ebook img

Cellular Dynamical Mean Field Theory of the Periodic Anderson Model PDF

0.22 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cellular Dynamical Mean Field Theory of the Periodic Anderson Model

CellularDynamicalMeanFieldTheory ofthe PeriodicAnderson Model Lorenzo De Leo,1 Marcello Civelli,2 and Gabriel Kotliar1 1DepartmentofPhysicsandCenterforMaterialTheory, RutgersUniversity,Piscataway, NJ08854, USA 2Institut Laue Langevin, 6 rue Jules Horowitz - 38042 Grenoble Cedex, France WedevelopaclusterdynamicalmeanfieldtheoryoftheperiodicAndersonmodelinthreedimensions,taking aclusteroftwositesasabasicreferenceframe.ThemeanfieldtheorydisplaysthebasicfeaturesoftheDoniach 9 phasediagram:aparamagneticFermiliquidstate,anantiferromagneticstateandatransitionbetweenthem. 0 Incontrastwithspindensitywavetheories,thetransitionisaccompaniedbyalargeincreaseoftheeffective 0 masseverywhereontheFermisurfaceandasubstantialchangeoftheFermisurfaceshapeacrossthetransition. 2 Tounderstandthenatureandtheoriginofthephasesnearthetransition,weinvestigatetheparamagneticsolution n underlyingtheantiferromagneticstate,andidentifythetransitionasapointwherethefelectronsdecouplefrom a theconductionelectronsundergoinganorbitallyselectiveMotttransition. Thispointturnsouttobeintimately J relatedtothetwoimpurityKondomodelquantumcriticalpoint. Inthisregime,nonlocalcorrelationsbecome 8 importantandresultinsignificantchangesinthephotoemissionspectraandthedeHaas-vanAlphenfrequencies. 1 Thetransitioninvolvesconsiderablef spectralweighttransferfromtheFermileveltoitsimmediatevicinity, ratherthantotheHubbardbandsasinsinglesiteDMFT. ] l e PACSnumbers:71.27.+a,71.10.Hf,75.20.Hr,75.30.Mb - r t s I. INTRODUCTION tronsandconductionc electronswitha Fermisurfacewhich . t obeysLuttingertheorem,countingboththef andcelectrons. a Forsmallhybridizationthef electronsdecouplefromthecon- m The heavy fermion materials have been one of the most ductionelectronquasiparticles,andtheFermisurfacecontains challengingproblemsforthecondensedmattercommunityin - d the lastthreedecades. The physicsof these systemsisdom- onlythelatter. Thedecouplingbetweenthef andcelectrons n inated by the competition of many interactions, manifesting can be viewed as an orbitally selective Mott transition, and o in a variety of phases1. Close to the zero-temperature tran- has been studied with single site DMFT12 and slave boson c techniques13. As stressed in14, a precise formulation of KB sition between two such phases the materials typically show [ non-Fermiliquidbehavioronalargetemperaturerange. This requirestheeliminationofantiferromagneticlongrangeorder 3 behaviorhasbeenoften attributedto an underlyingquantum whichbreaksthetranslationalsymmetryoftheoriginallattice. v Sofarthishasbeenachievedbystudyingmodelswithdisor- criticalpoint(QCP). 9 derwithinDMFT15,orbymodifyingthesymmetrygroupof In a subclass of these materials (including CeCu Au , 5 6−x x thespinfromSU(2)toSU(N)14. ForearlierstudiesoftheKB 5 YbRh2Si2 and CeTIn5, with T=Ir, Co, Rh) it is possible to usingslavebosonssee16,17. 2 drive the system from an antiferromagnetic (AF) phase to a 0 paramagnetic (PM) phase by suppressing continuously the Single site Extended DMFT of various models have been 7 Ne´el temperature via application of pressure, magnetic field carried out. For the Anderson lattice model18,19, the KB 0 andtheonsetofAFshouldbeviewedasdistinctinstabilities or doping. The conventional spin-density wave (SDW) the- t/ oryofaQCP2,3,4 disagreeswiththeexperimentalevidencein which occur at two different values of the RKKY coupling a manyofthese materials1,5,6,7,8. Thishastriggereda renewed (relativetotheKondocoupling).Thesamesituationoccursin m thefieldtheoryapproachofRef.14. interestinmicroscopicdescriptionsoftheheavyfermionstate d- and its possible instabilities to ordered states. More gener- On the other hand, extended DMFT studies of a Kondo n ally, not only the critical point but also the formation of the lattice model, in which the conductionelectron band is con- o heavy fermionstate in the regime where the RKKY interac- strainedsoastopreventitsmagneticpolarization,revealthat c tionsaresizeablerequiresnontrivialtechniquesforitsmicro- the