ebook img

Cell Penetrating Peptides and Cationic Antibacterial Peptides PDF

10 Pages·2014·1.26 MB·Spanish
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cell Penetrating Peptides and Cationic Antibacterial Peptides

THEJOURNALOFBIOLOGICALCHEMISTRYVOL.289,NO.21,pp.14448–14457,May23,2014 ©2014byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PublishedintheU.S.A. Cell Penetrating Peptides and Cationic Antibacterial Peptides TWOSIDESOFTHESAMECOIN*□S Receivedforpublication,April1,2014Published,JBCPapersinPress,April5,2014,DOI10.1074/jbc.M113.515023 JonathanG.RodriguezPlaza‡,RosmarbelMorales-Nava§,ChristianDiener‡,GabrieleSchreiber¶, ZyanyaD.Gonzalez‡,MariaTeresaLaraOrtiz‡,IvanOrtegaBlake§,OmarPantoja¶,RudolfVolkmer(cid:2),EddaKlipp**, AndreasHerrmann**,andGabrielDelRio‡1 Fromthe‡BiochemistryandStructuralBiologyDepartment,InstitutodeFisiologíaCelular,UniversidadNacionalAuto´nomade Me´xico,CircuitoExteriorS/NCiudadUniversitaria,04510Me´xicoD.F.,Me´xico,§Materialsscienceandbiophysicsdepartment, InstitutodeCienciasFisicas,UniversidadNacionalAuto´nomadeMe´xico,Av.UniversidadS/N,Col.Chamilpa,62210Cuernavaca, Morelos,Me´xico,¶InstitutodeBiotecnología,UniversidadNacionalAuto´nomadeMe´xico,A.P.510-3,ColoniaMiraval,Cuernavaca, Morelos,Me´xico62250,(cid:2)Institutfu¨rMedizinischeImmunologie,Charite´-Universita¨tsmedizinBerlin,HessischeStrasse3-4,10117 BerlinandLeibniz-Institutfu¨rMolekularePharmakologie,Robert-RoessleStrasse10,13125Berlin,Germany,and**Theoretische undMolekulareBiophysik,Humboldt-Universita¨tzuBerlin,Invalidenstrasse42,10115Berlin,Germany Background:Iztlipeptides(IP)areanewclassofantibacterialpeptidesthatcouldbeinternalizedbyreceptor-mediated endocytosisinyeast. Results:IP-1penetratescellsindependentlyofendocytosisandmakesporesinmembraneswithlargeelectricpotential. Conclusion:AntibacterialpeptideslikeIP-1makeporesorpenetratemembranesdependingonthemembranepotential. Significance:Antibacterialpeptideswithpenetratingactivityarerobusttocontrolbacterialinfections. Cell penetrating peptides (CPP) and cationic antibacterial thekillersequence.Insidethecell,thekillersequencetargets peptides(CAP)havesimilarphysicochemicalpropertiesandyet mitochondria, which share similar structure with bacteria, to itisnotunderstoodhowsuchsimilarpeptidesdisplaydifferent destabilize their membrane and ultimately induce apoptosis activities.Toaddressthisquestion,weusedIztlipeptide1(IP-1) (4). becauseithasbothCPPandCAPactivities.Combiningexperi- Theabilitytodelivermacromoleculesinsidecellsisimpor- mental and computational modeling of the internalization of tant both in academic research as well as in biotechnological IP-1,weshowitisnotinternalizedbyreceptor-mediatedendo- applicationssuchasdrugdeliveryandgenetherapy(5).Chem- cytosis,yetitpermeatesintomanydifferentcelltypes,including icalandphysicalmethodshavebeendevelopedtodelivercargo fungiandhumancells.WealsoshowthatIP-1makesporesin moleculesinsidecells.Thesemethods,e.g.electroporationand thepresenceofhighelectricalpotentialatthemembrane,such cationic lipids/liposomes, have been shown to deliver hydro- asthosefoundinbacteriaandmitochondria.Theseresultspro- phobic macromolecules, yet these induce cellular side effects videthebasistounderstandthefunctionalredundancyofCPPs and are limited to in vitro applications (6). Cell penetrating andCAPs. peptides(CPPs)overcomesomeoftheselimitationsandHIV- Tat, penetratin, transportan, and octa-arginine among others representextensivelystudiedCPPs(7).ManyCPPsareableto Hunter-killer peptides (HKPs)2 combine two activities: a deliverthemselves,smallcargo,andrelativelylargemacromol- ligand peptide (hunter sequence) and a cationic antibacterial eculesdirectlyacrossthecellularplasmamembrane(8). peptide (killer sequence) (1). Such design aims to selectively Understanding the penetrating mechanism of CPPs is inducecelldeathoftargeteukaryoticcells.Forinstance,HKPs importanttocontrolthedeliveryofmacromoleculesbyCPPs. havebeenappliedsuccessfullytotreatcancer(2)andobesity(3) In this sense HIV-Tat and nona-arginine peptides have been inanimalmodels.Themechanismofactionofthesepeptides showntobeinternalizedbyendocytosis(9),yetotherCPPsuse proposesthatthehuntersequencerecognizesareceptoronthe an energy-independent mechanism of internalization (5). cell surface and upon binding the hunter sequence may be Despitesuchdifferences,commonfeaturesexistamongCPPs; internalizedbyreceptor-mediatedendocytosiscarryingwithit for instance, most CPPs do not show any cell specificity, are amphipathic,andpresentanetpositivecharge(10).Relevantto thisworkisthatcationicantibacterialpeptides(CAPs),likethe *ThisworkwassupportedinpartbytheAlexandervonHumboldtFounda- killerpeptidesusedinHKPs,arealsoamphipaticandcationic tion,ConsejoNacionaldeCienciayTecnologia(82308and128575),Pro- gramadeApoyoaProyectosdeInvestigacióneInnovaciónTecnológica (11).Itisnotclearthough,howpeptideswithsimilarphysico- Grants IN205911 and IG100513 (to G.D.R. and I.O.B.), and German chemical features such as CPPs and CAPs can perform two ResearchCouncilGrantCRC740(toE.K.andA.H.). distinctfunctions;CPPspenetrateeukaryoticcellswithoutany □S ThisarticlecontainssupplementalTableS1. 1To whom correspondence should be addressed. E-mail: gdelrio@ifc. apparent toxicity, and CAPs kill bacteria. Given their similar unam.mx. physicochemicalproperties,theexplanationtothisfunctional 2Theabbreviationsusedare:HKP,Hunter-killerpeptide;IP-1,Iztlipeptide1; differencemayresideinthetargetcellandnotinthepeptide CPP,cellpenetratingpeptide;CAP,cationicantibacterialpeptide;MATa, itself.Ifso,CPPsmayworkasCAPsinthepresenceofbacterial matingtypeA;POPC,1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; TAMRA,6-carboxytetramethylrhodamine. cells. In agreement with this idea, several CPPs have been This is an open access article under the CC BY license. 14448 JOURNALOFBIOLOGICALCHEMISTRY VOLUME289•NUMBER21•MAY23,2014 FunctionalRedundancyofCPPsandCAPs Nacional Auto´noma de Me´xico, Mexico). See Table 1 for a detailedlistofthecelllinesusedinthisstudy. Fortheelectrophysiologicalexperiments1-palmitoyl-2-ole- oyl-sn-glycero-3-phosphocholine(POPC)dissolvedinchloro- form and powdered cholesterol were purchased from Avanti FIGURE1.Iztlipeptide1.Embeddingofthe(cid:2)-pheromonesequenceintoa cationic antibacterial peptide sequence is shown. Note that the residues PolarLipids(Alabaster,AL)andstoredinthedarkat(cid:3)20°C. addedtothe(cid:2)-pheromone(boldletters)donotpresentanyantibacterialor Potassium chloride (KCl, ACS grade) and calcium chloride antifungalactivityandwereaddedtothepheromonetomatchthephysico- (CaCl , ACS grade) were purchased from Merck. All organic chemicalpropertiesofcationicantibacterialpeptides(11). 