,39], and once formed into a fibrillation by microfluidization or homogenization. The resulting nanoparticles give a gel-like transparent film, display high mechanical integrity, limited oxygen transmission rate as well as low appearanceatlowsolidconcentrations(1–2%)inwater[38,39],andonceformedintoatransparentfilm, thermal expansion (~2.7 ppm K−1. m) [39–41]. Translucent thin films from microfibrillated cellulose displayhighmechanicalintegrity,limitedoxygentransmissionrateaswellaslowthermalexpansion ((2~02–.710p0p nmmK i−n1 d.imam) [e3t9er–)4 w1]e.reT raalsnos liuncterondtuthceind bfiylm Oskfarmomuram eitc raol.fi [b4r2i]l.l aStoe dfacre, lrleusleoasrech(2er0s– 1h0a0ven umseidn CNF as reinforcing agents in different composites such as hybrid plastics, papers and thin packaging diameter)werealsointroducedbyOkamuraetal.[42].Sofar,researchershaveusedCNFasreinforcing films. For instance, the use of CNF in the papermaking wet-end results in papers with higher strength agentsindifferentcompositessuchashybridplastics,papersandthinpackagingfilms. Forinstance, [43]. theuseofCNFinthepapermakingwet-endresultsinpaperswithhigherstrength[43]. 22..22.. CCeelllluulloossee NNaannooccrryyssttaallss ((CCNNCCss)) WWhhiisskkeerr--sshhaappeedd CCNNCCss,, ((aallssoo nnaammeedd cceelllluulloossee nnaannoowwhhiisskkeerrss)),, aarree rreemmiinniisscceenntt ooff tthhee ccrryyssttaalllliinnee rreeggiioonnss wwiitthhiinn eelleemmeennttaarryy nnaannooffiibbrriillss ooff cceelllluulloossee dduurriinngg tthhee bbiioossyynntthheessiiss pprroocceessss.. TThheeyy aarree iissoollaatteedd ffrroomm tthhee cceelllluulloossee aammoorrpphhoouuss ddoommaaiinnss ooff wwoooodd//ppllaanntt ffiibbeerr,, mmiiccrrooffiibbrriillllaatteedd oorr nnaannooffiibbrriillllaatteedd cceelllluulloossee [4[444––4466].] .TheT ihsoelaitsioolna tpioroncepdruorcee disu breaseisd obnas aend aocindica nattaaccikd itchroatutgachk trathnrsovuegrshe htryadnrsovleyrssise ahlyodnrgo ltyhsei sfiablroilnsg dtihsoerfidberrields dreisgoiordnesr, eldearveignigo nhsi,ghlelayv cinrygsthailglihnley dcroymstaailnlsin tehdato mresaiisnts atchidat hryesdirsotlaycsiids [h2y1d,4r7o]l.y sis[21,47]. IInn FFiigguurree 22,, tthheessee oorrddeerreedd aarreeaass aarree dduuee ttoo tthhee lliinneeaarr nnaattuurree ooff tthhee cceelllluulloossee ppoollyymmeerrss aanndd tthhee eexxtteennssiivvee iinntteerrmmoolleeccuullaarr aattttrraaccttiioonnss bbeettwweeeenn aaddjjaacceenntt cchhaaiinnss [[3300]].. TThhee ffiinnaall pprroodduuccttss,, tthhaatt ccoonnttaaiinn ccrryyssttaalllliinnee ffrraaggmmeennttss,,r erseesmemblbelew whihskisekresrosr oror drso,dosw, ionwgitnogt hteoi rtheneidr teanpder itnagpethriantgh athsaotc chuarsr eodccduurrriendg dthuericnlega tvhaeg celeparvoacgeses p.rocess. FFiigguurree 22.. ((aa)) SScchheemmaattiicc ooff cceelllluulloossee rreeppeeaattiinngg uunniitt wwiitthh tthhee ββ--((11,,44))--ggllyyccoossiiddiicc lliinnkkaaggee,, ddootttteedd lliinneess iinnddiiccaattee iinnttrraammoolleeccuullaarr hhyyddrrooggeenn bboonndd;; ((bb)) hhyyppootthheettiiccaall ccoonnffiigguurraattiioonn ooff oorrddeerreedd ((ccrryyssttaalllliinnee)) aanndd ddiissoorrddeerreedd ((aammoorrpphhoouuss)) rreeggiioonnss iinn cceelllluulloossee nnaannoofifibbrriillss.. FFiigguurree 33 sshhoowwss tthhee mmoorrpphhoollooggiiccaall ddiiffffeerreenncceess bbeettwweeeenn CCNNFF aanndd CCNNCC.. CCoommppaarreedd ttoo CCNNFFss,, cceelllluulloossee nnaannooccrryyssttaallss hhaavvee lloowweerr aassppeecctt rraattiiooss ((110000––550000 nnmm iinn lleennggtthh aanndd 1100––5500 nnmm iinn wwiiddtthh)) aanndd ddeeppeennddiinngg oonn ththee pprorcoecsess scocnodnidtiiotino,n a, haighhig dhegdreeger oeef corfysctraylslitnailtlyin (i5ty0–(9500%–9) 0[3%0),4[83]0. ,S4t8u].diSetsu hdaivese bheaevne cboenednuccotnedd uocnte ddioffnerdeinffte rceenlltucleolsliucl ossoiucrscoeus rctoe sotoptoimptiizme iztheet hCeNCCN Cisoisloatlaiotino nfofro rbbeettteter rqquuaalliittyy aanndd pprroodduuccttiioonn yyiieelldd [[2211,,4488]].. Molecules2018,23,2684 5of24 Molecules 2018, 23, x FOR PEER REVIEW 5 of 24 FFiigguurree 33.. TTEEMM iimmaaggeess ooff ((aa)) ddrriieedd ddiissppeerrssiioonn ooff cceelllluulloossee nnaannooccrryyssttaallss ((CCNNCC)) ddeerriivveedd ffrroomm rraammiiee,, ((rreepprriinntteedd wwiitthh ppeerrmmiissssiioonn ffrroomm [[4499]].. CCooppyyrriigghhtt 22000088 RRooyyaall CChheemmiiccaall SSoocciieettyy));; ((bb)) ddiissppeerrssiioonn ooff nnaannooffiibbrriillllaatteeddc ceelllululoloses,eC, CNNFF(r e(prerpinrtiendtewdi twhipther pmeirsmsioisnsiforonm fr[o5m0] .