Cell death and life in cancer: mathematical modeling of cell fate decisions AndreiZinovyev,SimonFourquet,LaurentTournier,LaurenceCalzoneand EmmanuelBarillot 3 1 0 2 n a J 1 1 AbstractTumordevelopmentischaracterizedbyacompromisedbalancebetween celllifeanddeathdecisionmechanisms,whicharetighlyregulatedinnormalcells. ] N Understanding this process provides insights for developing new treatments for M fighting with cancer. We present a study of a mathematical model describing cel- lular choice between survival and two alternative cell death modalities: apoptosis . o andnecrosis.Themodelisimplementedindiscretemodelingformalismandallows i topredictprobabilitiesofhavingaparticularcellularphenotypeinresponsetoen- b gagementof cell death receptors. Using an originalparameter sensitivity analysis - q developedfordiscrete dynamicsystems, we determinevariablesthat appearto be [ criticalin thecellularfatedecisionanddiscusshowtheyareexploitedbyexisting 1 cancertherapies. v 6 6 3 2 . 1 0 AndreiZinovyev 3 U900INSERM/InstitutCurie/EcoledeMines,InstitutCurie,26rued’Ulm,Paris,France,75005 1 e-mail:[email protected] : v SimonFourquet i U900INSERM/InstitutCurie/EcoledeMines,InstitutCurie,26rued’Ulm,Paris,France,75005 X e-mail:[email protected] r a LaurentTournier INRA, Unit MIG (Mathe´matiques, Informatique et Ge´nome), Domaine Vilvert, Jouy en Josas, France,78350,e-mail:[email protected] LaurenceCalzone U900INSERM/InstitutCurie/EcoledeMines,InstitutCurie,26rued’Ulm,Paris,France,75005 e-mail:[email protected] EmmanuelBarillot U900INSERM/InstitutCurie/EcoledeMines,InstitutCurie,26rued’Ulm,Paris,France,75005 e-mail:[email protected] 1 2 AuthorsSuppressedDuetoExcessiveLength 1 Introduction Evadingvariousprogrammedcelldeathmodalitiesisconsideredasoneofthemajor hallmarksofcancercells[1].Abetterunderstandingofthepro-deathorprosurvival rolesofthegenesassociatedwithvariouscancers,andtheirinteractionswithother pathwayswouldsetagroundforre-establishingalostdeathphenotypeandidenti- fyingpotentialdrugtargets. Recentprogressinstudyingthemechanismsofcelllife/deathdecisionsrevealed itsastoundingcomplexity.Amongmany,onecanmentionthreedifficultiesonthe way to characterize, describe and create strict mathematical descriptions of these mechanisms. First,thesignalingnetworkallowingacelltoreacttoanexternalstress(suchas damageofDNA,nutrientandoxygendeprivation,toxicenvironment)isassembled from highly redundantpathways which are able to compensate each other in one wayoranother.Forexample,thereexistatleastsevendistinctandparallelsurvival pathways associated with action of AKT protein [2]. Disruption of one of these pathwaysinapotentialcelldeath-inducingcancertherapycanbeinprinciplecom- pensatedbytheothers.Thus,understandingandmodelingthesurvivalresponsein itsfullcomplexityisadauntingtask. Second, cellular death is an extremely complex phenotype that cannot merely be described as a simple disaggregation of cellular components driven by purely thermodynamicallaws. Several distinct modesof cell death were identified in the lastdecade[3],suchasnecrosis,apoptosisandautophagy.Importantly,allthesecell deathmodalitiesarecontrolledbycellularbiochemicalmechanisms,activatedinre- sponsetodiversetypesofstress:roughlyspeaking,acellisusuallypre-programmed to diein a certainmanner,sendingappropriatesignalstoits surroundingsso asto limit tissue toxicity and allow recycling of its components. Necrosis is a type of celldeathusuallyassociatedwithalackofimportantcellularresourcesuchasATP, whichmakesfunctioningofmanybiochemicalpathwaysimpossible.Thisiswhyit