2 solventswereACSgradeandwerepurchasedfromMallinck- rodt Baker. Borosilicate glass capillaries were obtained from shown to have antibacterial activity (12, 13). Furthermore, WorldPrecisionInstruments(Sarasota,FL).Praxair(Cuerna- giventhatCPPsandCAPsactoncellularmembranes,itcanbe vaca,Me´xico)suppliedhighpuritynitrogengas. assumed that these membranes modulate their functions. In Thematingpheromone(cid:2)-factorfromS.cerevisiaewaspur- termsofthemechanismofactionproposedfortheinteraction chased from Sigma (catalogue number T6901). Anaspec, Inc. withcellularmembranes,CAPsareabletomakeporesby“bar- producedtheIP-1andIP-labeledwithHilytefluor488,whereas rel-stave,” “carpet” or “toroidal-pore” mechanisms (14); such wesynthesizedTAMRA-IP-1.SeeTable2forthesequencesof pores ultimately end up killing bacterial cells. On the other thepeptidesusedinthisstudy. hand,CPPscrosseukaryoticcellularmembraneswithoutmak- Measuring the Cell Death Induced by Iztli Peptide 1—An ing pores. To the best of our knowledge there is no evidence early stationary culture for every assay was obtained from a thatmayexplainhowacellularmembranemayswitchaCPPto single colony of BY4741, and every endocytosis null mutant becomeaCAP. grewfor12hinYPDmedium(yeastextract1%,peptone2%, We have recently described a new class of HKPs (15): Iztli glucose2%).ThesecultureswereusedtoinoculateafreshYPD peptides (IPs). IPs are CAPs that harbor a hunter sequence within;suchdesigndiffersfromtypicalHKPsthatfuseahunter mediumtoreacha0.03opticaldensityinatotalvolumeof200 sequence next to a CAP sequence (see Fig. 1). To study the (cid:3)l.BY4741strainwastestedagainstTAMRA-IP-1(62.9(cid:3)M)or mechanism of action of these peptides, IPs were designed to Hilytefluor 488-IP-1 (26.9 (cid:3)M), and every endocytosis null targetSaccharomycescerevisiaeusingthepheromone(cid:2)-factor mutantwastestedagainstthepheromone(cid:2)-factor(10(cid:3)M)and as the hunter sequence; only mating type A (MATa) cells PI-1(10(cid:3)M)ina100-wellhoneycombplate,eachcontaining expressing the receptor for the pheromone (Ste2p) would be 200 (cid:3)l, incubating at 30°C with shaking using a Bioscreen C killedbytheactionofIPs.Indeed,fourIPs(IP-1,IP-2,IP-3,and (OyGrowthCurvesAbLtd).Theactivityofthesepeptideson IP-4)sharingthesamepheromonesequencebutdifferinginsix each strain was determined by measuring the A every 600nm residues at the N terminus were shown to have antibacterial hourfor24h. activity,toswellmitochondria,andtoinducethepheromone Modeling the Internalization of Iztli Peptides—The models response pathway, and only MATa cells expressing the Ste2p wereimplementedbasedontheprocessesdepictedinFig.3,A receptorwerekilledbyIPs(15).Thus,Ste2pisrequiredforthe andB.Thebiochemicalreactionswereassumedtofollowmass- killingasexpectedfromtheHKPmodelofaction,yetthiscan- action kinetics and resulted in the ordinary differential equa- notbetakenasevidenceforcellularuptakeviaSte2p. tionsprovidedbelow.Modelsimulationswereperformedusing Inthecurrentworkwestudiedthemechanismofinternal- theLSODAsolverandanevolutionaryoptimizationalgorithm ization of IP-1 at concentrations required to kill cells. Our performed fitting to the measured time course of dead cells. resultsindicatethatIP-1isinternalizedintomanycelltypesin Here,weusedtheimplementationswithinthemodelingsoft- the absence of receptor-mediated endocytosis, yet binding to ware Copasi. For each model only two parameters had to be thereceptorisrelevantforthekilling.WealsoshowthatIP-1 fitted (denoted as k /k and k /k in Fig. 3, A and B). The formsporesonlyinthepresenceofhighelectricpotentialval- E D In D remaining parameters were obtained from previously pub- ues.Therelevanceofourfindingsisdiscussedintermsofthe lishedmeasurements. biological and biotechnological advantage of multifunctional Modelswereconsideredsignificantwhentheycouldrepro- peptides,suchasIPs. ducethemeasuredtimecoursesignificantlybetterthanazero- EXPERIMENTALPROCEDURES interceptlinearreferencemodel.Thus,weobtainedpvaluesfor theentiretimecourse,orpartsofit,fromFtestscomparingthe Strains and Peptides—The strains used in this study were: S.cerevisiaeBY4741(MATahis3(cid:2)1leu2(cid:2)0met15(cid:2)0ura3(cid:2)0), linearmodeltothefitprovidedbytheoptimizationofthemod- (cid:2)did4::kanMX,(cid:2)ypt7::kanMX,(cid:2)rvs161::kanMX,(cid:2)pep5::kanMX, els. Those analyses were performed in R (The R Project for (cid:2)yck1::kanMX, and (cid:2)yck2::kanMX; BY4742 (MAT(cid:2) his3(cid:2)1 StatisticalComputing). leu2(cid:2)0 lys2(cid:2)0 ura3(cid:2)0) purchased from OpenBiosystems Can- Endocytosis Model—The endocytosis model comprised the dida glabrata CGM99 (Ura3D::Tn903(G418R), Trp 1D), and reactions from Fig. 3A. This resulted in the following set of AspergillusnidulansCLK43;theselasttwowerekindlyprovided, ordinarydifferentialequations(squarebracketsdenoteconcen- respectively,byDra.IreneCastan˜o(InstitutoPotosinodeInvesti- trations,andtheindicese,m,v,andcdenotelocationsinthe gaciónCientíficayTecnológica,SanLuisPotosi,Mexico)andDr. extracellularmedium,themembrane,(pre)vacuole,andcyto- JesusAguirreLinares(InstitutodeFisiologíaCelular,Universidad sol,respectively). MAY23,2014•VOLUME289•NUMBER21 JOURNALOFBIOLOGICALCHEMISTRY 14449 FunctionalRedundancyofCPPsandCAPs TABLE1 Celllines Organism Strain ORF Genotype Source S.cerevisiae BY4741 WT MATahis3(cid:2)1leu2(cid:2)0met15(cid:2)0ura3(cid:2)0 OpenBiosystemsYKOMATaStrain YKL002W MATa(cid:2)did4 Collection-GlycerolStocks YML001W MATa(cid:2)ypt7 YCR009C MATa(cid:2)rvs161 YMR231W MATa(cid:2)pep5 YHR135C MATa(cid:2)yck1 Endocytosisnullmutants MATa(cid:2)gene::kanMX (seesupplementalTableS1) BY4742 YNL154C MATa(cid:2)yck2 OpenBiosystemsYKOMAT(cid:2)Strain Collection-GlycerolStocks C.glabrata CGM99 WT MAT(cid:2)his3(cid:2)1leu2(cid:2)0lys2(cid:2)0ura3(cid:2)0 DomergueR.,etal.(52) A.nidulans CLK43 WT Ura3D::Tn903(G418R),Trp1D Kawasaki,L,etal.