ebook img

Cellular image classification PDF

142 Pages·2017·2.686 MB·English
by  LinFengWuXingkunXuXiang
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cellular image classification

Xiang Xu · Xingkun Wu Feng Lin Cellular Image Classification fi Cellular Image Classi cation Xiang Xu Xingkun Wu (cid:129) Feng Lin fi Cellular Image Classi cation 123 XiangXu FengLin Schoolof Computer Engineering Schoolof Computer Engineering NanyangTechnological University NanyangTechnological University Singapore Singapore Xingkun Wu Zhejiiang University Hangzhou, Zhejiang China ISBN978-3-319-47628-5 ISBN978-3-319-47629-2 (eBook) DOI 10.1007/978-3-319-47629-2 LibraryofCongressControlNumber:2016955784 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This book introduces new techniques for cellular image feature extraction, pattern recognitionandclassification.Weusetheantinuclearantibodies(ANAs)inpatient serum as the subjects and the indirect immunofluorescence (IIF) technique as the imagingprotocoltoillustratetheapplicationsofthedescribedmethods.Throughout the book, we provide evaluations for our proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR’12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP’13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s quali- ficationandreadingsystems,causinghighintra- andinter-laboratoryvariance.We describe a low-order LP21 fiber mode for optical single cell manipulation and imagingstainingpatternsofHEp-2cells.Afocusedfour-lobedmodedistributionis stableandeffectiveinopticaltweezerapplications,includingselectivecellpick-up, pairing,groupingorseparation,aswellasrotationofcelldimersandclusters.Both translational dragging force and rotational torque in the experiments are in good accordance with our theoretical model. With a simple all-fiber configuration, and low peak irradiation to targeted cells, instrumentation of our optical chuck tech- nology will provide a powerful tool in the ANA-IIF laboratories. We focus on the optical, mechanical and computing systems for the clinical trials. Computer pro- grams for GUI and control of the optical tweezers are also discussed. Next, we introduce the Bag-of-Words (BoW) framework which is one of the most successful image representations. To reduce the inevitable information loss causedbycodingprocess,westudyalinearlocaldistancecoding(LLDC)method. The LLDC method transforms original local feature to more discriminative local distance vector by searching for local neighbors of the local feature in the class-specificmanifolds.Thenweencodeandpoolthelocaldistancevectorstoget salient image representation. Combined with the traditional coding methods, this method achieves a higher classification accuracy. Then, we study a rotation invariant textural feature of pairwise local ternary patterns with spatial rotation invariant (PLTP-SRI). It is invariant to image rota- tions, meanwhile it is robust to noise and weak illumination. By adding spatial v vi Preface pyramid structure, this method captures spatial layout information. While the proposed PLTP-SRI feature extracts local feature, the BoW framework builds a global image representation. It is reasonable to combine them together to achieve impressiveclassificationperformance,asthecombinedfeaturetakestheadvantages of the two kinds offeatures in different aspects. Finally, we design a co-occurrence differential texton (CoDT) feature to repre- sent the local image patches of HEp-2 cells. The CoDT feature reduces the infor- mationlossbyignoringthequantizationwhileitutilizesthespatialrelationsamong thedifferential micro-textonfeature. Thusitcanincreasethediscriminative power. We build a generative model to adaptively characterize the CoDT feature space of the training data. Furthermore, we exploit a discriminant representation for the HEp-2 cell images based on the adaptive partitioned feature space. Therefore, the resulting representation is adapted to the classification task. By cooperating with linear support vector machine (SVM) classifier, our framework can exploit the advantages of both generative and discriminative approaches for cellular image classification. Themonographiswrittenforthoseresearcherswhowouldliketodeveloptheir ownprograms,andtheworkingMATLABcodesareincludedforalltheimportant algorithms presented. It can also be used asa reference book for graduate students and senior undergraduates in the area of biomedical imaging, image feature extraction,patternrecognitionandclassification.Academics,researchers,andmany others will find this to be an exceptional resource. Enjoy the read. Singapore Xiang Xu China Xingkun Wu Singapore Feng Lin August 2016 Contents 1 Introduction.... .... .... ..... .... .... .... .... .... ..... .... 