KB and the onset of magnetism take place at the same v: scopicdescription9,10. Heavyfermionmaterialscanbemod- pointinthephasediagram20,21,22,23. SeehoweverRef.24. Jus- i eledbytheperiodicAndersonmodelwhichdescribesawide tificationforthestudyofthismodelisgiveninRef.25. X conductionbandofspdelectronsandanarrowbandoff elec- InDMFTbasedapproachesthebreakdownofFermiliquid r tronswhichisstronglycorrelatedandhybridizedwiththespd theoryatthetransitionisunderstoodintermsoflocalphysics. a electrons. In other works the same breakdownis explained in terms of Doniach11 established that for large hybridization the f the coupling of the electronsto the long wave length fluctu- electrons combine with the conduction electrons to form a ations of an emergent gauge field14 and to the Kondo order heavy Fermi liquid, while for small hybridizationthe f mo- parameterfluctuations13,26. mentsordermagneticallyandhencedonotundergotheKondo Inthispaperwehandlethecompetitionbetweenmagnetism effect. Thus,changesinthehybridizationnotonlyleadtothe andformationofaheavyPMstateinanunbiasedwayusing appearanceofmagneticlongrangeorderbutintroducealsoa CellularDynamicalMeanFieldTheory(CDMFT)27.Thisap- changeintheelectronicstructurereferredtoasf −cdecou- proachimprovesthe treatmentof non-localcorrelationsover plingorKondobreakdown(KB).Namely,forlargevaluesof single-site DMFT considering a cluster of sites and provid- thehybridizationthequasiparticlesarecompositesoff elec- ingaself-consistencyconditionontheclusteraction. Allthe 2 correlations whose range is contained within the cluster are duction electron bandwidth W = 12|t| = 2 sets the energy then treated beyonda simple mean-field level. In this paper unit. we consider a cluster of two sites embedded in a three di- In the large U/V limit the model maps onto the Kondo mensional lattice, which is the minimal unit able to capture lattice model, where each f orbital is replaced by a spin 1 2 the competitionbetweenPM andAF correlations. A similar whichisKondo-coupledtothelocalconductionelectronswith approachwasintroducedinanearlierpublication10 basedon a coupling J = ( 1 + 1 )V2, where ρ is the a quantum Monte Carlo impurity solver, but that study was conduction eKlectron|dEefn−sµit|y of|Ust+aEtefs−aµt|the chemical poten- limitedtolargetemperaturesandsmallvaluesofU. Weover- tial. It is also possible to define two energy scales in the comethislimitation byusingExactDiagonalization(ED)as problem. The first is the single-impurityKondo temperature an impurity solver28. This solver gives access to the ground T0 = exp(−1/2ρJK). Itisnotknownapriorihowthe“lat- state properties of the system with a finite energyresolution tice” Kondo energy is related to T0. The second scale is set (typically0.005ofthebandwidthinourcase). bythemagneticinteractions. Thesearenotcontainedexplic- InthetheoryoftheMotttransition,theinvestigationofthe itly in this Hamiltonian, but an effective RKKY coupling is PMinsulatingphasehasbeenveryfruitfulandallowedanun- generatedinfourthorderperturbationtheoryinV (secondor- derstandingofthefinitetemperaturestate,abovethemagnetic derintheKondocoupling,J ∼ J2/W). TheRKKY RKKY K orderin manycompounds. We pursuea similar approachto couplingoscillates in real space with a period that is related the periodicAnderson modelby investigatingboth the mag- tothebareconductionbandFermimomentum,rangingfrom neticanda“parentcompound”PMstate,tounderstandbetter antiferromagneticat half filling to ferromagneticin the limit thecharacteroftheelectronicstructure. Thisallowsustode- of an emptyband. A comparisonof these two energyscales scribethemagneticstateasaresultofanadditionalinstability allows to understandthe qualitative featuresof the phase di- ofthePMstate. agramofthemodel11. TheratiobetweenKondotemperature Weshowthataphasetransitionseparatestheheavyfermion andRKKY interactionis an increasingfunctionofV, hence paramagnetic phase from an antiferromagnetic phase. Ap- forsmallV we willfindaphaseinwhichthemagneticfluc- proachingthetransitionfromtheparamagneticsidetheFermi tuations dominate giving rise to an ordered state, while for liquidisstronglyrenormalized.Ananalysisofthemeanfield large V the Kondo