was long thoughtof as an uncontrolledand purely thermodynamics-drivendegra- dationofcellularstructures.However,recentresearchshowedthatnecrosiscanbe triggered by specific signals through the activation of tightly regulated pathways, andcanevenproceedwithoutATPdepletion[3].By contrast,apoptosisasaform ofcellularsuicidewas,fromtheverybeginning,described asamodeofcelldeath requiringenergyfor the permeabilizationof mitochondrialmembranesand cleav- age of intracellular structures. Autophagy remains a relatively poorly understood cell death mechanism, which seems to serve both as a survival or a death modal- ity.Uponcertainstressconditions,anduntilthisstressisrelieved,cellularcompo- nentssuchasdamagedproteinsororganellesaredigestedandrecycledintoreusable metabolites,andmetabolismisreorientedsoastosparevitalfunctions.Longlast- ing,non-relievablestresswasdescribedastriggeringautophagiccelldeath,through unaffordable cellular self-digestion. However, no experimental evidence ever un- ambiguouslydemonstratedthatsuchcelldeathisdirectlyexecutedbyautophagyin vivo,butinthespecialcaseoftheinvolutionofDrosophilamelanogastersalivary glands[3]. Celldeathandlifeincancer:mathematicalmodelingofcellfatedecisions 3 The third difficulty can be attributed not directly to the complexity of the bio- chemicalmechanismsbutrathertoourcapabilitiesofapprehendingthedesignprin- ciples used by biological evolution. Inspired by engineeringpractices, we tend to investigatecomplexsystemsbysplittingthemintorelativelyindependentmodules andassociatingwell-characterizednon-overlappingfunctionstoeachmolecularde- tail. Applyingsuch reductionistapproachesto biologycomes with a caveat. Most cellular molecular machineries cannot be naturally dissected or associated with well-definedfunctions,andsetsofoverlappingfunctionscanbedistributedamong groupsofmolecularplayers. Not having the ambition to deal with the whole complexity of cell fate deci- sionsinvivo,wedecidedtoconcentrateonmodelingtheoutcomeofaclassicaland ratherwell-definedexperimentofinducingcelldeath:addingtoacellculturespe- cificligands(TumorNecrosisFactor,TNF,orothermembersofitsfamilysuchas FASL).Theseso-calleddeathligandscanengagedeathreceptorsandtriggerapop- tosisornecrosis,oractivatepro-survivalmechanisms[5].Thenetoutcomeofsuch experimentsdependsonmanycircumstances:celltype,doseoftheligand,duration of the treatment, specific mutations in cell genomes, etc. Moreover,it is believed thattheoutcomecanhaveintrinsicstochasticnaturegovernedbycellulardecision making mechanisms and intrinsic molecular noise [6]. Trying to characterize the biochemicalresponseofacelltothisrelativelysimplekindofperturbationallows tounderstandcertaincellfatedecisionmechanisms. Inthispaper,webrieflydescribeandcarefullyanalyzeamathematicalmodelof cellfatedecisionbetweensurvivalandtwoalternativemodesofcelldeath:apoptosis andnecrosis.Themodelwascreatedandintroducedin[4].Hereproposetheprin- ciplesforwiringandparametrizingabiologicaldiagramthatdescribesthiscellular switch.Inadditionto[4],here,byapplyinganovelsensitivityanalysisspecifically developedfor discrete modeling,we identify fragile sites of the cell fate decision mechanism.Inconclusion,wecompareouranalysiswithourcurrentknowledgeof cellulardecisionmakingfragilitiesutilizedbycancerandcancertherapies. 