(53) WT pabaA1yA2;veA1 TABLE2 Syntheticpeptides Name Sequence Measuredmolecularweight g/mol (cid:2)-Pheromone NH-WHWLQLKPGQPMY-COOH 1684 2 IP-1 NH-KFLNRFWHWLQLKPGQPMY-COOH 2490.8 2 TAMRA-IP-1 TAMRA-KFLNRFWHWLQLKPGQPMY-COOH 2903.2 Hilytefluor488-IP-1 NH-KFLNRFWHWLQLK(GGG-CO-(CH)S-maleimidoHilytefluor488)-PGQPMY-COOH 3335.4 2 22 d[Ste2 ] ments(16–18).k wasthencalculatedfromk andthemeank dt m (cid:4)k2[Ste2mIztlim](cid:3)k1(cid:4)Ste2m][Iztlie](cid:5)k5 (Eq.1) forSte2pbinding1to(cid:2)-factorfrom9experim2ents,resultingiDn k (cid:8)0.185(cid:3)M(cid:3)1s(cid:3)1(18–26).Weassumedthatdissociationof 1 d[Ste2 Iztli ] (cid:2)-factorfromSte2phasthesamekineticsinthe(pre)vacuole m e (cid:4)k (cid:4)Ste2 ][Iztli ](cid:3)(k (cid:5)k (cid:6)(cid:4)Ste2 Iztli (cid:7) dt 1 m m 2 3 m m before degradation. The rate of endocytosis of Ste2p in pres- enceof(cid:2)-factor,k ,wasderivedfromthepublishedhalf-timeof 3 (Eq.2) 5minas2.3(cid:3)10(cid:3)3s(cid:3)1(27).Thedegradationrateofinternalized Ste2p,k ,wasobtainedfromthehalf-lifeoftotalSte2pinthe d[Ste2vIztliv](cid:4)k (cid:4)Ste2 Iztli ](cid:3)(k (cid:5)k(cid:6)(cid:4)Ste2Iztli(cid:7) presence4 of (cid:2)-factor in cycloheximide-treated cultures as dt 3 m m 4 E v v 5.8(cid:3)10(cid:3)4s(cid:3)1(24).Because(cid:2)-factorisnormallydegradedalong (Eq.3) withSte2p,weassumedthatthedegradationrateofIP-1within thecellshappenswiththesamerateasforSte2p.Thesynthesis d[Ste2v](cid:4)k(cid:4)Ste2Iztli](cid:3)k (cid:4)Ste2(cid:7) (Eq.4) rateofSte2p,k5,waschosenas7(cid:3)10(cid:3)5(cid:3)M(cid:3)s(cid:3)1tocounteractthe dt E v v 4 v degradedSte2pafterabout90minasreportedearlier(20). TherateofIP-1escapingfromtheendosome,k ,aswellas d[Iztli ] E dt c (cid:4)kE(cid:4)Ste2vIztliv(cid:7)(cid:6)k4(cid:4)Iztlic(cid:7) (Eq.5) thelethalIP-1concentration,kD,wereobtainedbyfittingthe modeltothemeasuredtimecourseofdeadcellsbyanevolu- Thecellvolumewaschosenas4.9(cid:3)10(cid:3)15liters.Duetothelarge tionary optimization algorithm. We required the parameter values to stay in biologically reasonable intervals. k was volumeoftheextracellularmedium,theextracellularconcen- E requiredtostayintherangeof0to1s(cid:3)1andk within0to10 trationofIP-1wastreatedasaconstantreferringtotheamount D usedintheexperiments.Thenumberofdeadcells,n ,inthe (cid:3)M. The best fit estimated kE and kD as 1 s(cid:3)1 and 0.13 (cid:3)M, D respectively.Oneshouldnotethatthefitforcesthemodelto populationwasexpressedbytheminimalconcentrationofIP-1 realizeanalmostimmediateescapeofIP-1fromthevacuole. withinthecellstokillacell,k .n wasevaluatedateachtime- D D See Table 3 for a list of parameters and values used in these stepoftheordinarydifferentialequations,yieldinganalgebraic models. systemwheren wasgivenbytheformula, D DirectModel—Thedirectmodelcomprisedonlyaninternal- Iztli izationofIP-1,whichdependsonitsaffinityforSte2pasindi- n (cid:4)n c (Eq.6) D tot k catedinFig.3B.Theresultingordinarydifferentialequationis, D Here,n denotesthetotalnumberofcellsinthepopulationand d[Iztli ] wasobttaoitnedbyfittingafourth-orderpolynomialintimetothe dt c (cid:4)kIn[Iztlie](cid:3)k4(cid:4)Iztlic] (Eq.7) colony-forming unit measurements of untreated cells. Iztli c denotedtheconcentrationofIP-1insidethecellsthathadescaped The same assumptions as in the endocytosis model were the (pre)vacuole. All simulations and fits were performed using made, and we fitted k and k as before. Here k was again In D D Copasi. boundbetween0and10(cid:3)M,andk waskeptbetween0and In Theparametersk throughk wereobtainedfromliterature. infinity.Thefittedparameterswerek (cid:9)2.5(cid:3)10(cid:3)4s(cid:3)1andk (cid:9) 1 5 In D k wasobtainedas10(cid:3)3s(cid:3)1fromameanof3directmeasure- 8.9(cid:3)M. 2 14450 JOURNALOFBIOLOGICALCHEMISTRY VOLUME289•NUMBER21•MAY23,2014 FunctionalRedundancyofCPPsandCAPs TABLE3 ation (4–6°C) before the bilayer formation and peptide Data for modeling MATa killing by IP-1 dependent on cellular incorporation. internalization Micropipette Fabrication—Glass capillaries with filament Model Parameter Value (1.00-mm external diameter and 0.58-mm internal diameter) Endocytosis/direct Cellvolume 4.9(cid:10)10(cid:3)15l fromWorldPrecisionInstrumentswerepulledusingtheP2000 EEnnddooccyyttoossiiss//ddiirreecctt kk1 01.01(cid:3)835s(cid:3)(cid:3)1M(cid:3)1s(cid:3)1 instrument from Sutter Instruments (Novato, CA). Micropi- EEnnddooccyyttoossiiss//ddiirreecctt kk23 25..38(cid:10)(cid:10)1100(cid:3)(cid:3)34ss(cid:3)(cid:3)11 pettes were then silanized and filled with the same working Endocytosis/direct k4 7(cid:10)10(cid:3)5(cid:3)Ms(cid:3)1 solutionusedforthepreparationofsmallunilamellarvesicles EEDnnirddeooccctyyttoossiiss kkk5DE 012.s.15(cid:3)3(cid:10)1(cid:3)1M0(cid:3)4s(cid:3)1 aanndceuosfedmwicirtohpiniptehtetefsolilnowthinegw6o0rk–i1n2g0smoliunt.ioTnhewaavse3r.a4g6e(cid:11)res2i.s8t0- Direct kIDn 8.9(cid:3)M gigaohms. Solvent-free Tip-dip Lipid Bilayer Formation—The con- trolled-temperaturechamberwaselectricallyinsulatedwithin ConfocalMicroscopyofLabeledIztliPeptide—Fortheinter- a Faraday cage and suspended in elastic bands to reduce the nalization images presented in this study, S.cerevisiae MATa mechanicalvibration.Asampleofthesmallunilamellarvesicle (BY4741),MAT(cid:2)(BY4742),orC.glabratacellsweregrownat wasputinthechamber.Thesamplewassettledfor10minat 30°Cfor24hinsyntheticcomplete(SC)media(yeastnitrogen thedesiredtemperature,andthenabilayerwasformedatthe basew/oaminoacids0.67%,potassiumphosphatemonobasic tip of the micropipette by consecutive immersion in small 0.1%, glucose 2%, amino acids 0.079%); afterward they were unilamellarvesiclesuspensionuntilacapacitiveresponsetothe dilutedtoafinalabsorbanceof0.4at600nmandtreatedwith square potential applied was observed (30, 31). The standard 68.9(cid:3)MTAMRA-IP-1or89.9(cid:3)MHilytefluor488-IP-1for1hat seals obtained in this manner were of (cid:12)400 gigaohms with a 30°C.InthecaseofA.nidulanstheseweregrownaspreviously 2-kHz low pass filter and a current root mean square (I ) r.m.s. reported (28); briefly, cells were grown in supplemented glu- (cid:12)0.12pA.Whenthebilayerwasformed,theproperamountof cose minimal nitrate medium, and 2 (cid:10) 105 spores were sus- Iztli peptide stock solution was added to obtain the desired pendedin2mlofwaterandincubated60minat37°Cat300 concentration,andaftertheequilibriumconditionsthe5-min rpm with TAMRA-IP-1 (13.77 (cid:3)M). In every case 80 (cid:3)l from experimentsweredone. thesesampleswerecentrifugedat300rpmfor5min,thesuper- Pore