[C50o]p. yCriogphytr1i9g9h7t J1o9h9n7 WJoihleny W&iSleoyn s&). Sons). Among the various acids, hydrochloric and sulfuric acid have been used extensively for this pAumrpoonsge t[h5e1 ,v5a2r].iouDsu arcinidgs,t hheydhryodcrhololyrsicis abnyd ssuullffuurriicc aacciidd ,hnaevgea btieveenly ucshedar gexetdenssuilvfealtye fgorro uthpiss wpuilrlpbosee i[n5t1r,o5d2u].c Deduroinng tthhee hceyldlurololysesisc hbayi nsutlhfuroriucg ahcides, tneerigfiactaivtieolny cohfarhgyeddr osxuylflast.e gTrhoeuspes gwriollu pbes binotorostduincteedr moonl ectuhlea rcerellpuulolssiev echfoarince st,hcroauugsihn gesetleercitfriocasttaiotinc sotfa bhilyitdyrooxfylCs.N CThseisne pgorloaurpasq ubeooousst sinutseprmenoslieocnusla[5r 1r]e.pWulhsiivlee pforirscteisn,e ccaeulsluinlgo seelehcatrsolsitttalteicr estaacbtiivliittyy ,oCf NCNCCssc ainn peaoslailry abqeumeooudsi sfiuesdpteonsfoiornms n[5u1m]. eWrohuisled eprriivsatitnivee csealnludloimsep haarts plihtytlsei orcehaecmtivicitayl,f eCaNtuCress csaunc heaassiltyr abnes pmaroednicfyie,dst itfofn feosrsm,l onwumdeenrosiutys adnedrivinadtiuvceisn gantudn iamblpeasrut rpfahcyescihocehmeimstricya[l9 f]e.aOtunrceest hseucchon acse nttrraantisopnaroefntchye,s estcirfyfnsetaslsl,i nleowne eddelnessiteyx caenedd aincdruitcicinagl lteuvneal,btlhee syufrofarmce ocrhdeemreisdt,ryb i[r9e]f.r iOngnecne tthpeh acsoenscienntcroaltliooind aolfs tyhsetseem csry[5s3ta].llAinen unmeebdelreso fexstcuededie sa, hcraivtiecable leenveclo, nthdeuyc tfeodrmon oprdroedreudc,i nbgirnefarninogcreynstt aplhlianseesc einll ucloolsloeiadnadl siytsstaepmpsli c[5a3ti]o. nAi nnuamvabreire toyf osftufideiledss, shuacvhe abseehny cborindducocmtedp oosnit pesro[d54u]c,ibnagr nriaenroficlrmysst,aellliencetr coenlliucldoesev iacneds [i5ts5 ]a,papnltiicmatiicorno binia al fivalmries,tye mofu fliseilodns sstuacbhil iazse rhsy,bertcid.[ 3co,7m,5p6,o5s7i]t.esF o[5r4e]x, abmarprliee,rb feiclmauss, eeloefctthroenirich idgehvsitcieffsn [e5s5s],a nadntsimurifcarcoebaiarel afi[l5m8s],, aesmwuelsllioans lsotawbirloizuegrhs,n eetscs. ([~3,27,n5m6,5)7a]n. dFodre nexsiatmyp(1l.e6, gb/eccamu3s)e[ o4]f, tChNeirC hsihgahv setiaftftnreascst eadnadt tseunrtfiaocne faorreua s[e58in], flaes xwibellel saus bloswtra rtoeusg[h59n]e.ssT (h~e2y namls)o anpdo sdseensssietyx c(1e.l6le gn/tcmYo3u) [n4g],’ sCmNoCds uhlaivoef aatrtoraucntedd1 a5t0teGntPioant hfoart umsea kine ftlheexmiblae ssuuibtsatbrlaetecsa n[5d9id].a Ttehaeys garleseon proesinsefossr ceinxgcemlleantet rYiaolsuning’cso mmpoodsuiltie sof[ 2a3r,o60u,n6d1] .150 GPa that make them a suitable candidate as green reinforcing materials in composites [23,60,61]. 2.3. BacterialCellulose(BC) 2.3. Bacterial Cellulose (BC) Anothergroupofcellulosenanoparticlesdifferingfromthefiber-likeCNFandneedle-shapeCNC isbacAtenroiathlecre lglurolouspe (oafl scoelrleufleorsree dnatonoapsamrtiiccrloesb idalifnfearninogce flrluomlos teh,eo rfibbieorc-elilklue loCsNe)F. Baancdt enreiaeldcleel-lsuhlaopsee (CBNCC) ciosn btaaicntserriiablb coenll-ushloaspee (naalsnoo firebfeerrsreldin ktoe dasto mgeitchroerbitahlr onuagnhocaelnlueltowsoe,r koro fbhioycderlolugleonseb).o nBdasc.teIrtiaisl fcoerllmuleodseb y(BvCar) iocuonstmaiincsr oroirbgbaonni-ssmhaspaen dnabnaoctfeibriearlss plienckieeds (teo.gg.e,tAhceert otbharcotuergxhy lain nuemtw,Posreku doofm honyadsr)o[g6e2n], tbhoantdasr.e Ifto iusn fdorwmheedr ebcya rvbaorhioyudsr amteicferromoregnatnaitsimonss atankde bpalactceeri[a6l3 –s6p5e]c.ieUs n(leik.ge., oAthceertonbaacntoerc exllyulilnousems,, BPCseuisdopmroodnuasc)e d[62th],r othuagth aareb fioou-fnadbr wicahteiroen caasrsbeomhbyldyrpatreo cfeesrsmferonmtatlioowns- mtaoklee cpullaacrew [6e3ig–h65t]s.u Ugnarliskseu octhhaesr nDa-gnloucceollsueloanseds,i sBiCso liast epdroadsuacnedex othprooluygsahc cah abriiod-feaabtritchaetiaoinr- nausstreimenbtlym epdroiaceinsst efrrfoamce [l6o6w].