2 Mathematical model ofcell fatedecision In [4] we summarizedthe currentknowledgeonthe interactionsbetweencellfate decisionmechanismsinasimplisticwiringdiagram(seeFig.1)whereanoderep- resentseithera protein(TNF, FADD, FASL,TNFR, CASP8, cFLIP,BCL2, BAX, IKK,NFk B,CYT C,SMAC,XIAP,CASP3),astateofprotein(RIP1ub,RIP1K),a smallmolecule(ROS,ATP),amolecularcomplex(Apoptosome,C2 TNF,DISC FAS), agroupofmolecularentitiessharingthesamefunction(BAXcanthusrepresentei- therofBAX andBAK,cIAP eithercIAP1orcIAP2,andBCL2 anyoftheBH1-4 BCL2familymembers,),amolecularprocess(Mitochondriapermeabilizationtran- sition,MPT,Mitochondrialoutermembranepermeabilization,MOMP)orapheno- type(Survival,Apoptosis,Non-apoptoticcelldeath,NonACD).Eachdirectedand 4 AuthorsSuppressedDuetoExcessiveLength signededgerepresentsaninfluenceofonemolecularentityonanother,eitherposi- tive(arrowededge)ornegative(headededge). Thephenotypenodesonthediagramaresimpleinterpretationsofthefollowing molecularconditions: 1) activated NFk B is read as survivalstate; 2) lack of ATP is read as nonapoptotic cell death state; 3) activated CASP3 is read as apoptotic celldeath.Absenceofanyofsuchconditionsisinterpretedasa”naive“cellstate, correspondingtothefourthcellularphenotype. Afterextensiveexaminationofthebiologicalliteratureweconvertedthediagram into a logical mathematicalmodelof cell fate decisions triggeredby activation of cell death receptors. The wiring diagram and the logical rules defining the model areshownonFig.1. Byapplyingatechniqueadaptedtodiscreteformalism[7],wereducedthismodel toa11-dimensionalnetwork,thusenablingacompleteanalysisoftheasynchronous dynamics(see[4]fordetails).Thisanalysisidentified27stablelogicalstatesandno cyclicattractors.Moreover,itshowedthatthedistributionofthestablelogicalstates inthediscrete22-dimensionalspaceofinternalmodelvariables(withoutconsider- inginputandoutputvariables)formsfourcompactclusters,eachcorrespondingtoa particularcellularphenotype.Threeoftheseclusterscanbeattributedtoaparticular cellfate(survival,apoptosis,necrosis)whiletheforthrepresentsa“naive”survival state,wherenodeathreceptorsareinduced. 3 Computing phenotype probabilities Aswehavealreadymentioned,thecellularfatedecisionmachineryischaracterized bystochasticresponse,i.e.givenastimuli,thecellcanreachseveralfinalstates,cor- respondingtodifferentphenotypes,withdifferentprobabilities.Theroleofmathe- maticalmodelinginthiscasecanbetopredicttheseprobabilitiesasabsolutevalues thatcanbematchedtoanexperiment,oratleasttopredicttherelativechangesof theprobabilitiesafterintroducingsomeperturbationsto thesystem. Wehaveimplementedthisideaforthemathematicalmodelofcellfatedecisions describedaboveinthefollowingmanner. Inordertodescribeourresults,letusintroducethenotionofasynchronousstate transition graph. On this graph, each node represents a state of the system which in this case can be encoded by a n-dimensional vector of 0s and 1s (n being the dimensionofthesystem).Adirectededgeexistsbetweentwostatesxandyifthere existsanindexi∈{1,...,n}suchthaty = f(x)6=x andy =x for j6=i(here, f i i i j j i denotesthelogicalruleofvariablex,seeFig.1foracompletelistofthemodellogi- i calrules).Inprinciple,thestatetransitiongraphcouldbedefinedindependentlyand withoutthebiologicaldiagram,however,thiswouldrequirea tremendousamount ofempiricalknowledgeaboutthesetofallpermissibletransitionsbetweenthecell stateswhichisnotavailable.Hence,thebiologicaldiagramwithassociatedlogical rulesisusedasacompactrepresentationandatooltogeneratethestatetransition graph.Detailedinstructionsonthisprocedurecanbefoundin[8,9]. Celldeathandlifeincancer:mathematicalmodelingofcellfatedecisions 5 TNF FASL FADD TNFR C2_TNF DISC_FAS RIP1 CASP8 survival necrosis RIP1ub RIP1K cFLIP apoptosis