Formation of Iztli Peptide 1 on Artificial Membranes— natantwasremoved,andthesampleswereobservedunderthe Smallunilamellarvesicles,micropipettes,andsolvent-freetip- confocal microscope (Olympus FluoView FV1000) at 60(cid:10) diplipidbilayerswerepreparedasdescribedabove.Toobserve amplification.HEK239andNL20humancelllinesweregrown thepossibleformationofporesinthesemembranes,theelec- to80%confluenceinDMEMmediumsupplementedwith2mM tricalmeasurementsofthecurrentsignalwereamplifiedwith Glutamax,50units/mlpenicillin,50(cid:3)g/mlstreptomycin,and anAxopatch200Bsettovoltage-clampmode,2-kHzlowpass 15%fetalbovineserumat30°Cand5%CO .Cellsweretreated filter, and maximal scaling output, digitally converted with a 2 withtrypsinandwashedtwicewithPBSandrecoveredbycen- Digidata1200A,acquiredwiththeaidofpClamp8.2softwareat trifugation. The pellet was resuspended in Opti-MEM(cid:4) to afrequencyof10kHz(allfromMolecularDevicesAnalytical reduceserumfluorescence,and2(cid:10)104cellswereculturedina Technologies),andstoredinapersonalcomputer.Thebilayer ChamberSlide(cid:4)system(NUNC(cid:4)Lab-Tek(cid:4)II-C2TM)andincu- seal was measured by applying a square 5-mV step potential. batedfor1htoallowthe adhesionofcellstothebottomofthe Thesamplingratewassetto100(cid:3)s.Oncethesealwasformed, slide to form a monolayer. Afterward HEK239 cells where the I obtained was consistently 0.12 (cid:11) 0.03pA. The tem- r.m.s. treatedwith13(cid:3)M,andNL20cellswheretreatedwith24(cid:3)M perature of the experiments was 25 (cid:11) 2°C. The Iztli peptide TAMRA-IP-1 and visualized using confocal microscopy wasaddedinsolutiontohaveaconcentrationof5,10,15,20, (OlympusFLUOVIEWFV-1000)atanemissionwavelength and25(cid:3)M.Thepotentialsappliedinallofthereportedexper- of570nmfordifferenttimes.ForsuchpurposeaCO cham- imentswere150and200mV.Caremustbetakentobesurethat 2 ber was used during the analysis. All images were recon- experimentsareperformedunderequilibriumconditions.We structedusingthesoftwareFVviewerprovidedbytheman- determinedtheaverageconductanceasafunctionoftimeand ufacturerofthemicroscope. discoveredthatthispropertyneeds15–20mintoattainequi- SmallUnilamellarVesiclePreparation—POPCandcholes- librium.Allrecordswereaposterioribase-line-correctedusing terolwerestoredat-20°Candusedwithoutfurtherpurifica- aFortranprogram.Theoccupanciesobtainedweredefinedas tion.Stockchloroformsolutionsforeverylipidwereprepared theratioofthetimeexpendedinonestatetothetotaltimeof onceaweekandstoredat(cid:3)20°C.CholesterolandPOPCsolu- experiment.Theaveragecurrentsreportedcorrespondtothe tionsweremixedtoobtainthedesiredmolefractionofsterol averagevalueofallpointsregisteredinagiventime.Theaver- (30%).Evaporationofthesolventwasdoneinarotativeevapo- age currents reported correspond to an average current in a rator (B-177; Bu¨chi Labortechnik, Flawil, Switzerland). The 5-min experiment obtained from an all points histogram. All suspensionwaspreparedbyaddingtheworkingsolution(5mM graphics were done with Grace software, a two-dimensional KCl,1mMCaCl ,10mMHEPES,pH8.0)tothefilmdeposited graph-plottingtool,forUnix-likeoperatingsystems. 2 intheflaskinanN -enrichedatmosphereandthentreatedin GOTermEnrichmentEstimation—Todeterminethepartic- 2 anultrasonicbathtoproducedispersionandobtainunilamellar ipationofendocytosisonthekillingmediatedbyIP-1,weana- vesicles(29).Thesuspensionwasstoredfor2hunderrefriger- lyzedtheenrichmentofGOtermsinthe291genesknownto MAY23,2014•VOLUME289•NUMBER21 JOURNALOFBIOLOGICALCHEMISTRY 14451 FunctionalRedundancyofCPPsandCAPs cytosis rate of the pheromone; all those rates have been reportedandwereusedformodeling(see“ExperimentalPro- cedures”). On the other hand, the rate of escape from endo- somesandthenumberofIPmoleculesrequiredtokillcellsare notknown;thesetwoquantitieswereestimatedbyfittingthe modeltotheobservednumberofdeadcells(quantifiedfrom thenumberofcolonyformingunits;see“ExperimentalProce- dures”).Theadjustmentbetweentheobservedandcalculated valuesforthenumberofdeadcellsispresentedinFig.3C.We observedthatthemodelassumingreceptor-mediatedendocy- tosis could not reproduce the observed time course of dead cells, as it predicts a plateau phase due to depletion of free receptorsatthemembranebyendocytosis;suchaplateauwas notobservedintheexperimentaldata(p(cid:13)0.14,seeFig.3C).In contrast,whenwedidnotconsiderendocytosisofthepeptide FIGURE2.Celldeatheffectofsixnullmutantspreventinginternalization but still binding of IP-1 to Ste2p (see Fig. 3B), the model fit ofSte2p.Sixstrainscarryinggenenullmutants(YKL002W(www.ncbi.nlm. reproducesthenumberofdeadcellsovertime(p(cid:14)4.2e(cid:3)3;see nih.gov),YML001W,YCR009C,YMR231W,YHR135C,andYNL154C)reported toreducetheinternalizationofSte2pwerecomparedintheirsensitivitytobe Fig.3C).Theseresultsareinagreementwithourobservation killedbyIP-1withthewild-typestrain(BY4741).Toestimatethenumberof aboutamechanismofinternalizationdifferentfromSte2p-me- cellsremaininginthepresenceofIP-1,thefigurepresentstheareaunderthe growthcurves(summationofA valuesrecordedeveryhourispresentedas diatedendocytosisyetrequiringSte2pbindingforkillingactiv- 600 thepercentage)ofthesesixmutantsplusthewild-typestraininthepresence ity.Notethattheuseofall-Denantiomerstodiscardreceptor- (ORFname(cid:5)IP-1;graybars)andintheabsence(ORFname;blackbars)ofIP-1. mediated endocytosis does not apply to the study of IP-1 Thefigurespresenttheaveragedataobtainedfromfourindependentexper- iments;thelinesontopofeachbarrepresenttheS.D.calculatedforeachdata consideringtherequirementofSte2pbindingforkillingMATa set.TheopticaldensitywasfollowedintheSynergyMXplate-reader(BioTek) cells. incubatedat30°C. Tofurtheranalyzetheinvolvementofendocytosisinthekill- ingbyIP-1(beyondreceptor-mediatedendocytosis),wecarried affectendocytosis(seesupplementalTableS1).Forthisanalysis outageneticscreeningon291outof441nullmutantsanno- weusedasacontrolsetthesetofgenesinyeast.Weusedthe tated on SGD (Saccharomyces Genome Database) to affect serviceprovidedbyGO. endocytosisinyeast(seesupplementalTableS1).Fouroutof these291ORFs(YHR161C,YKL081W,YKL119C,YOR141C) RESULTS fullyprotectedMATacellsfromthekillingbyIP-1(seesupple- IztliPeptide1IsNotInternalizedthroughReceptor-mediated mentalTableS1).ToevaluateiftheeffectofthesefourORFs Endocytosis—Basedontheproposedmechanismofactionfor could implicate