effect dominates and the f moments are PM solution into the AF phase reveals an orbitally selective screenedbytheconductionelectrons. Mott decouplingand localization of the f-electrons. Within AthalffillingtheKondoscreeningofthemomentsbythe theresolutionofourmethod,theantiferromagnetictransition conductionelectronsresultsinaninsulatorwithagapinduced andthedecouplingofthef andcelectronstakeplaceforthe bythehybridization.Inthispaperweareinterestedinmetallic samevalueofthehybridization. Throughacomparisonwith heavyfermions,andwerestrictourselvestostudythesystem aWilson’sNumericalRenormalizationGroup(NRG)calcula- awayfromhalffilling. tion,wefurtherrelatethenatureofthetransitiontotheprox- Inthe pathintegralformalismthe conductionbandcan be imity of the system in the parameter space to the quantum integratedoutintheactionandreplacedbyaneffectivelong- criticalpointofthetwo-impurityKondomodel(2IKM)29,30. rangeretardedhoppingforf electrons.Afterthesemanipula- Thetransitionhasdramaticconsequencesonthequasiparti- tionstheLagrangianofthesystemis clespectraandonthetopologyoftheFermisurfacewhichcan bedetectedbyphotoemissionexperimentsandbyHalleffect L = f† (τ)(∂ −µ+E )f (τ) (2) anddeHaas-vanAlphenfrequenciesmeasures. iσ τ f iσ Thepaperisorganizedasfollows. InSec. IIweintroduce Xi the model Hamiltonian and the CDMFT method employed. + f† (τ)∆c (τ −τ′)f (τ′)+U nf nf iσ ij jσ i↑ i↓ InSec. IIIweanalyzetheresultsoftheCDMFTcalculations ij i X X andcomparethemwithsinglesiteDMFTresultsandNumeri- calRenormalizationGroupresultsontheunderlyingimpurity where the effect of the conduction band is absorbed in the problem.ConclusionarepresentedinSec. IV. Weissfield V2 ∆c(iω,q)= (3) II. METHODS iω+µ−ε q The three-dimensionalperiodicAndersonmodelHamilto- andεq =−2t α=x,y,zcos(qα). nianis In CDMFT the original three-dimensional lattice is now P tiled with a superlattice of clusters and an effective Ander- H = −t c† c −µ c† c +V f† c +h.c. son impurity action is derived for a single cluster. Finally a iσ jσ iσ iσ iσ iσ Xhiji Xi Xi (cid:16) (cid:17) self-consistencyconditionrelatestheclusterGreen’sfunction to the local Green’s function of the superlattice. The self- +(E −µ) f† f +U nf nf (1) f iσ iσ i↑ i↓ consistencyismoreeasilywrittenasamatrixform i i X X wσhaenrdecf†ii†σσcdroeeastetshaecsoanmdeucftoironthbeanlodcealleizcetrdonorabtistaitles.iTwhitehcsopnin- Gloc(iω)=X~k (cid:20)(cid:18)iω+µ0−Ef iω+µ0−Ef (cid:19) (4) 3 −11 − V2 iω+µ eikxε~k − Σ11(iω) Σ12(iω) TK/T0 (CDMFT) (iω+µ)2−ε~2k (cid:18)e−ikxε~k iω+µ(cid:19) (cid:18)Σ21(iω) Σ22(iω)(cid:19)# 1 TK/T0 (DMFT) 0.8 0.5 wherespinindexhasbeensuppressedtosimplifythenotation. It is very importantto notice that in the large U/V limit the 0.6 0 impurityactionbecomesequivalenttotheactionofatwoim- 0.6 0.8 purityKondomodelawayfromparticle-hole(p-h)symmetry. Magnetization Atp-hsymmetrythismodelisknowntohaveaQCPseparat- 0.4 Z (AF maj. spin) ingaKondoscreenedphasefromaphaseinwhichtheimpuri- tiesaredecoupledfromtheconductionband29,30. Awayfrom Z (AF min. spin) p-hsymmetrytheQCPisnotaccessiblebutstillinfluencesthe 0.2 Z (PM) physicsinanintermediateenergyrange31,32. In order to solve the cluster-impurity problem we employ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ED.Inthismethodtheclusteractionisrecastintheformofan V AndersonimpurityHamiltonianwherethecontinuousdegrees of freedom of the free electron bath are parametrized by a FIG.1:(Coloronline)MagnetizationMandaverageofthequasipar- finitenumberN ofsites: ticleresidueZeigenvaluesfortheAF(bothformajorityandminor- b ityspin)andPMsolutionsasafunctionofV. Inset: Ratiobetween latticeandsingle-impurityKondoenergiesinDMFTandCDMFT. H = f† (E −µ)f +U nf nf (5) ED iσ f iσ i↑ i↓ i=1,2 i=1,2 X X + ε a† a + V a† f +h.c. . lσ lσ lσ ilσ lσ iσ III. RESULTS l=X1,Nb Xi,l (cid:16) (cid:17) We compute the staggered magnetization M = hnf i − 1↑ In this representation the hybridization-function ∆µν = hnf i = −(hnf i−hnf i) as a function of V (Fig.1). For G0 −(iω+µ−E )δ , related to the noninteractingim- 1↓ 2↑ 2↓ µν f µν smallV theRKKYinteractionisdominatingandthesolution purity Green’s function Gµ0ν = −hfµfν†iU=0 of the cluster describesanAFstatewithamagnetizationclosetoone.Inthe