cIAP IKK BCL2 BAX MPT MOMP ROS NFkB SMAC CYT_C XIAP Apoptosome ATP CASP3 Survival NonACD Apoptosis DISCTNF’=TNFRANDFADD TNF’=TNF RIP1’=(TNFRORDISCFAS)AND(NOTCASP8) FADD’=FADD CASP8’=(DISCTNFORDISCFASORCASP3)AND(NOTcFlip)FAS’=FAS RIPub’=RIP1ANDcIAP TNFR’=TNF cIAP’=(NFkBORcIAP)AND(NOTSMAC) RIP1K’=RIP1 BAX’=CASP8AND(NOTBCL2) cFlip’=NFkB ROS’=(RIP1KORMPT)AND(NOTNFkB) IKK’=RIP1ub MPT’=ROSAND(NOTBCL2) BCL2’=NFkB MOMP’=BAXORMPT SMAC’=MOMP NFkB’=IKKAND(NOTCASP3) CYTC’=MOMP XIAP’=NFkBAND(NOTSMAC) DISCFAS’=FASANDFADD Apoptosome’=CYTCANDATPAND(NOTXIAP) ATP’=NOTMPT CASP3’=ApoptosomeAND(NOTXIAP) Fig.1 Biologicaldiagramofmolecularinteractionsinvolvedincellfatedecisionsderivedfrom thebiologicalliterature.Thediagramisroughlydividedbydashedlinesintothreemodulescor- responding to three submechanisms of cell fate decisions. Notations: 1) Proteins: TNF, FADD, FASL,TNFR,CASP8,cIAP,cFLIP,BCL2,BAX,IKK,NFk B,CYTC,SMAC,XIAP,CASP3; 2)Statesofproteins:RIP1ub(ubiquitinatedformofRIP1),RIP1K(kinasefunctionofRIP1);3) Small molecules: ATP, ROS (Reactive oxygen species); 4) Molecular complexes: Apoptosome, C2 TNF, DISC FAS; 5) Molecularprocesses: MPT (Mitochondria permeabilization transition), MOMP (Mitochondrial outermembrane permeabilization); 6) Phenotypes: Survival, Apoptosis, NonACD(Non-apoptoticcelldeath).Belowthetableoflogicalrulesdefiningthediscretemathe- maticalmodelisprovided. 6 AuthorsSuppressedDuetoExcessiveLength Thesetofallpossiblestatesprovidesadiscretephasespaceofthesystem.The statetransitiongraphcontainsallpossiblewaysofthesystemsdynamics(trajecto- ries).Inotherwords,itisthemultidimensionalepigeneticlandscapeofthecellfate decisionsystem.Notethatthestatetransitiongraphisassumedtoberathersparse compared to the fully connected graph where any two state transitions would be possible.Hence,on thislandscape,onecan determinebifurcatingstates, pointsof noreturn,etc. Thestatetransitiongraphallowstoaddressthefollowingquestion:Startingfrom adistinguishedstateofacell,whatistheprobabilitytoarrivetoeachofthestable states? In biologicalterms: Which proportionsof a populationof resting cells ex- posedtodeathligandwilleventuallydisplayeachofthedifferentphenotypes-cell fate? To answer the question, we converted the state transition graph into a Markov processof randomwalk on a graph,followingthe methoddescribedin [9]. To do that,weassociatedtoeachtransitionbetweentwostatesaprobability(calledtran- sition probability). By applying classical algorithms to the transition probability matrix(stronglyconnecteddecompositionandtopologicalsort),weobtainedanab- sorbingdiscreteMarkovchain,andthenanalyzeditwithclassicaltechniques[10]. Oneofthecriticalpointsinsuchtypeofanalysisliesinthechoiceofthetransi- tionprobabilities.Onceagain,definingtheseprobabilitiesdirectlyfromsomeem- piricalobservationsisimpossibleatpresenttime.Hence,theseprobabilitiesshould bederivedfromthelogicalmodelwiththeuseofsomeadditionalassumptions. The simplest assumption is to consider all transitions firing from a given state as equiprobable.Biologicalinterpretationof such an assumption is notsimple. In a way, we consider a “generic” cell in which all possible system trajectories take place with equalprobabilities(withoutdominance,i.e. any preferableroute). One can arguethat in any particularconcrete cell, this would notbe true anymoreand thatthegenericcellisnotrepresentativeofanythingrealobservedinanybiological experiment.Havinginmindthisdifficulty,weavoiddirectinterpretationofabsolute valuesofprobabilities,concentratingratheronrelativechangesoftheminresponse