ebook img

Cellular neural networks and visual computing: foundation and applications PDF

410 Pages·2002·4.552 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cellular neural networks and visual computing: foundation and applications

This page intentionally left blank Cellular neural networks and visual computing Cellular Nonlinear/neural Network (CNN) technology is both a revolutionary concept and an experimentallyprovennewcomputingparadigm.AnalogiccellularcomputersbasedonCNNsare settochangethewayanalogsignalsareprocessedandarepavingthewaytoanentirenewanalog computingindustry. Thisuniqueundergraduate-leveltextbookincludesmanyexamplesandexercises,includingCNN simulatoranddevelopmentsoftwareaccessibleviatheInternet.ItisanidealintroductiontoCNNs and analogic cellular computing for students, researchers, and engineers from a wide range of disciplines.Althoughitsprimefocusisonvisualcomputing,theconceptsandtechniquesdescribed inthebookwillbeofgreatinteresttothoseworkinginotherareasofresearch,includingmodeling ofbiological,chemical,andphysicalprocesses. Leon Chua is a Professor of Electrical Engineering and Computer Science at the University of California,BerkeleywherehecoinventedtheCNNin1988andholdsseveralpatentsrelatedtoCNN Technology.HereceivedtheNeuralNetworkPioneerAward,2000. Tama´s Roska is a Professor of Information Technology at the Pa´zma´ny P. Catholic University of Budapest and head of the Analogical and Neural Computing Laboratory of the Computer and AutomationResearchInstituteoftheHungarianAcademyofSciences,Budapestandwasanearly pioneer of CNN technology and a coinventor of the CNN Universal Machine as an analogic supercomputer, He has also spent 12 years as a part-time visiting scholar at the University of CaliforniaatBerkeley. Cellular neural networks and visual computing Foundation and applications Leon O. Chua and Tama´s Roska           The Pitt Building, Trumpington Street, Cambridge, United Kingdom    The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org ©Cambridge University Press 2004 First published in printed format 2002 ISBN 0-511-04051-2 eBook (netLibrary) ISBN 0-521-65247-2 hardback Toourwives,DianaandZsuzsa Contents Acknowledgements pagexi 1 Introduction 1 2 Notation,definitions,andmathematicalfoundation 7 2.1 Basicnotationanddefinitions 7 2.2 Mathematicalfoundations 14 3 CharacteristicsandanalysisofsimpleCNNtemplates 35 3.1 Twocasestudies:theEDGEandEDGEGRAYtemplates 35 3.2 ThreequickstepsforsketchingtheshiftedDPplot 49 3.3 Someotherusefultemplates 50 4 SimulationoftheCNNdynamics 100 4.1 IntegrationofthestandardCNNdifferentialequation 100 4.2 Imageinput 101 4.3 Softwaresimulation 102 4.4 Digitalhardwareaccelerators 110 4.5 AnalogCNNimplementations 111 4.6 Scalingthesignals 113 4.7 Discrete-timeCNN(DTCNN) 114 vii viii Contents 5 BinaryCNNcharacterizationviaBooleanfunctions 115 5.1 BinaryanduniversalCNNtruthtable 115 5.2 Booleanandcompressedlocalrules 122 5.3 Optimizingthetruthtable 124 6 UncoupledCNNs:unifiedtheoryandapplications 139 6.1 Thecompletestabilityphenomenon 139 6.2 ExplicitCNNoutputformula 140 6.3 ProofofcompletelystableCNNtheorem 142 6.4 TheprimaryCNNmosaic 155 6.5 Explicitformulafortransientwaveformandsettlingtime 156 6.6 WhichlocalBooleanfunctionsarerealizablebyuncoupledCNNs? 161 6.7 Geometricalinterpretations 162 6.8 HowtodesignuncoupledCNNswithprescribedBooleanfunctions 166 6.9 Howtorealizenon-separablelocalBooleanfunctions? 173 7 IntroductiontotheCNNUniversalMachine 183 7.1 Globalclockandglobalwire 184 7.2 Setinclusion 184 7.3 Translationofsetsandbinaryimages 188 7.4 Openingandclosingandimplementinganymorphologicaloperator 190 7.5 ImplementinganyprescribedBooleantransitionfunctionbynotmorethan 256templates 195 7.6 Minimizing the number of templates when implementing any possible Booleantransitionfunction 198 7.7 Analog-to-digitalarrayconverter 201 8 Backtobasics:Nonlineardynamicsandcompletestability 205 8.1 Aglimpseofthingstocome 205 8.2 AnoscillatoryCNNwithonlytwocells 205 8.3 AchaoticCNNwithonlytwocellsandonesinusoidalinput 210 8.4 SymmetricAtemplateimpliescompletestability 214 8.5 Positiveandsign-symmetricAtemplateimpliescompletestability 219

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.