CELL MUSCLE and MOTIliTY 1 W1lume Cell and Muscle Motility Advisory Editors: B. R. Brinkley, Baylor College of Medicine, Houston Setsuro Ebashi, University of Tokyo, Tokyo Robert D. Goldman, Northwestern Medical School, Chicago RaymondJ. Lasek, Case Western Reserve University, Cleveland Frank A. Pepe, University of Pennsylvania, Philadelphia Keith R. Porter, University of Colorado, Boulder Andrew G. Szent-Gyorgyi, Brandeis University, Waltham Edwin W. Taylor, University of Chicago, Chicago CELL MUSCLE and MOTILITY 1 Volume Edited by Robert M.Dowben and Jerry W. Shay University oj Texas Health Science Center Dallas, Texas PLENUM PRESS • NEW YORK AND LONDON Library of Congress Cataloging in Publication Data Main entry under title: Cell and muscle motility. Bibliography: p. Includes index. 1. Muscle contraction. 2. Cells-Motility. I. Dowben, Robert M. II. Shay, Jerry W. [DNLM: 1. Cytology-Periodical. 2. Muscles-Periodical. 3. Movement-Periodical. WI CE127] QP321.C365 599.01'852 81-13827 ISBN 978-I -4684-8198-3 ISBN 978-1-4684-8196-9 (eBook) AACR2 DOl 10.1007/978-1-4684-8196-9 © 1981 Plenum Press, New York Softcover reprint of the hardcover I st edition 1981 A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the publisher Contributors Ian K. Buckley, Department of Experimental Pathology, John Curtin School of Medical Research, The Australian National University, Canberra City, A.C.T. 2601, Australia C. Tyler Burt, Department of Chemistry, Reed College, Portland, Oregon 97202 Paul R. Burton, Department of Physiology and Cell Biology, University of Kansas, Lawrence, Kansas 66045 Roger Cooke, Department of Biochemistry/Biophysics and Cardiovascular Re search Institute, University of California, San Francisco, California 94143 Barry S. Eckert, Department of Anatomical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 Howard Feit, Departments of Cell Biology and Neurology, The University of Texas Health Science Center at Dallas, Dallas, Texas 75235 John W. Fuseler, Department of Cell Biology, The University of Texas Health Science Center at Dallas, Dallas, Texas 75235 Giuseppe Inesi, Department of Biological Chemistry, University of Maryland Medical School, Baltimore, Maryland 21201 Stephen]. Koons, Department of Biophysical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 Patricia F. Maness, Department of Biochemistry and Nutrition, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514 Roger McCarter, Department of Physiology, The University of Texas Health Science Center, San Antonio, Texas 78284 Jerry W. Shay, Department of Cell Biology, The University of Texas Health Science Center at Dallas, Dallas, Texas 75235 James T. Stull, Moss Heart Center and Department of Pharmacology, The University of Texas Health Science Center at Dallas, Dallas, Texas 75235 Radovan Zak, Departments of Medicine and Pharmacological and Physiologi cal Sciences, The University of Chicago, Chicago, Illinois 60637 C. Richard Zobel, Department of Biophysical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 Preface Motility is a fundamental property of living systems, from the cytoplasmic streaming of unicellular organisms to the most highly differentiated and devel oped contractile system of higher organisms, striated muscle. Research on var ious aspects of motile systems in muscle and undifferentiated or non muscle cells has been developing at an ever more rapid pace in the laboratories of investiga tors with a wide variety of backgrounds using methodologies varying from me chanics to the most sophisticated physical measurements. Significant contri butions to our understanding of motility are coming from the disciplines of cell biology, biochemistry, pharmacology, molecular biology, biophysics, and physiology. The findings have relevance not only to basic scientists but to clinicians in such diverse fields as cardiology and neurology and to scientists in the more traditional physical sciences. Cell and Muscle Motility is a new multivolume series of essays by distinguished research workers in various fields whose work has a common thread of dealing with one aspect or another of motility. The essays are meant to focus on topics of current interest, to be critical rather than exhaustive, and to indicate the current trends of research efforts. The series