tosomesystemmodificationssuchasremovinganodeorfixinganode’sactivity.It happensthatsucha“generic”cellmodelisalreadycapableofreproducinganumber ofknownexperimentalfacts. When the state transition graphis parametrizedby transition probabilities, one canusestandardtechniquestocomputetheprobabilityofhittingagivenstablestate, consideringthatarandomwalkstartsfromagiveninitialstate.Thenthisprobabil- ity is associated with a probability of observing a particular phenotype in given experimentalconditions. For doing this, it is convenientto define a unique initial state,whichwechoosetorepresentthe“physiologicalstate”,theonerepresenting un-inducedcells growingin a plate. In the modelof Fig. 1 it is the state in which allelementsareinactiveexceptATP,FADDandcIAP.Thisisastablestate,which looses its stability when TNF variable is changed from 0 to 1 and the dynamical systemstartstoevolveintime. Usingthisapproach,weperformedaseriesofinsilicoexperimentsinwhichthe probability of arriving to stable states was computed for the initial (”wild-type”) Celldeathandlifeincancer:mathematicalmodelingofcellfatedecisions 7 model,orfora series of modified(“mutant”)model.Typicalmodelmodifications consisted in fixing some nodes’ activities to 0 or to 1. For our cell fate decision model,theresultsareprovidedinFig.2.In[4]thistablewassystematicallycom- paredwiththeexperimentaldataofthecelldeathphenotypemodificationsobserved invariousmutantexperimentalsystems,includingcellculturesandmice.Themodel was able to qualitativelyrecapitulateall of themand to suggestsome new yetun- explored experimentally mutant phenotypes. The most interesting in this setting wouldbetoconsidersyntheticinteractionsbetweenindividualmutants,whensev- eralnodesonthediagramareaffectedbyamutationsimultaneously. wild−type antiox APAF deletion BAX deletion S N S N N N 0 0 A A S S BCL2 o.e. CASP8 deletion CASP8 active cFlip deletion N N S N 0 S A A cIAP deletion FADD deletion NFkB deletion NFkB o.e. N A N A N S A S RIP1 deletion XIAP deletion z−VAD−fmk RIP+1 zd−eVleAtDio−nfmk S N N S A A 0 Fig.2 Changesinthephenotypeprobabilitiesfromtherandomwalkonthestatetransitiongraph, startingfromtheinitialphysiologicalstate.Various“mutant”modificationsofthedynamicalsys- temaretestedhere.Here“A“denotesApoptosis,“N“denotesNecrosisand“S“denotesSurvival, “0” denotes Naive state. “O.e.” stands for overexpression of a protein, “antiox” corresponds to bluntingthecapacityofNFk Btoprevent ROSformation,“z-VAD fmk”simulatestheeffect of caspaseinhibitorz-VAD-fmk. 4 Identification offragilepoints ofthe cellfate decision machinery Changingdistributionoftransitionprobabilitiesontheasynchronousstatetransition graphcan drastically changethe probabilistic outcomeof a computationalexperi- 8 AuthorsSuppressedDuetoExcessiveLength ment. At the same time, the probabilities for a random walk to convergeto some attractor depend also on the structure of the state transition graph which is deter- mined solely from the discrete model.In orderto understand what are the critical determinants of a cellular choice, we applied a novel strategy of discrete model analysisconsistinginparametrizingthestatetransition graphbychangingrelative importance of certain variables. In a certain sense, this strategy corresponds to a sensitivity analysis, commonly applied for continuous models based on ordinary differentialequationsandchemicalkineticsapproach[11]. Firstofall,wepostulatethatour“reference”parametrizationcorrespondstothe equalprobabilitiesofanypossibletransitionfromastate.Asmentionedearlier,this