the functioning of the core endocytosis HKPs(4),itwouldbeexpectedthattherateofkillingyeastcells machinery for the killing activity of IP-1, we conducted two byIPswouldbeproportionaltotherateofinternalization.Ifso, complementary analyses. First, we identified those mutants reduction or elimination of Ste2p endocytosis may affect the with the largest annotated effect on endocytosis (YDR017C, rateofkillingbyIP-1.Totestthiswecomparedtheestimated YDR173C,YJL204C,YOR089C,YKL126W;seesupplemental overallnumberofgrowingcellsintheabsenceandpresenceof TableS1)andobservedthatnoneprotectedagainstthekilling IP-1 for wild-type and six strains reported to fail endocytic byIP-1;theseresultssuggestthatthecoremachineryofendo- internalizationofSte2pinMATacells(seeFig.2).Thefigure cytosis is not participating in the killing by IP-1. Second, we showstheeffectoncellgrowthexpressedastheareaunderthe wereabletogroup30outofthe291ORFsbytheendocytosis growthcurverecordedat600nm.Ourresultsshowthatthereis GO term and noticed that only one of these fully protected nodifferenceinthecellgrowthinthepresenceofIP-1forthe againstIP-1killingactivity(YHR161C,involvedinclathrincage wild-type and the mutants; consequently we conclude that assembly;seesupplementalTableS1),furthersupportingthat Ste2p-mediatedendocytosisdoesnotplayaroleinthekillingof thecoremachineryofendocytosisdoesnotplayaroleonthe MATacells.NotethateventhoughSte2p-mediatedendocyto- killingofMATabyIP-1.Thus,eventhoughfourgenesrelated sis is discarded, Ste2p signaling is required for the killing of toendocytosisprotectagainstthekillingofIP-1,overallendo- MATa by IP-1 (15); null mutants for STE2 or other critical cytosisdoesnotseemtoplayaroleonthekilling. genesinvolvedinthepheromonesignalingcascadeinaMATa Iztli Peptides Are Cell-penetrating Peptides—To determine genotype are resistant to killing by IP-1, and thus binding to thepresenceofIP-1insidecells,thepeptidewasmodifiedwith Ste2pmayplayaroleinthekillingmechanismofactionofIP-1. twodifferentfluorophores:TAMRAandHilytefluor488.The To test whether endocytosis might explain the observed Hilytefluor derivative was based on previous results on the kineticsofcelldeathinducedbyIPs,webuiltakineticmodelfor (cid:2)-pheromone(33);notethattheuseofthesetwofluorophores internalizationoftheIPsusingthereportedratesrelatedtothe was to discard that any possible observed internalization was internalization of the pheromone (32) (see Fig. 3A). In this dependent on the nature of the fluorophores. Both peptides modelthenumberofIPsinsidecellsdependsontheaffinityof maintainedantifungalactivity(seeFig.4A)andwereinternal- thepheromonetoitsreceptor(Ste2poranyotherwithsimilar izedbyMATacells(seeFig.4B).AlthoughIP-1fullyinhibited affinity),thedegradationrateofthepheromone,andtheendo- thegrowthofMATacellsat10(cid:3)M(15),theTAMRAderivateof 14452 JOURNALOFBIOLOGICALCHEMISTRY VOLUME289•NUMBER21•MAY23,2014 FunctionalRedundancyofCPPsandCAPs FIGURE3.ModelsforIztlipeptidesinternalizationonyeastcells.A,themodelassuminganendocyticimportofIztlipeptideviaSte2p((cid:10)denotes degradation).B,themodelassumingpermeationofIztlipeptidewherethepeptidemaycrossthemembraneindependentofSte2p-mediatedendocytosis.C, comparisonofthetwomodelsfittedtothemeasuredcolony-formingunittimecourseofdeadcells(n(cid:8)8,barsdenoteS.D.).Themodelassumingdirectimport generallyperformedbetter,noticeableforearlytimepoints.Mio,millionsofcells. FIGURE4.AnalysisoftwofluorogenicderivatesofIztlipeptide1.Theantifungalactivity(A)andtheabilitytogetinternalizedbyS.cerevisiaeMATacells(B) areshownfortheTAMRA-IP-1(leftside,red)andHilytefluor488-IP-1(rightside,green).Thechangeincelldensityovertimeispresentedinthepresence(black symbols)orintheabsenceofthesepeptides(whitesymbols):squares,TAMRA-IP-1;triangles,Hilytefluor488-IP-1.ScalebarsinBare5(cid:3)m. IP-1 (TAMRA-IP-1) had almost half the activity (minimal IztliPeptidesMakeChannelsatHighMembranePotentials— inhibitoryconcentration(cid:8)40(cid:3)M)oftheHilytefluor488deriv- WedeterminedtheabilityofIP-1toinduceiontransportacross ative(minimalinhibitoryconcentration(cid:8)27(cid:3)M).Weusedthe lipidicbilayers.ForthisweconsidereditsactiononPOPCplus TAMRA derivative for the rest of our studies. MATa cells 30%cholesterolartificialmembranes.Wedidnotobserveany exposedtoTAMRA-IP-1for15minshowedstrongstainingof electricalconductanceinducedbythepeptideat50or100mV thecellmembrane,andafter30minthepeptidewasalsolocal- (datanotshown).Yetat150and200mVtherewasobservable izedinsidethecells(seeFig.5,A–D).Toevaluatewhetherthe activity.Thedependenceoftheionophoreticactivityonpep- internalization was dependent on the Ste2p receptor, the tideconcentrationispresentedinFig.7,AandB.Atlowcon- MAT(cid:2)cellswerealsoexposedtothislabeledpeptide(seeFig. centration (5 (cid:3)M) there are mainly small channels that can 6A).Finally,otherfungi(seeFig.6B)andhumancells(seeFig. barelybedistinguishedfromthenoiseofthebaseline(seeFig. 6C) were exposed to the TAMRA-IP-1, and in all cases the 7B). At medium concentration (10 (cid:3)M) there is clear activity peptidewasinternalizedwithoutanyobservabletoxicity(data (seeFig.7A)mainlyofachannelof4.5picosiemensevenifthere notshown).TheseresultsfurthersupportthenotionthatIP-1 isamultitudeoflargerchannelswithsmalloccurrence(seeFig. internalizationisindependentofSte2p-mediatedendocytosis. 7B).Atlargeconcentrations(15(cid:3)M)theactivityisincreased, MAY23,2014•VOLUME289•NUMBER21 JOURNALOFBIOLOGICALCHEMISTRY 14453 FunctionalRedundancyofCPPsandCAPs Activity(cid:8)totalcurrent(cid:3) (numberofsamplingpoints(cid:10)appliedvoltage) (Eq.8) where total current is the sum of the current value at each samplingpoint.Thisyieldsanaverageconductance,i.e.avir- tualchannelthatwouldbeopenallthetime.Thecorrespond- ingactivitiesarethen0.64,1.63,and3.31picosiemensfor5,10, and15(cid:3)M,respectively. These results raised the question that even for eukaryotic- likemembranes,IP-1couldmakeporesprovidedalargeelec- tricpotential.Plants,likebacteriaandmitochondria,maintain a large transmembrane potential due to the action of plasma membraneH(cid:5)pumpsfuelledbyATP(34).IP-1didnotalterthe FIGURE5.Time-dependentinternalizationofIztlipeptide1inyeastcells. restingmembranepotentialofsoybeanrootswithlowpoten- TAMRA-IP1wasusedtofollowtheinternalizationofthepeptideinMATacells. Thesiteswherethepeptideisfoundnearorwithincellsappearasreddots. tials ((cid:14)100 mV); however, we could not find cells with high Scalebarsare5(cid:3)m.DIC,differentialinterferencecontrast. potentials((cid:13)100mV)(datanotshown). DISCUSSION HKPshavebeenshowntohavethepotentialtotreatcancer andobesityamongothers(1).Thebasisfortheiruseasthera- peuticsistheirselectivity;onlythecellsexpressingthereceptor forthehunterpeptideshouldinternalizethekillerpeptide,and consequentlyonlythosecellsshouldbeeliminated.Evenwhen the results in animal models have shown the effectiveness of thesepeptides,sometoxicityhasbeenreportedforothertissues besidesthosetargetedinanimals(3,4).Thistoxicitycouldbe explained considering the presence of the receptor for the hunterpeptideinothertissuesthanthetargetone.Ourresults suggestanalternativeexplanationfortheobservedtoxicityof HKPs.Thatis,weshowedthatwhenakillerpeptidepresents CPP activity (e.g. IP-1, see Fig. 1) it may loose the specificity providedbythehunterpeptide(seeFigs.4,A–C,5,A–D,and6, A–C).Accordingly,weshowedthatIP-1isnotinternalizedvia receptor-mediatedendocytosis(seeFigs.2and3)orendocyto- sisatall(seesupplementalTableS1).However,IP-1isstillable to kill MATa cells as long as the pheromone receptor is acti- vated by the peptide (15). Thus, the observed specificity dis- playedbyIP-1(orotherHKPs)maybeexplainedbytherequire- ment to activate the hunter receptor (e.g. Ste2p) and/or by increasingtheavidityforIP-1inMATacells.Inthislastcase oursimulationresultsshowthattheattractionofIP-1bySte2p accountsforthekineticsofcelldeathinducedbyIP-1inMATa cells. Additional experiments are required to validate these observations, which may provide the basis to explain the FIGURE6.Iztlipeptide1getsinternalizedbydifferentcelltypes.S.cerevi- observedkillingspecificityofHKPs. siaeMAT(cid:2)cells(A),C.glabrata(leftinpanelB),A.nidulans(rightinpanelB), HEK239(leftinpanelC),andNL20(rightinpanelC)humancellswereexposed The design of HKPs combines CAP and CPP in separate toTAMRA-IP-1(red)totestforitsinternalization. domains,yetsuchdesignmaysometimesberedundantconsid- eringthatsomeCPPs(35)bythemselvesmayhaveCAPactiv- andamultitudeofchannelsintherangefrom3to20picosi- ity.Insuchacase,theseCPPswheninternalizedcarryalonga emenswasobserved;largechannelswerealsoobservedbutless killer peptide (CAPs) into cells. If so, those CPPs may affect frequentlythanat10(cid:3)M.At20(cid:3)Mfrequentsealrupturesand mitochondria function. In agreement with this idea, a recent closingsappeared,andat25(cid:3)Mtherewasanimmediaterup- metabolomic analysis comparing the toxic potential of four ture of the membrane patch (data not shown). This latter CPPs (transportan, penetratin, HIV Tat derived peptide, and behavior could be explained by the peptide entering the seal nona-arginine) showed the toxicity of transportan (36), sug- regiontodisturbit,orelseitaffectedthemembraneintegrity. gestingthepotentialCAPactivityoftransportan.Thetoxicity We can quantify the activity at each concentration with the was estimated by the effect on cellular redox potential and followingexpression, energydepletion,bothrelatedtomitochondriafunction.Ina 14454 JOURNALOFBIOLOGICALCHEMISTRY VOLUME289•NUMBER21•MAY23,2014 FunctionalRedundancyofCPPsandCAPs FIGURE7.Iztlipeptide1makespores.A,exampleofa5-minrecordofelectricalactivityforIP-1(10(cid:3)M)inPOPCmembranewith30%molcholesterolina transmembraneelectricpotentialof200mV.Theinsetcorrespondstoa10-ssectionshowinganexampleofthevariabilityoftheopeningtimesofthepores formed.B,averageallpointhistogramsforfiveexperimentsattheconcentrationsof5(cid:3)M(black),10(cid:3)M(red),and15(cid:3)M(blue)onthesamebilayerandat200 mVofappliedpotential;thedurationofeachexperimentwas5min.Theallpointshistogramisconstructedbyfillingthehistogrambucketswiththenumber ofpoints,i.e.thenumberoftimesthataparticularcurrentwasregisteredduringtheexperimentwitha100-(cid:3)ssampling.Thishistogramisnormalizedby thetimedurationoftheexperiment,andtherefore,the(cid:8)valuecorrespondstothenumberofcountsineachbucketdividedbythetotalnumberofcounts.The recordswerebase-line-correctedandfilteredforpeakswithdurationof(cid:14)30(cid:3)s(tosuppresselectricnoiseofthebath)withahomemadesuiteofprograms.The insetcorrespondstolargeconductancechannelsthatpresentsmalloccurrence,whichdependsonpeptideconcentration. similar fashion, some CAPs may as well display CPP activity. Considering the complexity of biological systems (46), our Indeed,magainin2hasbeenshowntotranslocateacrossphos- observations about the overlapping roles of CPPs and CAPs pholipidbilayers(37).Thus,IPdesignmayavoidredundancyof represent a special case of functional redundancy. Functional activities,renderingshorterHKPs. redundancy in genes occurs when one gene has the ability to BeyondthedesignofHKPs,itisinterestingtostudythebasis performthefunctionofanothergene.Acommonexampleof ofthisredundantfunctionofCPPsandCAPs.Wehypothesized suchgeneticredundancyisfoundingeneduplications(47).A that the membrane potential may play a role on switching consequenceforasystemwiththeseredundantcapabilitiesis betweentheseactivities;particularly,itisnoticeablethatmito- the emergence of robustness (48). In the case of antibacterial chondria and bacteria maintain larger membrane potentials peptides,therobustnessthisredundancyconferstoCAPscan thanmammaliancells,andsuchadifferencemayexplainthe be appreciated; by acquiring the ability to get internalized by toxicityofCAPstobacteriaandnottomammaliancells.Inthe eukaryoticcells,CAPscanbecomemoreeffectiveantibioticsby case of IPs, we have previously observed that these alter killingbacteriacellsresidingbothattheextracellularandintra- themembranestabilityofmitochondriaandkillbacteriabutdo cellularspacesofeukaryoticcells.Additionally,undercertain notaffecttheviabilityofmammaliancells(15).Hereweshowed circumstances some bacteria may reduce their membrane that IP-1 is capable of making pores in artificial membranes potential (e.g. sporulation), thus preventing CAPs to disrupt onlywhenalargeelectricpotential((cid:13)100mV)ispresent(see theirmembrane(49).Insuchcases,thepossibilitythatCAPs Fig. 7, A and B). These results are in agreement with recent maypermeatecellularmembraneswithlowelectricpotential reportsshowingthatsomeCPPsmayswitchfrompenetrating andactuponanintracellulartargetmayprovideanalternative mammaliancellswithnoapparenttoxicitytopeptidescapable