-mThoelerecufolarer uwnedigehrst tsaungdainrsg siutschb iaoss yDn-tghluetciocsper oanceds sisi sisiomlaptoerdt aanst atno beextotperoltyusnaeccthhaerciduelt uart inthge caoinr-dniutitornienant dmaeldteiar tinhteedrfeascier ed[66n]a. nTohfiebrreilfsorsetr uucntduerersatannddcirnygs tiatlsl inbiitoysywnhthicehtimc apyroleceasds tois niemwpporrotapnetr ttioes ,bfeuttnecrt iotunnaeli ttihese, acunldtuarpinpgli ccaotniodnitsiofonr asnudc halbtearc ttehreia dl-edseirreivde dnannaonfoibcreilllsu slotrsuecstu[6r7e] .aFnidg ucrryes4taslhlionwitys awhhyicdhr omgealys lheeaedt otof bnaewcte rpiraolpceerlltuielso,s efu(nbcottihonitasli3tiDes,s taruncdt uarpepalnicdataiomnsi cfroors csoupcihc ibmaacgteer)iatlh-daterwivaesdp rnoadnuocceedlluvlioaseas st[a6t7i]c. cFuigltuivrea t4i osnhomwest hao hdy.drogel sheet of bacterial cellulose (both its 3D structure and a microscopic image) that was produced via a static cultivation method. Molecules2018,23,2684 6of24 Molecules 2018, 23, x FOR PEER REVIEW 6 of 24 FFiigguurree 44.. ((aa)) PPrroodduucceedd bbaacctteerriiaall cceelllluulloossee iinn ssttaattiicc ccuullttiivvaattiioonn;; ((bb)) ssccaannnniinngg eelleeccttrroonn mmiiccrroossccooppee iimmaaggee ooff aa BBCC nneettwwoorrkk ((rreepprriinntteedd wwiitthh ppeerrmmiissssiioonn ffrroomm [[6666]].. CCooppyyrriigghhtt 22001144 SSpprriinnggeerr)).. DDeessppiittee hhaavviinngg ssiimmiillaarriittiieess ttoo CCNNFF aanndd CCNNCC,, tthhee nnaannooffiibbrriill bbuunnddlleess iinn BBCC hhaavvee ssoommee uunniiqquuee pprrooppeerrttiieess ssuucchh aass mmoorree ccrryyssttaalllliinniittyy,, hhiigghheerr ddeeggrreeee ooff ppoollyymmeerriizzaattiioonn ((uupp ttoo 88000000)),, aass wweellll aass aabbiilliittyy ttoo ffoorrmm aann eexxttrreemmeellyy uullttrraaffiinnee wweebb ssttrruuccttuurree,, tthhaatt mmaakkeess iitt ddiiffffiiccuulltt ttoo ddiissppeerrssee iinn wwaatteerr [[6644,,6688,,6699]].. BBCC aallssoo hhaass ffiibbeerrss wwiitthh aa hhiigghh eellaassttiicc mmoodduulluuss ooff 7788 GGPPaa [[7700]],, ((cclloossee ttoo tthhaatt ooff ggllaassss ffiibbeerrss,, aanndd ggrreeaatteerr tthhaann nnaattuurraall nnaannoossccaallee ffiibbeerrss)),, aanndd ppoosssseesssseess aa llaarrggeerr wwaatteerr hhoollddiinngg ccaappaacciittyy ccoommppaarreedd ttoo ppllaanntt-- ddeerriivveedd cceelllluulloossee [[7711]].. AAddddiittiioonnaallllyy,, tthhee lliigghhtt wweeiigghhtt,, bbiiooddeeggrraaddaabbllee aanndd nnoonn--ttooxxiicc bbaacctteerriiaall cceelllluulloossee iiss pprroodduucceedd aass ppuurree cceelllluulloossee aanndd aavvooiiddss tthhee ttrraaddiittiioonnaall cchheemmiiccaall ttrreeaattmmeennttss rreeqquuiirreedd ffoorr lliiggnniinn oorr hheemmiicceelllluulloossee eelliimmiinnaattiioonn [[99,,7722]].. SSeevveerraall ssttuuddiieess hhaavvee iinnddiiccaatteedd tthhee ppoossssiibbllee uussaaggee ooff bbaacctteerriiaall cceelllluulloossee aass aa ssttrreennggtthheenniinngg aaggeenntt,, ttrraannssppaarreenntt fifillmm aanndd bbiinnddeerr iinn hhyybbrriidd nnaannooccoommppoossiitteess [[7733––7766]].. LLeeee eett aall.. mmaaddee aa rroobbuusstt ssiissaall fifibbeerr pprreeffoorrmm uusisnigngb abctaecrtiearlicael llucelollsueloasseb inasd ebrianndders hoanwde dsthhoewreesdu lttihneg croemsupltoisnigte hcoadmbpeotsteitrep ehrafdor mbeatntceer apnedrfomrmecahnacne icaanldp mroepcehratnieiscacl opmroppaerertdiesto coamcpoamremdo tnol ya ucsoemdmpoonlylym uesrepdo plyoly(amcreyrl aptoeldy- e(pacorxyildaitseedd- seopyobxeidaniseodil -bsaosyebdeapno lyomil-ebrass(epdo lyp-oAlyEmSOe)rs[ 77(p].oAlyl-sAoEthSeOc)o m[7b7i]n. aAtiolsno ofthBeC caonmdbcionnadtiuocnti nogf pBoCly maenrds (ceo.gn.d,upcotliynagn iplionley,mpoelrys p(yer.gro.,l ep)ohlaysarneisliunlete, dpionlyapfyurlrlyolbei)o hdaesg rraedsaubltleedin itner -ac ofnunlleyc tbediodstergurcatudraeb,lseu iitnatbelre- fcoornaneercotgedel sstarnudctutrraen, sspuaitraebnltec foomr apeorsoitgeesls[ 7a8n]d. transparent composites [78]. 33.. NNaannoocceelllluulloossee aass CCooaattiinngg MMaatteerriiaall 3.1. TraditionalPaperCoatings 3.1. Traditional Paper Coatings The potential of using CNF in paper coatings has been intensely studied for the formation The potential of using CNF in paper coatings has been intensely studied for the formation of a of a continuous layer on paper surfaces to induce suitable qualities such as mechanical strength, continuous layer on paper surfaces to induce suitable qualities such as mechanical strength, fire fire retardancy and water/gas impermeability [79–85]. Because the properties of coated surfaces retardancy and water/gas impermeability [79–85]. Because the properties of coated surfaces depend dependhighlyontheCNFdistributionandthecorrespondinglayerthickness,anappropriatecoating highly on the CNF distribution and the corresponding layer thickness, an appropriate coating formulation is critical to achieve the desired features. CNF was applied to a paper surface via formulation is critical to achieve the desired features. CNF was applied to a paper surface via two two different methods: roll coating and size press, resulting in coat weights of 14 and 3 g/m2, different methods: roll coating and size