corresponds to a “generic” cell model, where the relative speeds of all biochem- ical processes are assumed equal. Mathematically, considering the dynamics as a Markovprocess,alltransitionsfromagivenstate xtoanyofitsasynchronoussuc- cessorareassignedequalprobabilities(ifxhasrsuccessors,theseprobabilitiesare equalto1/r).Wewillmodifythisdefaultparametrizationbysystematicallychang- ing relative speeds of certain elements. This will lead to some re-parametrization of the state transition graph and consequent changes in the probabilities to reach attractors. Thekeyideaofpriorityclasses[12,13]consistsingroupingvariablesofadis- cretemodelintoclassesaccordingtothespeedsoftheunderlyingprocessesgovern- ingtheirturnoverrates.Forinstance,inthe caseofgeneticregulatorynetworks,a naturalgroupingconsistsinputtingdenovoproteinsynthesis(transcription+trans- lation) in a slow transitionclass in comparisonwith otherprocessessuch as post- translationalproteinmodifications(phosphorylation,ubiquitination,...)orcomplex formation.Followingthisidea,wecanregroupnodesintopriorityclassestowhich somepriorityratios w areassigned.Said differently,eachvariable x is assigneda i priorityvaluew.Foragivennode,avaluew >1correspondstoahigherthande- i i faultpriority,and a value w <1 to a lowerthan defaultpriority.The ratio w can i i beinterpretedasaglobalturnoverrateofthecomponentrepresentedbythisnode: thosethatareproduced(activated)anddegraded(deactivated)fastwillhavealarge w. i Considerastatex,withrasynchronoussuccessors.Bydefinition,betweenxand eachofitssuccessors,oneandonlyonevariablecanbeupdated.Letydenoteoneof thesuccessorsofx,andibetheindexofthecorrespondingupdatedvariable.With the uniformassumptiondescribed before,the probabilityof the transition (x→y) isindependentofiandisequalto1/r.Withpriorityclasses,thisprobabilityisnow weighted by w, making the transition more probableif component i belongsto a i “fast”class(w greaterthanone)andlessprobableifitbelongstoa“slow”class(w i i lessthanone).Obviously,forcomputingtheactualtransitionprobabilities p ,a x→y normalizationshouldbeappliedsothat: (cid:229) p =1. x→y ysucc.ofx Celldeathandlifeincancer:mathematicalmodelingofcellfatedecisions 9 Once the new valuesof the transitionprobabilitieshave been computed,the same treatmentsas before can be applied, leading to new valuesfor the probabilitiesto reachthedifferentphenotypes,startingfromagiveninitialcondition. Thisgeneralmethodmaybeappliedintwodifferentways.First,onemayuseit tocomputemorerealisticprobabilities,thatcouldbecomparedtoactualexperimen- talresults(theprobabilitytoreachanattractorbeingcomparedwiththeproportion ofcellsexhibitingthecorrespondingphenotype).However,suchcalculationswould needacompleteclassificationoftherelativespeedsofallbiochemicalmechanisms involvedinthemodel.Giventhenumberandheterogeneityofthesemechanisms,it isstilldifficulttoobtainsuchclassification.Instead,weusedthemethodasa sen- sitivityanalysistool,inordertodetectwhichvariablesaremorecriticalthanothers in the decision-makingprocess.Using the reducedmodelevokedearlier(see [4]), weconsideredeachvariableindependently,andsuccessivelyboosteditorslowedit downbysomemultiplicativefactor.Moreprecisely,todetectthesensitivityofthe networkwithrespecttotheturnoverofvariablex,weperformedthecalculationsfor i differentvaluesofw,theotherweightsw beingkeptatone(thereferencevalue). i j By comparing the probabilities to reach the three phenotypes-survival, apoptosis and necrosis- with those of the initial model, one