1 1.1 Background .... .... ..... .... .... .... .... .... ..... .... 1 1.1.1 Clinical Problems: A Case Study on Autoimmune Diseases . .... ..... .... .... .... .... .... ..... .... 1 1.1.2 Cellular Imaging: A Case Study on Indirect Immunofluorescence . .... .... .... .... .... ..... .... 3 1.2 Computer-Aided Diagnosis.. .... .... .... .... .... ..... .... 6 1.3 Experimental Datasets in the Book.... .... .... .... ..... .... 8 1.3.1 The ICPR2012 Dataset ... .... .... .... .... ..... .... 8 1.3.2 The ICIP2013 Training Dataset. .... .... .... ..... .... 10 1.4 Structure of the Chapters ... .... .... .... .... .... ..... .... 10 References.. .... .... .... ..... .... .... .... .... .... ..... .... 12 2 Fundamentals .. .... .... ..... .... .... .... .... .... ..... .... 15 2.1 Optical Systems for Cellular Imaging.. .... .... .... ..... .... 15 2.1.1 Laser Scanning Confocal Microscope.... .... ..... .... 16 2.1.2 Multi-photon Fluorescence Imaging . .... .... ..... .... 20 2.1.3 Total Internal Reflection Fluorescence Microscope... .... 22 2.1.4 Near-Field Scanning Optical Microscopy Imaging Technology... ..... .... .... .... .... .... ..... .... 25 2.1.5 Optical Coherence Tomography Technology... ..... .... 29 2.2 Feature Extraction.... ..... .... .... .... .... .... ..... .... 31 2.2.1 Low-Level Features.. .... .... .... .... .... ..... .... 31 2.2.2 Mid-Level Features.. .... .... .... .... .... ..... .... 38 2.3 Classification ... .... ..... .... .... .... .... .... ..... .... 39 2.3.1 Support Vector Machine.. .... .... .... .... ..... .... 39 2.3.2 Nearest Neighbor Classifier.... .... .... .... ..... .... 40 References.. .... .... .... ..... .... .... .... .... .... ..... .... 41 vii viii Contents 3 Optical Systems for Cellular Imaging .... .... .... .... ..... .... 45 3.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 46 3.2 Optical Tweezer. .... ..... .... .... .... .... .... ..... .... 47 3.2.1 Introduction to Optical Tweezers ... .... .... ..... .... 47 3.2.2 Gradient and Scattering Force of Optical Tweezers... .... 48 3.2.3 Three-Dimensional Optical Trap.... .... .... ..... .... 49 3.3 Low-Order Fiber Mode LP .... .... .... .... .... ..... .... 51 21 3.3.1 Fiber Mode Coupling Theory .. .... .... .... ..... .... 51 3.3.2 Analysis of Field Distribution in Optical Fiber. ..... .... 53 3.3.3 Solution to LP Mode ... .... .... .... .... ..... .... 55 21 3.3.4 Selective Excitation of LP Mode .. .... .... ..... .... 56 21 3.3.5 The Twisting and Bending Characteristics of LP Mode. ..... .... .... .... .... .... ..... .... 58 21 3.3.6 Why LP Mode? ... .... .... .... .... .... ..... .... 60 21 3.4 Optical Tweezer Using Focused LP Mode. .... .... ..... .... 61 21 3.4.1 Fiber Axicons. ..... .... .... .... .... .... ..... .... 61 3.4.2 Cell Manipulation... .... .... .... .... .... ..... .... 66 3.5 Modeling of Optical Trapping Force .. .... .... .... ..... .... 68 3.5.1 Force Analysis of Mie Particles in Optical Trap..... .... 69 3.5.2 Gaussian Beam..... .... .... .... .... .... ..... .... 72 3.5.3 Simulation of Light Force on Mie Particle .... ..... .... 73 3.6 Summary .. .... .... ..... .... .... .... .... .... ..... .... 77 References.. .... .... .... ..... .... .... .... .... .... ..... .... 78 4 Image Representation with Bag-of-Words. .... .... .... ..... .... 81 4.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 81 4.2 Coding .... .... .... ..... .... .... .... .... .... ..... .... 83 4.2.1 Vector Quantization . .... .... .... .... .... ..... .... 84 4.2.2 Soft Assignment Coding.. .... .... .... .... ..... .... 84 4.2.3 Locality-Constrained Linear Coding . .... .... ..... .... 85 4.3 Pooling.... .... .... ..... .... .... .... .... .... ..... .... 86 4.4 Summary .. .... .... ..... .... .... .... .... .... ..... .... 86 References.. .... .... .... ..... .... .... .... .... .... ..... .... 86 5 Image Coding .. .... .... ..... .... .... .... .... .... ..... .... 89 5.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 89 5.2 Linear Local Distance Coding Method. .... .... .... ..... .... 90 5.2.1 Distance Vector..... .... .... .... .... .... ..... .... 91 5.2.2 Local Distance Vector.... .... .... .... .... ..... .... 92 5.2.3 The Algorithm Framework .... .... .... .... ..... .... 