press, resulting in coat weights of 14 and 3 g/m2, respectively respectively[86]. Athin,wellspreadlayerofCNFcanalsobeattainedbyspraycoating. Thepossible [86]. A thin, well spread layer of CNF can also be attained by spray coating. The possible challenge challengehoweveristhepreparationoflowsolidcontentsolutionthatmaybothaffectthedrying however is the preparation of low solid content solution that may both affect the drying process process and/or lead to breakage of the web [86]. Another issue is the high viscosity of the CNF and/or lead to breakage of the web [86]. Another issue is the high viscosity of the CNF suspension, suspension, even at low solids, and the absorption of water by the base paper which can lead to even at low solids, and the absorption of water by the base paper which can lead to localized localizedthickeningofthecoatingmaterialandcreateunevenspreading. Arecentworkhasshown thickening of the coating material and create uneven spreading. A recent work has shown that the thattheuseofonly4%carboxymethylcellulose(CMC)basedonthedryweightoftheCNFcanleadto use of only 4% carboxymethyl cellulose (CMC) based on the dry weight of the CNF can lead to a asubstantialdropinviscosityandbettercoverageofthepapersurface[87]. CNFhasbeenalsocoated substantial drop in viscosity and better coverage of the paper surface [87]. CNF has been also coated onpaperviafoamcoatingamixtureof2.9%CNFandananionicsurfactantunder80–95%compressed on paper via foam coating a mixture of 2.9% CNF and an anionic surfactant under 80–95% air. Theresultingdouble-layerhadacoatweightof1–2.6g/m2 [88]. Othersmeanwhilehavereported compressed air. The resulting double-layer had a coat weight of 1–2.6 g/m2 [88]. Others meanwhile theapplicationofCNFatlowsolidsandmoderatespeeds,andlatelyithasbeenshownpossibleto have reported the application of CNF at low solids and moderate speeds, and lately it has been shown possible to apply CNF at high speeds (10 m/s) and moderate solids (up to 5%) using a cylindrical laboratory coater (CLC). Coat weights in double layers as high as 10 g/m2 were reported [89]. Molecules2018,23,2684 7of24 applyCNFathighspeeds(10m/s)andmoderatesolids(upto5%)usingacylindricallaboratory Molecules 2018, 23, x FOR PEER REVIEW 7 of 24 coater(CLC).Coatweightsindoublelayersashighas10g/m2werereported[89]. 3.2. CNF as Binder in Coating Layers 3.2. CNFasBinderinCoatingLayers The application of CNF as binder in conventional paper coating processes is a relatively new TheapplicationofCNFasbinderinconventionalpapercoatingprocessesisarelativelynew concept that has garnered a great deal of attention. Owing to its strong hydrogen bonding and the concept that has garnered a great deal of attention. Owing to its strong hydrogen bonding and ability to establish a uniform layer on hydrophilic substrates, CNF was suggested as a green binder the ability to establish a uniform layer on hydrophilic substrates, CNF was suggested as a green to improve the properties of coating layers on paper/paperboard and reduce the level of latex binder to improve the properties of coating layers on paper/paperboard and reduce the level of [15,86,88,90–92]. Figure 5 presents the hypothetical positive role of CNF in the coating process in latex[15,86,88,90–92]. Figure5presentsthehypotheticalpositiveroleofCNFinthecoatingprocessin which it helps the coating material to bind better on the fibrous surface and form a less defective and whichithelpsthecoatingmaterialtobindbetteronthefibroussurfaceandformalessdefectiveand smoother surface. A low ratio of CNF was applied to attach clay onto paper surfaces and the obtained smoothersurface. AlowratioofCNFwasappliedtoattachclayontopapersurfacesandtheobtained CNF-clay layer produced a significant raise in surface smoothness and print density, almost identical CNF-claylayerproducedasignificantraiseinsurfacesmoothnessandprintdensity,almostidentical to when polyvinyl alcohol (PVA) was used as binder [91]. In another study, a CNF-latex mixture was towhenpolyvinylalcohol(PVA)wasusedasbinder[91]. Inanotherstudy,aCNF-latexmixturewas employed as a potential binder in color coating and it was revealed that the presence of CNF employedasapotentialbinderincolorcoatinganditwasrevealedthatthepresenceofCNFincreased increased the picking strength while slightly reducing the paper surface energy [90]. thepickingstrengthwhileslightlyreducingthepapersurfaceenergy[90]. To address this issue other methods such as inkjet or flexographic printing can be used