impurityproblem,becomes oppositelimitoflargeV,wheretheKondoscreeningismore effective, the system is a PM metal. IncreasingV in the AF V∗ V phase,themagnetizationdecreasessmoothlyandapproaches ∆ (iω)= jlσ ilσ (6) zeroatavalueV∗ ∼ 0.585wherea phasetransitionoccurs. ijσ iω−ε l=X1,Nb lσ Above this critical value the system becomes paramagnetic. ThevalueofM atthetransitionjumpsfrom∼ 0.22forV = 0.58to∼0.006forV =0.59andinbetweentheconvergence wheretheindicesi,j =1,2representtheclustersites. Inthe becomes extremely slow. The numerical accuracy does not figurespresentedinthisworkweused8sitesinthebath,but allow us to exclude a weakly first order transition scenario, theresultshavebeentestedinfewpointsusing10sites. although in this case the coexistence region would be very The ground state and Green’s functions of this Hamilto- small. nian are determinedvia the Lanczos procedureand the self- To clarify the nature of the transition we investigate the consistency equation in turns allows to derive a new set of bath parameters. The self-consistency condition is used to cluster quasiparticle residue Zˆ = (ˆ1 − ∂Σˆ/∂ω)−1|ω=0 (in thiscase,amatrixinspinandclusterindices). TheAFthree- determine the ∆ function on a finite mesh of points ω = n dimensionalSDWtheorypredictsthatantiferromagnetismde- (2n+1)π/β. This implies a finite resolution in frequency. velopsfromawelldefinedFermiliquidstateandhenceafinite We usedβ = 100. Theprocessisiterateduntilconvergence quasiparticleresidueZ atthetransition. OnthecontraryKB isreached. Tostudytheinterplayofantiferromagnetismand scenariospredictthatZ goestozeroatthetransition. InFig. Kondoscreeningwe restrictthe studyto the metallic regime 1weplottheZˆ eigenvalues. IntheAFphasethetwocurves closeto half-fillingwheretheRKKY interactionispredomi- correspondtominorityandmajorityspecies. InthePMphase nantlyantiferromagnetic.Thisisachievedbyfixingthevalues we plot only the average of the eigenvaluessince the differ- U =10,E =−5.5andµ=0.2throughoutthepaper.Being f enceisnotappreciableonthescaleoftheplot. Inbothphases ameanfieldtheory,DMFTgivesthepossibilitytoselectively allowsomeinstabilitiesandforbidothers.Thuswewillallow theeigenvaluesoftheZˆ matrixdecreaseaswe approachthe transition. Precisely at the transition one eigenvalue goes to the developmentofAF orderandstudythe realistic material zero,suggestingthattheKBisindeedthecorrectscenarioin phasediagram. Howeverwewillalsoforcethesystemtore- thismodel. maininaPMstatetostudythe“normalstate”underlyingthe AF phase. This will prove important to study the KB point ApproachingthetransitionfromthePMphasebyreducing andtounderstandtheoriginofthetransitionsinthesystem. V,weobserveastrongreductionoftheZˆeigenvaluesleading 4 0 V=0.62 (PM) 0.4 V=0.58 (AF) -5 -10 0.2 0 -15 0 0.50 -10 0.55 V=0.62 (PM) -20 0.4 V=0.58 (PM) 00..5682 -20 0.26 0.36 -25 0.65 -30 0.45 0.50 0.2 0.55 -30 -40 0.58 0 1 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -35 0 1 2 FIG. 2: (Color online) Spectral function of the f electrons on the FIG.3: (Coloronline)Imaginarypartoftheevenself-energyeigen- twosidesofthetransitionwithAForderallowed(upperpanel)and valueontheimaginaryaxisfordifferentvaluesofthehybridization. forbidden (lower panel). The two Hubbard bands are outside the Inset:oddeigenvalue(inadifferentrangeofhybridizationvalues). energyrange. trastwiththeparamagneticsinglesiteDMFTsolutionwhere to a large effective mass enhancement. This result suggests thereisonlyaFermiliquidKondoscreenedphaseandnosign thatincreasingthecorrelationsbydecreasingV fromthePM ofsuchatransitionorofapseudogappedphase. Noticealso side,theFermiliquidbecomesheavierandheavier,andeven- thatintheCDMFTtreatmentthef transferofspectralweight tuallyitismorefavorabletogetridoftheentropybydevelop- takes place from the Fermi levelto its immediate vicinity as ingAFlongrangeorder.Thefundamentaldifferencewiththe the hybridizationis reduced. This shouldbe contrasted with SDW picture is that here the mechanism responsible for the thesinglesiteDMFTdescriptionoftheMotttransitioninthe instability isshort-rangedin space. The cluster self-energies Hubbardmodelwherethespectralweightistransferredfrom are in fact