ebook img

Cellular Automata: Analysis and Applications PDF

467 Pages·2017·7.344 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cellular Automata: Analysis and Applications

Springer Monographs in Mathematics Karl-Peter Hadeler Johannes Müller Cellular Automata: Analysis and Applications Springer Monographs in Mathematics Editors-in-Chief IsabelleGallagher MinhyongKim Moreinformationaboutthisseriesathttp://www.springer.com/series/3733 Karl-Peter Hadeler • Johannes MuRller Cellular Automata: Analysis and Applications 123 Karl-PeterHadeler JohannesMuRller FBBiologie CentreforMathematicalSciences UniversitaRtTuRbingen TechnicalUniversityMunich TuRbingen,Germany Garching,Germany ISSN1439-7382 ISSN2196-9922 (electronic) SpringerMonographsinMathematics ISBN978-3-319-53042-0 ISBN978-3-319-53043-7 (eBook) DOI10.1007/978-3-319-53043-7 LibraryofCongressControlNumber:2017937054 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Introduction................................................................. 1 1.1 Discreteness .......................................................... 1 1.2 TheGameofLife .................................................... 3 1.3 ContactAutomata.................................................... 4 1.4 SomeWolframAutomata............................................ 6 1.5 Greenberg-HastingsAutomata ...................................... 10 1.6 Langton’sAntandLifeWithoutDeath ............................. 11 1.7 ANiceLittleAutomaton............................................. 12 1.8 HistoryandApplications............................................. 13 1.9 OutlineofThisWork................................................. 13 2 CellularAutomata:BasicDefinitions .................................... 19 2.1 TheGrid .............................................................. 19 2.1.1 AbelianorRegularGrids................................... 20 2.1.2 Non-AbelianGrids ......................................... 22 2.2 TheNeighborhood ................................................... 26 2.3 ElementaryStateandtheGlobalState.............................. 28 2.4 TheLocalandtheGlobalFunction.................................. 30 2.5 Excursion:TheGrowthFunctionofaCayleyGraph............... 33 3 CantorTopologyofCellularAutomata.................................. 37 3.1 Prelude:CantorSetsandCantorSpaces ............................ 38 3.1.1 TheClassicalMid-ThirdCantorSet....................... 38 3.1.2 CantorSpaces............................................... 42 3.2 CantorMetricforCellularAutomata................................ 45 3.3 TheCurtis-Hedlund-LyndonTheorem.............................. 48 3.4 SpatialStructureandSimplifications................................ 52 3.4.1 Examples:StructuresThatAreNotCellular Automata.................................................... 57 3.4.2 SimplificationoftheStateSpace .......................... 60 v vi Contents 3.4.3 SimplificationoftheNeighborhood....................... 61 3.4.4 SimplificationoftheGrid.................................. 62 3.5 CellularAutomataandContinuousMapsonCantorSpaces....... 65 3.5.1 BijectiveMaps.............................................. 66 3.5.2 GeneralMaps:TheUniversalCellularAutomaton....... 67 4 BesicovitchandWeylTopologies.......................................... 75 4.1 DefinitionoftheBesicovitchandWeylSpace...................... 75 4.2 TopologicalProperties ............................................... 81 4.2.1 BesicovitchSpaces ......................................... 82 4.2.2 WeylSpaces................................................. 90 4.3 CellularAutomataonBesicovitchandWeylSpaces............... 98 4.4 ACHLTheoremforBesicovitchandWeylSpaces ................ 103 5 Attractors.................................................................... 111 5.1 DynamicalSystems,!-LimitSetsandAttractors.................. 112 5.1.1 DynamicalSystems......................................... 112 5.1.2 !-LimitSetsandAttractors................................ 114 5.2 StructureofAttractors:FiniteGrids................................. 119 5.3 IntersectionofAttractorsandQuasi-Attractors..................... 119 5.4 ConleysDecompositionTheorem,Attractors,andChains......... 125 5.5 BernoulliMeasureonCellularAutomata........................... 132 5.6 StructureofAttractors—InfiniteGrids:HurleyClassification..... 140 6 ChaosandLyapunovStability ............................................ 155 6.1 TopologicalChaos.................................................... 155 6.2 PermutingCellularAutomata........................................ 159 6.2.1 SurjectiveCellularAutomata .............................. 160 6.2.2 TopologicalTransitivity.................................... 165 6.2.3 DensenessofPeriodicPoints .............................. 166 6.3 LyapunovStabilityandGilmanClassification...................... 169 6.3.1 ClassGilman1.............................................. 171 6.3.2 ClassGilman2.............................................. 173 6.3.3 ClassGilman3.............................................. 174 6.3.4 ClassGilman4.............................................. 175 7 LanguageClassificationofKu˚rka ........................................ 179 7.1 Grammar.............................................................. 179 7.2 FiniteAutomata ...................................................... 181 7.3 FiniteAutomataandRegularLanguages ........................... 184 7.4 CellularAutomataandLanguage:Ku˚rkaClassification ........... 186 7.4.1 ClassKu˚rka1............................................... 190 7.4.2 ClassKu˚rka2............................................... 191 7.4.3 Ku˚rka3...................................................... 194 8 TuringMachines,Tiles,andComputability............................. 197 8.1 TuringMachines ..................................................... 197 8.2 UniversalTuringMachine ........................................... 201 Contents vii 8.3 ComputationalUniversalityofCellularAutomata ................. 205 8.4 UndecidableProblems............................................... 207 8.4.1 TheParadoxofEpimenides................................ 