where ToaddressthisissueothermethodssuchasinkjetorflexographicprintingcanbeusedwhereCNF CNF is employed as a binder in coating formulas. Enzymatically pre-treated CNF and TEMPO- isemployedasabinderincoatingformulas. Enzymaticallypre-treatedCNFandTEMPO-oxidized oxidized CNF were investigated as alternative binders (for partial latex replacement) to bind calcium CNFwereinvestigatedasalternativebinders(forpartiallatexreplacement)tobindcalciumcarbonate carbonate particles in coating formulations. The results indicated a successful replacement of 20% of particlesincoatingformulations. Theresultsindicatedasuccessfulreplacementof20%oflatexwith latex with CNF in coating colors with no evidence of printing or runability issues [92]. Nevertheless, CNFincoatingcolorswithnoevidenceofprintingorrunabilityissues[92]. Nevertheless,anadverse an adverse effect on the energy consumption during the drying process was seen and attributed to effectontheenergyconsumptionduringthedryingprocesswasseenandattributedtothehigher the higher water content of the coating layers. A pertinent study indicated a blend of CNF and starch water content of the coating layers. A pertinent study indicated a blend of CNF and starch could could significantly improve the coating layer properties and produce a low-linting surface, indicating significantlyimprovethecoatinglayerpropertiesandproducealow-lintingsurface,indicatingtherole the role of CNF to link the starch molecules onto the paper surface. In conventional coating processes, ofCNFtolinkthestarchmoleculesontothepapersurface. Inconventionalcoatingprocesses,different different coat weights of 8–12 and 0.5–2 g/m2 are used for pigment and starch, respectively [86]. CNFs coatweightsof8–12and0.5–2g/m2 areusedforpigmentandstarch,respectively[86]. CNFshave have also been utilized to bind graphite to cellulose nanocomposites [93]. Also, addition of CNF in alsobeenutilizedtobindgraphitetocellulosenanocomposites[93]. Also,additionofCNFinpaper paper coating could increase the printing pick resistance, improve the strengths and modifying the coatingcouldincreasetheprintingpickresistance,improvethestrengthsandmodifyingtherheology rheology of the coated layer [10,94]. However, a key issue for using CNF in the coating process is its ofthecoatedlayer[10,94]. However,akeyissueforusingCNFinthecoatingprocessisitsrheology, rheology, that even at low solid content (<2%) gives a viscous suspension that hardly loses its water thatevenatlowsolidcontent(<2%)givesaviscoussuspensionthathardlylosesitswater[95]. [95]. Figure 5. Schematic of hypothetical CNF effect to improve the coating material bonding: (a) the Fdigefuercet iv5e. Ssuchrfeamceatwici thofn hoyCpNotFh;e(tbic)asla mCNeFsu erfffaeccet wtoit himCpNroFvien ctohrep ocroaattiionng. material bonding: (a) the defective surface with no CNF; (b) same surface with CNF incorporation. TobetterunderstandtheroleofCNFasabinderincoatingprocesses,knowledgeofthepossible interTaoc tbioenttserb uentwdeeresntannadn tohcee lrloulleo osef CaNndF apsa ap ebrinsduebrs itnra ctoeaitsinegs spernotcieasl.seIst, iksnkonwolwedngeth oaft thceel pluolsossieblteo incetellrualcotsieonasd hbeestiwoneetna kneasnpolcaeclelufrloosme manodle cpualpaerrt osusebvsetrraatlem isil leimsseetnetriaslc.a Ilte sis( Tkanbolew1n). tHhaytd rcoeglleunlobsoen tdos caenlldulvosaen addehresWioana ltsakfoesr cpelsacaer efrocomn smidoelerecudlathr etod soemveirnaal nmtiilnlitmeremteor lseccaulelasr (Tfoarbclees 1c).o Hntyrdibruogtienng btoontdhse aanddh evsaino ndsetrr eWngatahls, yfoetrcietsi sanreo tcfounlslyiduenredde rtshteo oddomwhinicahnto inneteirsmooflceecnutlraarl fiomrpceosr tcaonncteritboutthinegb itno dtihneg asdtrheensgiothn [s1t6re].nAgtlhso, ypehty ist icisa lneont tfaunlglyle umnednetrtshtoaotdre lwiehsicohn omneec hisa nofic caelnfitbrarill liamtipoonrt(awnicthe itno mthicer obninsdcianlge ) sctarennbgotho s[t1c6e].l lAullosose p-cheylsluiclaols eenbtoanndgilnemgeinntp tahpaetr raenlidesp oanp emrbecohaardnsictaol faibgrriellaatteioxnte (nwt.itThhinis mphicernoonm sceanloe)n coacnc ubrosodstu creinllgultohseeb-ceealtluinlgosper boocensdsinugse idn tpoappreorm anotde pthaepefirbbeorairndtse rtloo cak ginregapt hexenteonmt. eTnhais[9 p6h].enomenon occurs during the beating process used to promote the fiber interlocking phenomena [96]. Molecules2018,23,2684 8of24 Table1. Differentcellulose-celluloseinteractionsrelativetomoleculardistance,dataadoptedfrom literature[97,98]. AdhesionMechanism BondLength