approximatelylocal on the PM side of the transi- theFermileveldirectlytotheHubbardbandsatmuchhigher tion. This may lead to think that the results are essentially energies. similartoasinglesiteDMFTsolutionoftheperiodicAnder- To clarify the Mott character of the transition we plot son model. Howeverthere are essential differences. Indeed, in Fig.3 the imaginary frequency behavior of the two Σ- evensettingtheoff-diagonalself-energyΣ12 =0theCDMFT eigenvalues within the PM solution, named respectively self-consistencyequationsdonotreducetothecorresponding Σeven =Σ11+Σ12andΣodd =Σ11−Σ12.Approachingthe single-site DMFT equations. To demonstrate this we com- transition from the PM phase the slope at zero frequencyof parein theinsetof Fig.1theratio betweenthelattice Kondo botheigenvaluesincreases,signalingthegrowthoftheeffec- temperatureobtainedthroughtherelationTK = ∆(0)Z and tivemassintheFermiliquid.Atthetransitiontheeveneigen- thecorrespondingsingle-impurityenergyT0inthetwocases. value develops a divergence signaling the end of the Fermi While the DMFT resultgivesa smoothand finite TK across liquid description and the beginning of the Mott insulating V∗, in CDMFT TK appears to approach a zero value at the phase.Theoddeigenvaluehasasimilardivergenceatalower transition. valueofthehybridizationasshownintheinset. Aqualitative We take advantage now of the possibility of suppressing understanding of this behavior can be proposed considering the AF long range order to study the normalPM solution in thatΣ andΣ representinaloosesensethelatticeself- even odd the AFphase. ForV < V∗ thissolutionisobviouslyunsta- energycalculatedaroundmomenta(0,0,0)and(π,π,π) re- ble to antiferromagnetismand it correspondsphysically to a spectively. HencetheMotttransitioncorrespondstothefirst highlyfrustratedsystem. Theanalysisofthespectralfunction appearance of a surface poles in the self-energy around the alongthetwosolutions(allowingandforbiddingmagneticor- originoftheBrillouinzone.Decreasingfurtherthehybridiza- dering, Fig.2) reveals that the transition takes place also in tionthesurfaceofpolesmovestowardsthecornerofthezone absence of antiferromagnetism. Namely, at small V, a phase andfinallydisappearsforV ∼0.43. with nospectralweightat the Fermilevelis realizedin both WhileforV >V∗theself-energywasapproximatelylocal, cases. The Kondo peak present in the PM phase disappears inthePMsolutionthedevelopmentofmagnetismforV <V∗ in going across the transition, leaving behind a pseudogap, isreplacedbyadramaticincreaseofnon-localcorrelationsas andthef electronseffectivelydecouplefromtheconduction showninFig.4,whereweplottherealpartofΣ12atthelowest band,atleastwithintheenergyresolutionofourcalculations. availablefrequencyintheimaginaryaxis. ThetransitionisanorbitallyselectiveMotttransitionforthe The behavior of T , of the spectral function and of the K f band. This implies that the f electrons do not contribute off-diagonal self-energy near the transition is very similar to the Fermi surface for V < V∗. This is in marked con- to the corresponding behavior found in the 2IKM close to 5 30 c density (AF) c density (PM) 20 f density 1.3 10 1.2 0 ReΣ (AF) 1.1 -10 12 ReΣ (PM) 12 ReΣ (PM-NRG) 12 -20 1 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 V V FIG.4: (Coloronline)Nonlocalcorrelations(ReΣ12,calculatedat FIG. 5: (Color online) f and c electron occupation per site. The thelowestavailableimaginaryfrequency)alongtheAFandPMsolu- transitionismarkedbytheverticaldashedline. tions. Theverticaldashedlinemarksthetransition. Forcomparison withthePMcasetheNRGresults(withoutself-consistency). criticalpoint. Genericproblems,astheoneconsideredinthis its QCP31,32,33. To establish this connection we used Wil- paper, are p-h asymmetric, and therefore in these cases the twoimpurityQCPisnotreachable. Howevertheanalysisof son’sNumericalRenormalizationGrouptosolvetheimpurity the NRG low-energy spectrum confirms that in going from modelunderlyingtheself-consistencyinthePMcaseforthe onesideto theotherofthecrossover(correspondingly,from same setofparameters. Thedifferencewiththe ED calcula- one side to the other of the transition in the CDMFT case) tionis thatwe used a