93 5.3 Experiments and Analyses .. .... .... .... .... .... ..... .... 94 5.3.1 Experiment Setup ... .... .... .... .... .... ..... .... 95 5.3.2 Experimental Results on the ICPR2012 Dataset ..... .... 96 Contents ix 5.3.3 Experimental Results on the ICIP2013 Training Dataset .... .... .... .... .... .... ..... .... 98 5.3.4 Discussion.... ..... .... .... .... .... .... ..... .... 99 5.4 Summary .. .... .... ..... .... .... .... .... .... ..... .... 102 References.. .... .... .... ..... .... .... .... .... .... ..... .... 102 6 Encoding Image Features. ..... .... .... .... .... .... ..... .... 105 6.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 105 6.2 Encoding Rotation Invariant Features of Images.. .... ..... .... 107 6.2.1 Pairwise LTPs with Spatial Rotation Invariant . ..... .... 107 6.2.2 Encoding the SIFT Features with BoW Framework .. .... 110 6.3 Experiments and Analyses .. .... .... .... .... .... ..... .... 111 6.3.1 Experiment Setup ... .... .... .... .... .... ..... .... 111 6.3.2 Experimental Results on the ICPR2012 Dataset ..... .... 112 6.3.3 Experimental Results on the ICIP2013 Training Dataset .. .... ..... .... .... .... .... .... ..... .... 113 6.3.4 Discussion.... ..... .... .... .... .... .... ..... .... 115 6.4 Summary .. .... .... ..... .... .... .... .... .... ..... .... 117 References.. .... .... .... ..... .... .... .... .... .... ..... .... 117 7 Defining Feature Space for Image Classification.... .... ..... .... 119 7.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 119 7.2 Adaptive Co-occurrence Differential Texton Space for Classification. .... ..... .... .... .... .... .... ..... .... 120 7.2.1 Co-occurrence Differential Texton... .... .... ..... .... 120 7.2.2 Adaptive CoDT Feature Space . .... .... .... ..... .... 123 7.2.3 HEp-2 Cell Image Representation in the Adaptive CoDT Feature Space .... .... ..... .... 124 7.3 Experiments and Analyses .. .... .... .... .... .... ..... .... 127 7.3.1 Experiment Setup ... .... .... .... .... .... ..... .... 127 7.3.2 Experimental Results on the ICPR2012 Dataset ..... .... 128 7.3.3 Experimental Results on the ICIP2013 Training Dataset .... .... .... .... .... .... ..... .... 129 7.3.4 Discussion.... ..... .... .... .... .... .... ..... .... 130 7.4 Summary .. .... .... ..... .... .... .... .... .... ..... .... 132 References.. .... .... .... ..... .... .... .... .... .... ..... .... 132 8 Conclusions and Perspectives... .... .... .... .... .... ..... .... 135 8.1 Major Techniques Developed in the Book.. .... .... ..... .... 135 8.2 Directions and Future Work. .... .... .... .... .... ..... .... 136 References.. .... .... .... ..... .... .... .... .... .... ..... .... 137 Chapter 1 Introduction Abstract In this chapter, we introduce the background of our study, followed by the research motivations and objectives. Then, we introduce the publicly available datasetsusedtoevaluateourproposedmethods.Finally,wesummarizeourcontri- butionsandgivethestructureofthereportintheend. 1.1 Background 1.1.1 ClinicalProblems:ACaseStudyonAutoimmune Diseases Autoimmunediseases(AD)occurwhentheimmunesystemmistakenlyattacksand destroyshealthybodytissues,whichcanbeorgan-specificorsystemic.Depending onthetype,anautoimmunediseasecanaffectoneormanydifferenttypesofbody tissue. It can also cause abnormal organ growth and changes in organ function. They are prevalent diseases affecting a large number of human beings. There are morethaneightydifferenttypesofADsuchasrheumatoidarthritis,systemiclupus erythematosus, scleroderma and autoimmune hepatitis. The common autoimmune diseasesareintroducedasfollows: (cid:129) rheumatoidarthritis:chronicinflammationofjointsandsurroundingtissues; (cid:129) systemiclupuserythematosus:affectsskin,joints,kidneys,brainandotherorgans; (cid:129) scleroderma:aconnectivetissuediseasethatcauseschangesinskin,bloodvessels, muscles,andinternalorgans; (cid:129) sjogren’ssyndrome:destroystheglandsthatproducetearsandsalivacausingdry eyesandmouth;mayaffectkidneysandlungs; (cid:129) autoimmunehepatitis:causesinflammationandliverdamage; (cid:129) perniciousanemia:decreaseinredbloodcellscausedbyinabilitytoabsorbvitamin B-12; (cid:129) vitiligo:whitepatchesontheskincausedbylossofpigment; (cid:129) psoriasis:askinconditionthatcausesrednessandirritationaswellasthick,flaky, silver-whitepatches; ©SpringerInternationalPublishingAG2017 1 X.Xuetal.,CellularImageClassification, DOI10.1007/978-3-319-47629-2_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.