BondStrength(KJ/mol) Diffusion <2000µm - Physicalentanglement 0.01–1000µm - VanderWaals 0.5–1nm 8.4–21 Acid-BaseInteraction 0.1–0.4nm - Hydrogenbond 0.235–0.27nm 4.2–188 Covalentbonding 0.15–0.45nm 147–628 3.3. SuperhydrophobicityInducedbyCNF Superhydrophobicityisafundamentalattributeofsolidsurfacesthatplaysanessentialrolein manyhouseholdandindustrialapplications. Bydefinition,anysurfacewithawatercontactangle greaterthan150degreesisconsideredassuperhydrophobic[99]. Amongmanysubstrates,suchas plastic,glass,metals,etc. producingwater-repellingcellulose,e.g.,hydrophobicpaper,hasattracted agreatdealofattentionowingtoitscosteffectiveness,wideavailabilityandinpartfortherecent impetusofenvironmentalconscience[100]. Therefore,fast-growingeffortstoproducehydrophobic bio-basedsubstrates,suchaspapers,arebeingreportedmoreoften. Someofthecommonmethodstofabricatehydrophobicpapersareplasmaetching[101,102],ink-jet printing[103],graftinghydrophobicmolecules[104]aswellasdepositionofnano-materials[105],or hydrophobicchemicalssuchasalkylketenedimer(AKD)[106].Ondraetal.[107]createdanextremely waterrepellentsurface(watercontactangelof174◦)byapplyingAKDtoaglasssurface,despitethe factthattheintrinsiccontactangleofsmoothAKDhasbeenreportedas109◦. Theyascribedthisextra hydrophobicity to the fractal growth of AKD crystals, leading to formation of a micro-size highly roughsurface[107]. Anotherapproachistouseprecipitatedcalciumcarbonate(PCC)toprovidesuch amicro-scaleroughnessforthesubsequentAKDdeposition[108,109]. HoweverPCCparticlesform looseattachmentstothepapersurfaceandadditionalchemicalsarenecessarytoadherethemtofibers. Totacklesuchissue,CNFwassuggestedasabindertoachievethedesiredhydrophobicityonthe paper[15,110]. InastudybyArbatanetal. CNFwasappliedtolinkPCCpigmentsontothepaper surface,providingtherequiredroughsurfacepriortothesizinglevel. Inthatwork,adip-coating approachwasusedtoformaPCClayerandthenAKDwasappliedtoachieveasuperhydrophobic surface[110]. ArelatedstudyshowedthepositiveeffectofCNFtolinklatexonpapersurfacesduring the coating process, however, its presence reduced the paper surface energy to some degree [90]. It is known that two key factors to obtain ultra-water repellency are the low surface energy plus nano-roughness[111]andreviewedworksinthissectionprovideevidencethatusingCNFasabinder maycontributetoboththeseaspects. ThecitedworkregardingthePCCattachmenttopaperviaCNF wasanexampleofchangeinsurfacemorphologywhereasinthecaseofCNF-latexmixture,itcould alterthesurfacefreeenergy. Despitemajoradvancesinobtaininglow/ultra-lowenergyinterfaces frompolymericmaterials,therearestilllimitedstudiesonthecaseofnanocellulose. Suchanapproach, ifprovedsuccessful,canhighlybenefitpackagingandfoodstorageindustriesinwhichwaterbarrier propertiesareatthecenterofinterest. 4. NanocelluloseinEnergyStorageDevices There is a high demand for low-cost green energy storage devices, with large energy density, recyclability and a harmless core disposal. To achieve these goals, employment of biodegradable polymerssuchascellulosehasbeensuggestedtobeadoptedinbatteriesaselectrodebinder,battery bodyandevenelectrolytematerial[112]. Electrodebindersshouldbeelectrochemicallystableand are used to attach active materials to the composite electrode. They can affect the irreversible capacitylossesandprovidestabilitytoelectrodecyclesbywithstandingdimensionalchangesduring charging-dischargingperiodswhilekeepingacceptableenergydensity[112–114]. Anotherimportant Molecules2018,23,2684 9of24 aspectofbindersistheirsolubility. Polyvinylidenedifluoride(PVDF)isacommonstrongelectrode binder,howeveritisonlysolubleinnonpolarsolventswhicharemostlyflammable,expensiveand pollutant. Replacingsuchmaterialwithwater-solubleones,canbothreducetheenvironmentalimpact andproductioncost[115]. Hereweonlyfocusonthebinderapplicationofnanocelluloseinenergy storageMdoelevcuilcese 2s0.18, 23, x FOR PEER REVIEW 9 of 24 4.1. Nanboicnedlelur,l ohsoewaesvFerl eixt iibs loenElyle scotrluobdlee Binin ndoenrpolar solvents which are mostly flammable, expensive and pollutant. Replacing such material with water-soluble ones, can both reduce the environmental CNF,isarenewablepolymerandcanself-assembleintoacontinuousfilmwithhighstiffness, impact and production cost [115]. Here we only focus on the binder application of nanocellulose in transpaerneenrcgyy, sfltoerxaigbei lditeyviacensd. lowthermalexpansion[6,7,116]. Thereforethereisagreatpotentialfor CNFutilizationasabinderinenergystoragedevices(e.g.,electrodesinLi-ionbatteries),alternativeto 