constantdensityofstates forthe NRG the system evolves from a state in which the impurities are bath,sotheresultsarenonself-consistent.Theresultsarenev- screenedby the conductionelectrons(for largeV) to a state ertheless qualitatively similar. The main difference between inwhichtheimpuritiestakeadvantageoftheRKKYinterac- theresultsofthetwocalculationsisthatthetransitionfound tiontoformasingletanddecouplefromtheconductionband inCDMFTisreplacedinNRGbyacrossover.Weascribethis (forsmall V). Hence the low-energypicture for V < V∗ is effecttothelackofaself-consistentbathintheNRGcalcula- that of a conduction band asymptotically decoupled from a tion.InFig.4wecomparethenonlocalcorrelations,findinga collection of spins arranged in singlets. In the lattice model verygoodagreement. Otherfeatureslikethepseudogapfor- theself-consistencyconditiontransformsthecrossoverofthe mationaroundV∗arealsoreproduced.Thesimilarityofthese impuritymodelintoatruephasetransition. tworesultssuggeststhatmostofthephysicsrelevanttothelat- ticeisalreadycapturedatthelevelofthetwoimpurityprob- Followingtheparamagneticsolutionwecanalsoobservea lem. Inthiscasetheonsetofmagnetisminthelatticemodel violation of the Luttinger theorem for V < V∗ in the form canbeunderstoodasarisingfromthevicinitytotheimpurity of a mismatch between the number of particles and the vol- QCP. Indeed at the 2IKM critical point there are three rele- ume of the Fermi surface. This is clear from the plot of the vantoperatorsthatcorrespondtopossiblesymmetrybreaking numberofcandf electronspersite asafunctionofV (Fig. instabilities. Susceptibilitiesin the antiferromagnetic,super- 5). In the PM phase both the conduction and the f bands conductingandp-hsymmetrybreakingchannelsarediverging are doped (nf,nc 6= 1). In this case the Fermi surface has attheimpurityQCP.Sincep-hsymmetryisalreadybrokenin a volume equal to the doping δ = nc +nf − 2. The total the lattice system, only the other two instabilities are left to occupationisnotconstantbecausewefixedthechemicalpo- provideawaytoquenchtheresidualentropyassociatedtothe tential rather than the density. For V < V∗ the occupation QCP.Inthisworkwedidnotconsiderthesuperconductingin- in bothbandsbecomesessentially constant, implyingthatV stabilitybutweexpectittoplayarelevantrole(andpossibly is no more effective. In this regime the only contribution to competewithantiferromagnetism)dependingonthe specific the Fermi surface comes from the c electrons which, being detailsofthebandstructureoftherealisticmaterial. non-interactinganddecoupledfromthef band,haveaFermi Noticehoweverseveralimportantdifferenceswiththepic- surface with volume nc = 1+δ. These results once again tureoflocalquantumcriticalityofRef.20. Thereferencesys- support the orbitally selective Mott transition picture of the temdescribingthephysicsofthelatticemodelrequiresaclus- KB12,13. Namely,anf-likefluidthatbecomesincompressible teroftwosites,ratherthanone,embeddedinamedium. The beyondtheKBpoint. criticalpointofthistwoimpuritymodel,hastworelevantdi- In Fig.6 we plot the k-resolved total spectral density rectionscorrespondingtovaryingthehybridizationandbreak- −π1Im(Gc(k,ω)+Gf(k,ω))atlowenergiesalongtheparam- ing p-h symmetry. So the impurity model without the self- agneticsolutioninthetwophases. Weintentionallyconsider consistency condition has a multicritical point rather than a pointsfarfromthetransitiontoshowthattheresultsarerobust 6 FIG.6: (Color online) Totalspectralfunction asafunctionof mo- FIG.7: (Coloronline) Totalspectral function asafunctionof mo- mentumandenergyonthepathconnectingtheoriginΓ = (0,0,0) mentumandenergyalongthesamepathofFig.6fortheAFsolution. andthecornerΠ = (π,π,π)oftheBrillouinzone. (a)V = 0.65 (V =0.50) PMphase.