can detect whetherthe system’s response is sensitive ornotto the turnoverrate of variable x. We performedsuch i experimentsforthenineinnervariablesofthereducedmodel.Figure3presentsthe resultsweobtained. Fig. 3 . Testing the effect of varying node turnovers on the resulting phenotypic probabilities. Theabscissonthegraphs showsthevalueof wpriorityvalue, where w=1corresponds tothe probabilitiescomputedforthedefaultwild-typemodel(seeFig.2).Thecolorsarethoseadopted in[4]:orangecorrespondstoapoptosis,purpletonecrosisandgreentosurvival. The plots revealseveralinteresting properties.First, the most sensitive compo- nents,whichcorrespondtothecurveswiththehighestamplitude,areRIP1,NFkB 10 AuthorsSuppressedDuetoExcessiveLength andCASP8.Thisreinforcestheideathatthesethreecomponentsplayacrucialrole in the decision process. This seems reasonable, especially for RIP1 and CASP8, astheyoccupyanupstreampositionintheregulatorygraph. Interestingly,CASP3 turnoverdoes not seem to be so important,althoughCASP3 is a markerof apop- tosis.ThisconfirmsthateventhoughCASP3isessentialfortheexistenceofapop- tosisinthemodel(itsremovalcompletelysuppressapoptoticoutcome,seeFig.2), its turnover rate does not appear to be important in the dynamics of the decision process (once it goes from 0 to 1, most of the decision has already been made). Remarkably,theturnoversofMOMPandMPT,bothcontributingtothepermeabi- lizationofmitochondrialmembrane,havedifferenteffects:MOMPseemstoaffect mainly the decision between survivaland necrosis, while MPT playsa role in the switchbetweenapoptosisandnecrosis. Thesensitivityanalysisthatispresentedhereisanextensionoftheresultspro- posed in [4]. In contrastwith the all-or-noneperturbationsevokedin the previous part(whereanodeisfixedto0or1),hereweconsiderfinerperturbationsbymod- ifyingtheturnoverratesofthemodel’svariables.Anextstepwouldbetoconsider the relative strengthsof the model’s interactions,instead of the model’svariables. Suchanapproachiscurrentlyinvestigated. 5 Comparisonwiththe fragilitiesexploitedby cancer and its treatment Deregulationsofthesignallingpathwaysstudiedherecanleadtodrasticandserious consequences.HanahanandWeinbergproposedthatescape of apoptosis,together with other alterations of cellular physiology,represents a necessary event in can- cer promotion and progression [1]. As a result, somatic mutations leading to im- paired apoptosis are expected to be associated with cancer. In the cell fate model presentedhere,mostnodescan beclassified as pro-apoptoticoranti-apoptoticac- cording to the results of “mutant” model simulations, which are correlated with experimental results found in the literature. Genes classified as pro-apoptotic in ourmodelincludecaspases-8 and -3, APAF1 as partof the apoptosomecomplex, cytochromec (Cyt c), BAX, and SMAC. Anti-apoptotic genes encompass BCL2, cIAP1/2,XIAP,cFLIP,anddifferentgenesinvolvedintheNFkBpathway,includ- ingNFKB1,RELA,IKBKGandIKBKB(notexplicitinthemodel).Geneticalter- ations leadingto loss of activity of pro-apoptoticgenesor to increasedactivity of anti-apoptoticgeneshavebeenassociatedwithvariouscancers.Thus,wecancross- listthealterationsofthesegenesdeducedfromthemodelwithwhatisreportedin theliteratureandverifytheirroleandimplicationsincancer. Forinstance, concerningpro-apoptoticgenes, frameshift mutationsin the ORF oftheBAXgenearereportedin>50%ofcolorectaltumoursofthemicro-satellite mutatorphenotype[14].ExpressionofCASP8isreducedin≈24%oftumoursfrom patientswithEwing’ssarcoma[15].Caspase-8wassuggestedinseveralstudiesto