mechanismtomaintaintheirantibioticactivity. of killing/swelling bacterial cells (12, 13). Understanding the ThemultifunctionalityofCAPshasbeenrecognizedaswell mechanism involved in this functional switch may assist in inthecontextofneurodegenerativediseases;forinstance,the designingCPPs. (cid:7)-amyloidpeptidethatiscommonlyassociatedwithAlzheimer In that sense it has been observed that natural antibiotics, diseaseexertsantimicrobialactivityagainstcommoninfectious peptides,andpolyenescanformdifferentmembranestructures bacteria(50);anotherneuropeptide,substanceP,displaysfea- thatallowfortransmembranetransport,detergent-likecarpet tures of CAP and has antibacterial activity (11). Yet neither disruption, pores, and toroidal pores independently of other everypeptideinvolvedinneurodegenerationcanbeexpected intracellularactions(seeforexampleRefs.38and39).Itisalso tohaveanantibacterialactivity(51)noreveryCPPmayhavea clearthattheiractivitiesarestronglydependentontheenviron- CAPactivity.IdentifyingthedifferentfunctionalitiesofCAPs mental conditions (40). For example, the dependence on the transmembrane electric potential to form pores has been may have an impact on hunter-killer peptide design as dis- observedforpolyenes(41)andforAlamethicin(42).Hence,itis cussedbeforeorintheetiologyofdifferentdiseaseswherepep- not surprising that IP-1 presents this behavior. IP-1 forms tides (e.g. amyloid, penetrating) may be present, such as in transmembrane channels of different conductivity, similar to Alzheimerdisease. AmphotericinB(43)andAlamethicin(44),andalsodetergent- Finally, the present work provides an experimental system likeactivity,similartoNystatin(41)andAlamethicin(42).In (IPtargetedagainstS.cerevisiae)andmathematicalmodel(see eithercase,theenvironmentalconditionscanaffecthelixfor- Fig. 3 and “Experimental Procedures”) that may be useful to mationforpeptides(39)and/ortheaggregationofmonomers furthercharacterizethemechanismofinternalizationofCPPs forpolyenes(45).SuchasituationmayprevailforIP-1andmay andtoexplorealternativestocontroltheselectivityofCPPsand explainthedualroleobservedinthisstudy. HKPs. MAY23,2014•VOLUME289•NUMBER21 JOURNALOFBIOLOGICALCHEMISTRY 14455 FunctionalRedundancyofCPPsandCAPs In summary, our results show that IP-1, a HKP targeted 16. Raths,S.K.,Naider,F.,andBecker,J.M.(1988)Peptideanaloguescom- against S.cerevisiae, penetrates cells in an endocytosis-inde- petewiththebindingof(cid:2)-factortoitsreceptorinSaccharomycescerevi- siae.J.Biol.Chem.263,17333–17341 pendentfashion.Additionally,ourresultsshowthatCAPactiv- 17. Jenness,D.D.,Burkholder,A.C.,andHartwell,L.H.(1983)Bindingof itymaybetailoredtoactasCPPbylargemembranepotentials. (cid:2)-factorpheromonetoyeastacells:chemicalandgeneticevidenceforan Theseresultsprovidethebasistoexplaintheobservedtoxicity (cid:2)-factorreceptor.Cell35,521–529 ofHKPsandthebiologicalrelevanceoftheobservedfunctional 18. Bajaj,A.,Celic´,A.,Ding,F.X.,Naider,F.,Becker,J.M.,andDumont,M.E. redundancy of some cationic antibacterial peptides and cell- (2004)Afluorescent(cid:2)-factoranalogueexhibitsmultiplestepsonbinding penetrating peptides as well as to emphasize the relevance to toitsGprotein-coupledreceptorinyeast.Biochemistry43,13564–13578 19. Blumer,K.J.,Reneke,J.E.,andThorner,J.(1988)TheSTE2geneproduct improveontheclassificationofantimicrobialpeptides. istheligand-bindingcomponentofthe(cid:2)-factorreceptorofSaccharomy- cescerevisiae.J.Biol.Chem.263,10836–10842 Acknowledgments—WethankthetechnicalsupportfromtheITcore 20. Jenness,D.D.,andSpatrick,P.(1986)Downregulationofthe(cid:2)-factor facility and the microscopy core facility at the Institute of Cellular pheromonereceptorinS.cerevisiae.Cell46,345–353 Physiology/Universidad Nacional Auto´noma de Me´xico. We also 21. Dube, P., and Konopka, J. B. (1998) Identification of a polar region in thankBiol.OliviaSa´nchezandDr.JesusAguirreattheInstituteof transmembranedomain6thatregulatesthefunctionoftheGprotein- CellularPhysiology/UniversidadNacionalAuto´nomadeMe´xicofor coupled(cid:2)-factorreceptor.Mol.Cell.Biol.18,7205–7215 22. David,N.E.,Gee,M.,Andersen,B.,Naider,F.,Thorner,J.,andStevens, providingthematerialsandexpertisetoperformtheexperimentswith R.C.(1997)ExpressionandpurificationoftheSaccharomycescerevisiae A.nidulans. (cid:2)-factorreceptor(Ste2p),a7-transmembrane-segmentGprotein-cou- pledreceptor.J.Biol.Chem.272,15553–15561 23. Dosil,M.,Schandel,K.A.,Gupta,E.,Jenness,D.D.,andKonopka,J.B. REFERENCES (2000)TheCterminusoftheSaccharomycescerevisiae(cid:2)-factorreceptor 1. Ellerby,H.M.,Bredesen,D.E.,Fujimura,S.,andJohn,V.(2008)Hunter- contributestotheformationofpreactivationcomplexeswithitscognate killerpeptide(HKP)fortargetedtherapy.J.Med.Chem.51,5887–5892 Gprotein.Mol.Cell.Biol.20,5321–5329 2. Arap,W.,Haedicke,W.,Bernasconi,M.,Kain,R.,Rajotte,D.,Krajewski, 24. Chen,Q.,andKonopka,J.B.(1996)RegulationoftheG-protein-coupled S.,Ellerby,H.M.,Bredesen,D.E.,Pasqualini,R.,andRuoslahti,E.(2002) (cid:2)-factor pheromone receptor by phosphorylation. Mol. Cell. Biol. 16, Targetingtheprostatefordestructionthroughavascularaddress.Proc. 247–257 Natl.Acad.Sci.U.S.A.99,1527–1531 25. Lee,B.K.,Khare,S.,Naider,F.,andBecker,J.M.(2001)Identificationof 3. Kolonin,M.G.,Saha,P.K.,Chan,L.,Pasqualini,R.,andArap,W.(2004) residues of the Saccharomyces cerevisiae G protein-coupled receptor Reversalofobesitybytargetedablationofadiposetissue.Nat.Med.10, contributing to (cid:2)-factor pheromone binding. J. Biol. Chem. 276, 625–632 37950–37961 4. Ellerby,H.M.,Arap,W.,Ellerby,L.M.,Kain,R.,Andrusiak,R.,Rio,G.D., 26. Weiner,J.L.,Guttierez-Steil,C.,andBlumer,K.J.(1993)Disruptionof Krajewski,S.,Lombardo,C.R.,Rao,R.,Ruoslahti,E.,Bredesen,D.E.,and receptor-GproteincouplinginyeastpromotesthefunctionofanSST2- Pasqualini,R.(1999)Anti-canceractivityoftargetedpro-apoptoticpep- dependentadaptationpathway.J.Biol.Chem.268,8070–8077 tides.Nat.Med.5,1032–1038 27. Hicke,L.,Zanolari,B.,andRiezman,H.(1998)Cytoplasmictailphos- 5. Vives,E.(2005)Presentandfutureofcell-penetratingpeptidemediated phorylationofthe(cid:2)-factorreceptorisrequiredforitsubiquitinationand delivery systems: “is the Trojan horse too wild to go only to Troy?” J. internalization.J.CellBiol.141,349–358 ControlRelease109,77–85 28. Soid-Raggi,G.,Sa´nchez,O.,andAguirre,J.(2006)TmpA,amemberofa 6. Deshayes,S.,Morris,M.C.,Divita,G.,andHeitz,F.