(b)V =0.30PMsolutionintheAFphase. peaksinFig.2,whilethebandscrossingthechemicalpotential havemostlyccharacter. anddonotdependonthevicinitytospecialpointsinthephase diagram. Toobtainthisquantitywereconstructtherotational andtranslationallatticesymmetry,brokenbythecluster-tiling procedure,byperiodizationofthecumulants34. Thisscheme IV. CONCLUSIONS ismoreappropriatewhencorrelationsarestronger.Indeedthe simpleperiodizationoftheself-energydoesnotreproducethe Tosummarize,wehaveconstructedandinvestigatedaclus- localquantitiescorrectlyuponintegrationovermomenta,in- ter dynamical mean field theory for the periodic Anderson troducingspuriousstates in gapped regionsof the spectrum. modelusingalinkasareferenceframetocapturethecompeti- In panel (a) the system is in the PM phase (V = 0.65). It tionoftheKondoeffectandtheRKKYinteraction.Themean is possible to track the origin of the small value of Z in the fieldphasediagramawayfromhalf-fillingfeaturesatransition narrowbandcrossingthechemicalpotential. TheFermisur- separatingaparamagneticheavyelectronphasefromananti- faceenclosesa“small”regionoftheBrillouinzonecentered ferromagnetic phase. In the PM phase, the phase transition around the origin. In panel (b) we show the PM solution in isaccompaniedbyastrongrenormalizationofquasiparticles, the AF phase (V = 0.30). It is clear that the volume of the marked by a large enhancementof the effective mass on all Fermisurfaceinthisphasehasincreased. Thedifferencebe- theFermisurface. tween the Fermi surface volume and the density is equal to By constraininga mean-fieldmetastable paramagneticso- one within the numericalprecision, confirming the violation lutionintotheAFregionofthephasediagram,wehavebeen of the Luttinger theorem as expected in the orbital selective able to show that the the transition can be described as an Motttransition13.Itisalsopossibletotrackthenon-dispersive orbitally selective Mott transition. The decouplingof the f- f-bandataroundω ∼−0.2. band from the conduction band marks a localization of the Since the PM solution for V < V∗ is unstable to antifer- f-electrons, as shown by the opening of a pseudogap in the romagnetism, to make contacts with experiments we plot in single particle spectrum and the appearance of poles in the Fig.7thespectraldensityfortheAFsolution(V =0.50).The self-energy at the Fermi level, a clear fingerprint of “Mot- bandsaredoubledbecauseoftheAFordering. Theseresults tness”. This is further supportedby the incompressibilityof arerepresentativeforthewholeAFphasedowntosmallvalue thesystem, whichpresentsa constantdensitybyvaryingthe ofV. ThestrikingdifferencewithrespecttothePMphaseis hybridization, and by the violation of the Luttinger theorem the big rearrangementof the spectral weight: now the occu- forV <V∗alongthePMsolution.Itisimportanttocompare piedregioniscenteredaroundthe(π,π,π)point.Thisresult thistransition,whichpresentsaorbital-selectiveMottcharac- 2 2 2 impliesasuddenjumpacrosstheantiferromagnetictransition ter, with the traditional DMFT Mott transition of the single inallthepropertiesconnectedwiththetopologyoftheFermi bandHubbardmodel.Inthepresentcasetheweightisshifted surfaceanditisconsistentwiththeexperimentalobservation from the chemical potential to the immediate vicinity form- ofadiscontinuousbehavioroftheHallcoefficient35andofthe ingapseudogapratherthanbeingtransferredtotheHubbard deHaas-vanAlphenfrequencies36. Thecontributionofthef bands at much higher energy. This feature is the productof electrons in this phase is manifest in the two non-dispersing our link-DMFT analysis in three dimensions, strikingly dif- bandsatω ∼ −0.1andω ∼ 0.45,correspondingto the two ferent from the infinite dimensional DMFT result where the 7 physicsispurelylocal.ItwouldbeimportantinfutureDMFT result of the response of the system to the instability of the investigationstobetterunderstandthenatureofthisMott-like nearby decoupling QCP, rather than being an intrinsic fea- transitionbystudyingitscluster-sizedependence. ture. Noticethatothercorrelationsaredivergingatthe2IKM In the SDW scenario, the fermionswhich are notcoupled criticalpoint. We expectthatdependingonthedetailsofthe bytheorderingvectorareunaffectedbythetransition.Onthe modelotherinstabilities(mainlysuperconductivity)compete contraryinourCDMFT study,thetransitionisaccompanied with antiferromagnetismto orderthe system and quench the by a dramatic rearrangementof the Fermi surface, in agree- residualentropyoftheunstableQCP. mentwithrecentexperiments35,36. Webelievethatourdescriptioncapturesthecorrectphysics Ourfindingscan beunderstoodin termsof proximitytoa oftheperiodicAndersonmodelinanintermediateasymptotic