4.1. Nanocellulose as Flexible Electrode Binder petroleum-basedpolymers[117–119]. Here,someoftherecentadvancementsinthedevelopmentof CNF-basedCbNinFd, eisr sa irnenbeawtatebrley pcoolmympeor naenndt csaanr seelrfe-avsiseewmebdle. into a continuous film with high stiffness, transparency, flexibility and low thermal expansion [6,7,116]. Therefore there is a great potential for In a study on lithium ion batteries, electrolyte saturated paper and dispersed nanofibrillated CNF utilization as a binder in energy storage devices (e.g., electrodes in Li-ion batteries), alternative cellulosewereusedasseparatorandelectrodebinder,respectively. Theachievedbindingqualitywas to petroleum-based polymers [117–119]. Here, some of the recent advancements in the development similartoPVDF[120]. Similarly, aCNFnetwork(asbinder)wasplacedaroundgraphiteplatelets of CNF-based binders in battery components are reviewed. viaasimpleInw aa tsetur-dbya osend litchaisutmin gionm beatthteordiest,o eilnecdtruoclyetep osartousriattye,dfl peaxpiebri laitnyd adnisdpehrisgehd cnhanaorfgibinrigllactaedp acityto graphiteceallnuolodsee .wTehree urseesdu latsi nsegpsaeralfto-srt aanndd ienlegcteroledcet rboinddeesr,s rheospwecetdivealyg.r Tehaet ealcehcietrvoedch beinmdiicnagl qpuearlfitoyr mance, closetowthaas tsiomfilcaor ntov PeVnDtioF n[1a2l0P]. VSiDmFil-abrlays, ead CNelFe cntertowdoerks ([a9s3 b]i.nder) was placed around graphite platelets via a simple water-based casting method to induce porosity, flexibility and high charging capacity to An MFC-polypyrrole (PPy) electrode composite was made through coating microfibrillated graphite anode. The resulting self-standing electrodes showed a great electrochemical performance, cellulose on polypyrrole (via in situ polymerization) to obtain self-standing conductive paper for close to that of conventional PVDF-based electrodes [93]. a more ecofriendly binder system [118]. Also, an environmentally-benign flexible battery cell has An MFC-polypyrrole (PPy) electrode composite was made through coating microfibrillated beensucgeglleuslotesed otnh prooulygphyrirnolceo (rvpiao rina tsiiotun pooflyCmNerFiziantitoon)a tsoi nobgtlaeinp saeplfe-srtalnadyienrg tcooncdouucptilvee ipnatpoetrh feore ale ctrode activemmaotreer ieaclosf.riTenhdelyp broincdeesrs siynstveoml v[1e1d8]a. Aselsqou, aenn etinavlirwonamteernfitalltlrya-btieonnigann fldextihblee abtattateinrye cdelfil hlmass b(e2e5n0 µmin thicknesssu)gdgeissptelda ytherdouagchc einpctoarbploercaytioclni nogf CpNerFf oinrtmo aa nsicnegluep poanpepr rloayloern tgoe cdoutepsltei ningto[ 1th2e1 e].leIcntraoddei fafcetirveen tstudy, materials. The process involved a sequential water filtration and the attained films (250 µm in CNFwasusedincathodesformulationmadeofLiFePO -carbonblack-CNFviafiltrationtechnique 4 thickness) displayed acceptable cycling performance upon prolonged testing [121]. In a different andtheresultingcellulose-basedelectrodesdemonstratedahighYoung’smodulusanddischarge study, CNF was used in cathodes formulation made of LiFePO4-carbon black-CNF via filtration capacityteocfh1n0iq0uMe aPnada tnhde r1e1s0ulmtinAg hcgel−lu1l,orsees-bpaescetdiv eelelyctr[o1d2e2s] .dLemikoenwstirsaet,eads as hhiogwh nYoinunFgi’gs umreod6u,laufsr aenedst anding flexibledSiis/chCaNrgCe c-bapaasceidty aonf o10d0e MwPaas anpdro 1d10u mceAdhign−1,a retesprnecatirvyelsyy [s1t2e2m]. Lcioknewsiisseti, nags sohfonwann ion cFeiglluurleo 6s,e a, carbon nanotubfreesesatannddisnigli cfolenxinbalen oSpi/CarNtiCc-lbeasseads bauniolddei nwgabsl opcrkosd.uTcehde isnt roan tgerantatrayc hsmysetenmt ocfoSnisipstainrtgi colef stothe nanocellulose, carbon nanotubes and silicon nanoparticles as building blocks. The strong attachment porousnanocellulose-carbonnanotubesmatrixresultedinahighspecificcapacitanceandexcellent of Si particles to the porous nanocellulose-carbon nanotubes matrix resulted in a high specific charge-dischargecyclingperformanceapplicableforlithium-ionbatteries. capacitance and excellent charge-discharge cycling performance applicable for lithium-ion batteries. Figure6F.ig(uar)e S6c. h(ae)m Scahteicmvatiiscu vaislluyalslyu msummmarairzizeess tthhee mmaannuufafcatcutrue rperopcreossc eosfs thoef ftlhexeibfllee xSii-bClNeTS-iC-CNNC T-CNC composite electrode via filtration process. Photographs of the respective electrodes under bending (b) compositeelectrodeviafiltrationprocess. Photographsoftherespectiveelectrodesunderbending rolling (c) and twisting (d–e). Reprinted