(2005)Cell-penetrat- novelfamilyofputativemembraneflavoproteins,regulatesasexualdevel- ingpeptides:toolsforintracellulardeliveryoftherapeutics.Cell.Mol.Life opmentinAspergillusnidulans.Mol.Microbiol.59,854–869 Sci.62,1839–1849 29. Paternostre,M.,Ollivon,M.,andBolard,J.(1996)inManualonMem- 7. Jones,A.T.,andSayers,E.J.(2012)Cellentryofcellpenetratingpeptides: braneLipids(Prasat,R.,ed)pp.202–247,Springer,Berlin talesoftailswaggingdogs.J.ControlRelease161,582–591 30. Coronado,R.,andLatorre,R.(1983)Phospholipidbilayersmadefrom 8. Pooga,M.,andLangel,U.(2005)Synthesisofcell-penetratingpeptidesfor monolayersonpatch-clamppipettes.Biophys.J.43,231–236 cargodelivery.MethodsMol.Biol.298,77–89 31. Suarez-Isla,B.A.,Wan,K.,Lindstrom,J.,andMontal,M.(1983)Single- 9. Duchardt,F.,Fotin-Mleczek,M.,Schwarz,H.,Fischer,R.,andBrock,R. channelrecordingsfrompurifiedacetylcholinereceptorsreconstitutedin (2007)Acomprehensivemodelforthecellularuptakeofcationiccell- bilayersformedatthetipofpatchpipets.Biochemistry22,2319–2323 penetratingpeptides.Traffic8,848–866 32. Thomson,K.B.,Faeder,J.,Sytchev,I.,andEndy,D.(2012)YeastPher- 10. Zorko,M.,andLangel,U.(2005)Cell-penetratingpeptides:mechanism omoneModel,StanfordUniversity,PaloAlto,CA andkineticsofcargodelivery.Adv.DrugDeliv.Rev.57,529–545 33. Toshima,J.Y.,Toshima,J.,Kaksonen,M.,Martin,A.C.,King,D.S.,and 11. delRio,G.,Castro-Obregon,S.,Rao,R.,Ellerby,H.M.,andBredesen,D.E. Drubin,D.G.(2006)Spatialdynamicsofreceptor-mediatedendocytic (2001) APAP, a sequence-pattern recognition approach identifies sub- traffickinginbuddingyeastrevealedbyusingfluorescent(cid:2)-factorderiv- stancePasapotentialapoptoticpeptide.FEBSLett.494,213–219 atives.Proc.Natl.Acad.Sci.U.S.A.103,5793–5798 12. Li,L.,Shi,Y.,Su,G.,andLe,G.(2012)Selectivityforanddestructionof 34. Palmgren,M.G.(2001)PlantPlasmaMembraneH(cid:5)-ATPases:power- Salmonellatyphimuriumviaamembranedamagemechanismofacell- housesfornutrientuptake.Annu.Rev.PlantPhysiol.PlantMol.Biol.52, penetrating peptide ppTG20 analogue. Int. J. Antimicrob. Agents 40, 817–845 337–343 35. Henriques,S.T.,Melo,M.N.,andCastanho,M.A.(2006)Cell-penetrat- 13. Nan,Y.H.,Park,I.S.,Hahm,K.S.,andShin,S.Y.(2011)Antimicrobial ingpeptidesandantimicrobialpeptides:howdifferentarethey?Biochem. activity,bactericidalmechanism,andLPS-neutralizingactivityofthecell- J.399,1–7 penetratingpeptidepVECanditsanalogs.J.Pept.Sci.17,812–817 36. Kilk,K.,Mahlapuu,R.,Soomets,U.,andLangel,U.(2009)Analysisofin 14. Brogden,K.A.(2005)Antimicrobialpeptides:poreformersormetabolic vitrotoxicityoffivecell-penetratingpeptidesbymetabolicprofiling.Tox- inhibitorsinbacteria?Nat.Rev.Microbiol.3,238–250 icology265,87–95 15. RodríguezPlaza,J.G.,Villalon,Rojas,A.,Herrera,S.,Garza-Ramos,G., 37. Matsuzaki,K.,Murase,O.,Fujii,N.,andMiyajima,K.(1995)Transloca- TorresLarios,A.,Amero,C.,ZarragaGrandos,G.,GutierrezAguilar,M., tionofachannel-formingantimicrobialpeptide,magainin2,acrosslipid LaraOrtiz,M.T.,PolancoGonzalez,C.,UribeCarvajal,S.,Coria,R.,Pen˜a bilayersbyformingapore.Biochemistry34,6521–6526 Díaz, A., Bredesen, D. E., Castro-Obregon, S., and del Rio, G. (2012) 38. Cohen,B.E.(2010)AmphotericinBmembraneaction:rolefortwotypes Moonlightingpeptideswithemergingfunction.PloSOne7,e40125 ofionchannelsinelicitingcellsurvivalandlethaleffects.J.Membr.Biol. 14456 JOURNALOFBIOLOGICALCHEMISTRY VOLUME289•NUMBER21•MAY23,2014 FunctionalRedundancyofCPPsandCAPs 238,1–20 Biophys.J.83,3245–3255 39. Morgera,F.,Vaccari,L.,Antcheva,N.,Scaini,D.,Pacor,S.,andTossi,A. 46. Oltvai,Z.N.,andBaraba´si,A.L.(2002)Systemsbiology.Life’scomplexity (2009)Primatecathelicidinorthologuesdisplaydifferentstructuresand pyramid.Science298,763–764 membraneinteractions.Biochem.J.417,727–735 47. Birchler,J.A.,andVeitia,R.A.(2012)Genebalancehypothesis:connect- 40. Gonza´lez-Damia´n, J., and Ortega-Blake, I. (2010) Effect of membrane ingissuesofdosagesensitivityacrossbiologicaldisciplines.Proc.Natl. structureontheactionofpolyenesII:nystatinactivityalongthephase Acad.Sci.U.S.A.109,14746–14753 diagramofergosterol-andcholesterol-containingPOPCmembranes.J. 48. Kafri, R., Springer, M., and Pilpel, Y. (2009) Genetic redundancy: new Membr.Biol.237,41–49 tricksforoldgenes.Cell136,389–392 41. Re´camier,K.S.,Herna´ndez-Go´mez,A.,Gonza´lez-Damia´n,J.,andOrtega- 49. McBride, S. M., and Sonenshein, A. L. (2011) The dlt operon confers Blake,I.(2010)Effectofmembranestructureontheactionofpolyenes:I. resistancetocationicantimicrobialpeptidesinClostridiumdifficile.Mi- nystatinactionincholesterol-andergosterol-containingmembranes.J. crobiology157,1457–1465 Membr.Biol.237,31–40 50. Soscia,S.J.,Kirby,J.E.,Washicosky,K.J.,Tucker,S.M.,Ingelsson,M., 42. Mak,D.O.,andWebb,W.W.(1995)Twoclassesofalamethicintrans- Hyman,B.,Burton,M.A.,Goldstein,L.E.,Duong,S.,Tanzi,R.E.,and membranechannels:molecularmodelsfromsingle-channelproperties. Moir,R.D.(2010)TheAlzheimer’sdisease-associatedamyloid(cid:7)-protein Biophys.J.69,2323–2336 isanantimicrobialpeptide.PloSONE5,e9505 43. Venegas,B.,Gonza´lez-Damia´n,J.,Celis,H.,andOrtega-Blake,I.(2003) 51. Kagan,B.L.,Jang,H.,Capone,R.,TeranArce,F.,Ramachandran,S.,Lal, AmphotericinBchannelsinthebacterialmembrane:roleofsteroland R.,andNussinov,R.(2012)Antimicrobialpropertiesofamyloidpeptides. temperature.Biophys.J.85,2323–2332 Mol.Pharm.9,708–717 44. Harriss,L.M.,Cronin,B.,Thompson,J.R.,andWallace,M.I.(2011) 52. Domergue,R.,Castan˜o,I.,DeLasPen˜as,A.,Zupancic,M.,Lockatell,V., Imagingmultipleconductancestatesinanalamethicinpore.J.Am.Chem. Hebel,J.R.,Johnson,D.,andCormack,B.P.(2005)Nicotinicacidlimita- Soc.133,14507–14509 tion regulates silencing of Candida adhesins during UTI. Science 308, 45. Huang,W.,Zhang,Z.,Han,X.,Tang,J.,Wang,J.,Dong,S.,andWang,E. 866–870 (2002)IonchannelbehaviorofamphotericinBinsterol-freeandcholes- 53. KawasakiL,(2002)SakAMAPkinaseisinvolvedinstresssignaltransduc- terol- or ergosterol-containing supported phosphatidylcholine bilayer tion,sexualdevelopment,andsporeviabilityinAspergillusnidulans.Mol model membranes investigated by electrochemistry and spectroscopy. Microbiol.45,1153–1163 MAY23,2014•VOLUME289•NUMBER21 JOURNALOFBIOLOGICALCHEMISTRY 14457

Description:
tion, Consejo Nacional de Ciencia y Tecnologia (82308 and 128575), Pro- Jesus Aguirre Linares (Instituto de Fisiología Celular, Universidad.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.