207 8.4.2 Russel’sParadox............................................ 208 8.4.3 Richard’sParadox .......................................... 209 8.4.4 TheWordProblem ......................................... 210 8.4.5 TheHaltingProblem ....................................... 211 8.4.6 TheImmortalityProblem .................................. 213 8.4.7 Non-computabilityof!-LimitSetsforCellular Automata.................................................... 213 8.5 Tiles................................................................... 214 8.5.1 DefinitionsandExamples.................................. 214 8.5.2 TessellationsofFreeGroups............................... 217 8.5.3 AperiodicTessellationsonZ2.............................. 220 8.5.4 UndecidabilityoftheDominoProbleminZ2............. 232 8.5.5 UndecidabilityoftheFiniteDominoProbleminZ2...... 239 8.5.6 GrouporGraph............................................. 246 8.5.7 DominoProblemandMonadicSecondOrderLogic..... 249 9 SurjectivityandInjectivityofGlobalMaps ............................. 253 9.1 TheGardenofEden.................................................. 254 9.2 AlgorithmsforOne-DimensionalCellularAutomata.............. 262 9.2.1 StationaryPoints............................................ 262 9.2.2 Surjectivity.................................................. 267 9.2.3 InjectivityandBijectivity .................................. 275 9.3 UndecidabilityHigherDimensionalCellularAutomata ........... 279 9.3.1 StationaryPoints............................................ 280 9.3.2 Surjectivity.................................................. 280 10 LinearCellularAutomata................................................. 287 10.1 RepresentationofLinearCellularAutomata........................ 287 10.2 Surjectivity,InjectivityandBijectivity.............................. 292 10.3 FractalSetsandLinearCellularAutomata.......................... 296 10.3.1 IntroductoryExampleandtheFermatProperty........... 297 10.3.2 LimitSetsofLinearCellularAutomata................... 300 10.3.3 IteratedFunctionSystems.................................. 307 10.3.4 MatrixSubstitutionSystems............................... 314 10.3.5 CellularAutomataandMatrixSubstitutionSystems..... 324 11 ParticleMotion ............................................................. 335 11.1 ParticleMotion:FormalApproach.................................. 335 11.1.1 ModellingDiffusionbyContinuousModels.............. 336 11.1.2 NaiveCellularAutomataModelsforDiffusion........... 338 11.2 FromPDEtoCellularAutomata:UltradiscreteLimit.............. 340 11.2.1 HeatEquation............................................... 342 11.2.2 TheBurgersEquation ...................................... 343 11.2.3 UltradiscreteLimitandBurgersEquation................. 350 viii Contents 11.3 MicroscopicModelsforDiffusion .................................. 354 11.3.1 StraightMovement ......................................... 355 11.3.2 LatticeGasCellularAutomata............................. 360 12 PatternFormation.......................................................... 377 12.1 FractalMolluscPatterns ............................................. 377 12.2 TuringPattern ........................................................ 378 12.2.1 Turing-PatterninPartialDifferentialEquations .......... 378 12.2.2 Excursion:HopfieldNets................................... 380 12.2.3 Bar-Yam-ModelforTuringPattern........................ 384 12.3 Greenberg-HastingsModelforExcitableMedia ................... 386 12.3.1 Definitions .................................................. 387 12.3.2 TheWindingNumber ...................................... 391 12.3.3 ThePotential................................................ 396 12.3.4 SurvivalofConfigurations................................. 400 13 ApplicationsinVariousAreas............................................. 405 13.1 SandpileAutomataandSelf-OrganizedCriticality................. 405 13.2 Epidemiology......................................................... 411 13.2.1 MeanFieldApproximation ................................ 411 13.2.2 SIRSModelandMeanFieldApproximation............. 413 13.2.3 PolynomialGrowth:ClusteringofContactNetworks.... 416 13.3 Evolution ............................................................. 418 13.3.1 Evolution.................................................... 419 13.3.2 SpatialModel............................................... 420 13.3.3 HeuristicAnalysis.......................................... 423 A BasicMathematicalTools.................................................. 427 A.1 BasicDefinitionsfromTopology.................................... 427 A.2 BasicAlgebraicTheory.............................................. 433 A.2.1 GroupTheory............................................... 433 A.2.2 RingTheory................................................. 438 A.2.3 Fields........................................................ 441 A.3 BasicMeasureTheory ............................................... 442 References......................................................................... 455 Index............................................................................... 463 List of Symbols Wegivealistofsomenotationswithareferencetothefirstpagewherethenotation appears. Symbol Page Meaning Œa(cid:2),Œab(cid:2) 162 Concatenationofsignsor(finite)sequences Œa(cid:2),Œ0(cid:2) 151 StateinEZthatisidenticallya(or0) kzk1 25 `1-normofavectorz kzk 27 `1-normofavectorz 1 ŒGWH(cid:2) 29 IndexofasubgroupH ofG jXj 33 SizeofsomesetX 0 26 Neutralelementofagroup,originofthegrid (Abeliancase) A 116 Conleyattractor A 120 Setofallattractors A.f/ 55 Setofbijectivefunctionscommutingwithf B .x/ 46 Openballaroundxwithradiusrinametricspace r B.:/ 117,131 Basinofattraction(forattractorsresp.chain components) B 134 Borelalgebra C 52 Cantorspaceormetric,compact,andtotally disconnectedspace C1=3 39 Themid-thirdCantorset CR.f/ 125 Recurrentpoints d.u;v/ 45 CantordistancebetweentwostatesinE(cid:3) d.n1;n2/ 387 UnsigneddistanceonZm d .g;h/ 25 DistancebetweentwoelementsonaCayley c graph ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.