decouplingQCP with the same propertiesof the QCP found regimeofenergiesandproximitytothetransition. Athigher inthe2IKM,namelytheimpuritymodelunderlyingtheself- energies, the single site DMFT description is regained. At consistency equations. Although the lattice system cannot verylowenergiesandveryclosetothetransition,furthernon reach that critical point due to the particle-hole symmetry local effectscould turn out to be veryimportant. We do not breaking, the region in which the effect of the critical point knowifourtreatmentfitswithinthelocalquantumcriticality isrelevantislargeenoughtotriggerthelatticeantiferromag- paradigmwherenospatialanomalousdimensionsare gener- neticinstability31. Ifwefollowtheparamagneticsolutionthe ated.Toelucidatethesequestionswouldrequiretheinvestiga- vicinity to the critical point results instead in an increase of tionofthedynamicalsusceptibilitybeyondtheclusterDMFT thenon-localcorrelationsΣ12inagreementwiththebehavior approximation,whichisbeyondthescopeofthiswork. of the 2IKM. In real systems this effect is preemptedby the lattice antiferromagnetic instability. It would be interesting We would like to thank M. Fabrizio, A. Georges, F. to realize heavyfermionsystems in highlyfrustratedlattices Steglich, P. Coleman, C. Pepin, I. Paul, O. Parcollet, P. Sun, tosuppresstheantiferromagneticinstability. Thiswouldpro- K.Haule,E.Lebanon,M.Capone,T.Stanescu,J.C.Domenge videaphysicalrealizationoftheparamagneticsolutionofthe andL.de’Mediciforhelpfuldiscussionsandcomments.This CDMFTequations. work was supported by the NSF under Grant No. DMR In this framework the antiferromagnetic transition is the 0528969. 1 G.R.Stewart,Rev.Mod.Phys.73,797(2001). 20 Q.Si,S.Rabello,K.Ingersent,andJ.L.Smith,Nature413,804 2 J.A.Hertz,Phys.Rev.B14,1165(1976). (2001). 3 A.J.Millis,Phys.Rev.B48,7183(1993). 21 D.R.GrempelandQ.Si,Phys.Rev.Lett.91,026401(2003). 4 T.MoriyaandT.Takimoto,J.Phys.Soc.Jpn.64,960(1995). 22 J.-X.Zhu,D.R.Grempel,andQ.Si,Phys.Rev.Lett.91,156404 5 A.Schroeder,G.Aeppli,R.Coldea,M.Adams,O.Stockert,H.V. (2003). Loehneysen,E.Bucher,R.Ramazashvili,andP.Coleman,Nature 23 J.-X. Zhu, S. Kirchner, R. Bulla, and Q. Si, cond-mat/0607567 407,351(2000). (2006). 6 P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, 24 M.T.GlossopandK.Ingersent,cond-mat/0607566(2006). K. Tenya, O. Trovarelli, and F. Steglich, Phys. Rev. Lett. 89, 25 Q.Si, J.-X.Zhu, andD.R.Grempel, J.Phys.: Condens. Matter 056402(2002). 17,R1025(2005). 7 J. Custers, P.Gegenwart, H.Wilhelm, K. Neumaier, Y. Tokiwa, 26 I.Paul,C.Pepin,andM.R.Norman,Phys.Rev.Lett.98,026402 O. Trovarelli, C. Geibel, F. Steglich, C. Pepin, and P. Coleman, (2007). Nature424,524(2003). 27 G.Kotliar,S.Y.Savrasov,G.Pa´lsson,andG.Biroli,Phys.Rev. 8 P.Coleman,C.Pepin,Q.Si,andR.Ramazashvili,J.Phys.:Con- Lett.87,186401(2001). dens.Matter13,R723(2001). 28 M.CaffarelandW.Krauth,Phys.Rev.Lett.72,1545(1994). 9 S.Nakatsuji, D.Pines, andZ.Fisk,Phys.Rev.Lett.92, 016401 29 B.A.Jones,C.M.Varma,andJ.W.Wilkins,Phys.Rev.Lett.61, (2004). 125(1988). 10 P.SunandG.Kotliar,Phys.Rev.Lett.95,016402(2005). 30 I.Affleck, A.W.W.Ludwig,andB.A.Jones, Phys.Rev.B52, 11 S.Doniach,PhysicaB91,231(1977). 9528(1995). 12 L. de’ Medici, A. Georges, G. Kotliar, and S. Biermann, Phys. 31 L.DeLeoandM.Fabrizio,Phys.Rev.B69,245114(2004). Rev.Lett.95,066402(2005). 32 L.ZhuandC.M.Varma,cond-mat/0607426(2006). 13 C.Pepin,cond-mat/0610846(2006). 33 M. Ferrero, L.DeLeo, P.Lecheminant, and M. Fabrizio, cond- 14 T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 mat/0702629(2007). (2004). 34 T.D.Stanescu,M.Civelli,K.Haule,andG.Kotliar,Ann.Phys. 15 S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 321,1682(2006). 045111(2002). 35 S. Paschen, T. Luhmann, S. Wirth, P.Gegenwart, O. Trovarelli, 16 N.AndreiandP.Coleman,Phys.Rev.Lett.62,595(1989). C. Geibel, F. Steglich, P. Coleman, and Q. Si, Nature 432, 881 17 C. Castellani, M. Grilli, and G. Kotliar, Phys. Rev. B 43, 8000 (2004). (1991). 36 H.Shishido,R.Settai,H.Harima,andY.Onuki,J.Phys.Soc.Jpn. 18 P.SunandG.Kotliar,Phys.Rev.Lett.91,037209(2003). 74,1103(2005). 19 P.SunandG.Kotliar,Phys.Rev.B71,245104(2005).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.