with permission from [123]. Copyright 2015 Royal Chemical (b) rolling (c) and twisting (d–e). Reprinted with permission from [123]. Copyright 2015 Royal Society. ChemicalSociety. Molecules2018,23,2684 10of24 Besides, no adverse impact on film’s flexibility and tensile properties were observed upon incorporation of Si nanoparticles into the CNC-CNT matrix. The attained anode could be easily rolledandtwistedwithnoperformanceloss(Figure6b–e)[123]. However,onechallengeinsuchapplicationsistheamountofwatertrappedinthenanofibrils. Onlylow-loadsofCNF(~4wt%)couldbeusedtoavoidpossibleadverseeffectontheperformance, while improving the corresponding energy capacity. Water content value, more than 20−50 ppm, can lead to lithium salt degradation and since cellulose may contain from 20,000 to 120,000 ppm of trapped water, applying a prolonged thermal treatment is necessary to remove the excess water[121,122,124,125].Besides,inspiteofpromisingadheringeffectofCNF,ithasarelativelylow pliabilityaroundtheelectrodewhichcanrestrictitsutilizationinflexibledevices[126,127]. Forthis, modifiednanocellulosessuchasTEMPO-oxidizedCNFhavebeenproposedowingtotheirpotent structure,flexibilityandcompatibilitywithwater-basedsystems[128]. Moreover,cellulosetreatment with ionic liquids may be used in flexible electronic devices when natural CNF is not the ideal choice. OnestudyreportedthatbendableCNFfilmscanbeproducedforelectrochemicaldoublelayer capacitorsoncetheyaretreatedwithhighvoltageionicliquidelectrolytes[129].Furtherinvestigationis necessarytofullyreplacethecurrentelectrodebinderswithnanocelluloseoritsnano-scalederivatives, butifprovedfeasible,suchalternativemayfundamentallyimproveenergyefficiency. 4.2. CNFSubstrateforSupercapacitors Supercapacitorsareshort-termelectrochemicalenergystoragesthatareusedindeviceswithrapid charge/dischargecyclesattheelectrolyte-electrodeinterface. Theyusuallycantolerateavastrangeof operationalthermalstresses[130]anddependingonthestoragemechanism,theyaredividedinto electricaldouble-layercapacitors(EDLC)andelectrochemicalpseudocapacitors[131]. Manyefforts havebeenmadetodevelopnontoxic,lightweightandbendablesupercapacitorsforusageinportable andstretchableelectronics. Tothatend,materialssuchaspolydimethylsiloxane(PDMS),graphene paperandcellulosehavebeenpresentedassubstitutionsofcommercialEDLCs[132–136]. Amongcapacitorcomponents,bindershavethevitalroleofprovidingenoughmechanicalstrength totheelectrodes. Polyvinylalcohol(PVA),carboxymethylcellulose(CMC)andpolytetrafluoroethylene (PTFE)arecommonbinderagentsthathavebeenusedincommercialsupercapacitors,howeverdue to non-conductivity, they may lower the electrode efficiency [137]. Alternatively, various studies have proposed CNF in such devices to enhance the capacitors strengths and electrical properties. For instance, composite electrodes were fabricated using CNF and conductive polymers such as polyanilineandpolypyrrole;asilver-coatedCNFaerogelwasutilizedasasupercapacitorsubstrate andwaselectrodepositedbypolyaniline(PANI).Uponairdrying,thecapacityofresultingassembly was monitored and a specific capacitance of 176 mF. cm−2 along with significant resistance to bending was reported [138]. In a similar study, a highly porous electrode substrate was obtained usingcellulosenanocrystalsfilmcoatedbypolypyrrole. Theproducedcapacitorshowedexcellent capacitance(massnormalized)of256F.g−1 owingtoCNC-basedporousstructureandhadbetter cyclingfunctionanddurabilitycomparedtocarbonnanotube[139]. Andresetal. haveshownthat CNFissignificantlyeffectivetoaffixgraphiteelectrodestotheelectronicsubstratesoncesoakedin aqueouselectrolytes[140]. Inanotherwork,abio-friendlyionogelwasproducedthroughgelation of microcellulose thin films with various methylphosphonate ionic liquids. The attained flexible ionogelactedashighcapacitancedielectricsunderlowvoltagewhichisapplicableinpaper-based supercapacitors[141]. Overall,nanocelluloseshavebeensuccessfullyemployedincapacitorsasbinder andpotentiallycaninducebothstrengthandflexibilitytotheelectronicdevices. 5. AdhesioninNanocellulose Foralongtimetheinherentself-adhesionofcellulosefibershasbeenrecognizedasakeyfactor inthestrengthpropertiesofpaperandothercellulose-basedcompositematerials. Theformationof hydrogenbondsbetweenhydroxylgroupsonneighboringcellulosesurfacesplaysamajorroleinthe

Description:
Basu, A.; Lindh, J.; Ålander, E.; Strømme, M.; Ferraz, N. On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions:
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.