is intended to foster an interchange of concepts among various workers in the field and to serve as a reference for students and workers who wish to familiarize themselves with the most current progress in motility. The editors would like to thank Kirk Jensen, who envisioned this series, and his colleagues at Plenum Publishing Corporation, particularly Nancy Mester and Geraldine Baldwin, for their constant and generous help in the production of this series. Robert M. Dowben Jerry W. Shay Dallas Contents Chapter 1 Contractile Function as a Determinant of Muscle Growth Radovan Zak 1. Introduction ................................................... 1 2. Cytodifferentiation of Myogenic Cells. . . . . . . .. . . . . . . .. . . .. . .. . . . . .3 2.1. Skeletal Muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 2.2. Cardiac Muscle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 2.3. Markers of Specific Genes: Molecular Variants of Myofibrillar Proteins.. . . ... .... .. .. .... . .. ..... . . .. ....... . . ... ... . . . .. 6 2.4. Molecular Variants of Myofibrillar Proteins and Myogenesis .. .. 9 3. Muscle Morphogenesis................... . ......... ......... .... 9 3.1. Morphogenesis of Skeletal Muscle. . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 3.2. Cardiac Morphogenesis ....................... , ............. 13 4. Postnatal Development of Muscles ................................ 14 4.1. Skeletal Muscle ............................................. 15 4.2. Cardiac Muscle ............................................. 19 5. Possible Mechanisms Controlling the Gene Expression in Muscle .... 21 5.1. Control of DNA Replication ................................. 21 5.2. Transcriptional Control in Muscle ........................... 22 5.3. Posttranscriptional Control .................................. 24 6. Conclusion ..................................................... 25 References Chapter 2 Studies of Sarcomere Length by Optical Diffraction Roger McCarter 1. Introduction ................................................... 35 2. Sarcomere Length and Muscle Function .......................... 37 3. Nature of the Diffraction Patterns ................................ 40 Contents 4. Origin of the Diffraction Patterns ................................ 43 5. Experimental Methods .......................................... 48 6. Diffraction Studies of Skeletal and Cardiac Muscle ................. 51 6.1. Skeletal Muscle ............................................. 51 6.2. Cardiac Muscle ............................................. 55 7. Problems of Interpretation ...................................... 57 8. Conclusions .................................................... 59 References Chapter 3 The Sarcoplasmic Reticulum of Skeletal and Cardiac Muscle Giuseppe Inesi 1. Introduction ................................................... 63 2. Structure of the Sarcotubular Membrane System ................... 63 2.1. Sarcotubular System in Muscle Fibers ........................ 63 2.2. Isolated Sarcoplasmic Reticulum Vesicles ..................... 67 2.3. Isolation of Tubular Membranes ............................. 68 3. Functional Features of Sarcoplasmic Reticulum Vesicles ............ 71 3.1. Calcium Pump ............................................. 71 3.2. Ca2+ -Dependent ATPase .................................... 72 3.3. ATPase Catalytic Cycle ...................................... 73 3.4. Reversal of the Ca2+ Pump and Synthesis of ATP ............. 74 3.5. Kinetic Resolution of Partial Reactions ....................... 76 3.6. Coupling Mechanisms in the Enzyme-Transport Cycle ......... 80 4. Role of Sarcoplasmic Reticulum in Striated Muscle ................. 83 4.1. Induction of Relaxation ..................................... 83 4.2. Excitatory Mechanisms ...................................... 85 4.3. Calcium Release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 87 5. Concluding Remarks ............................................ 90 References Chapter 4 Myosin Phosphorylation: A Biochemical Mechanism for Regulating Contractility Roger Cooke and James T. Stull 1. Introduction ................................................... 99 2. Myosin Light-Chain Kinases ..................................... 102 2.1. Physical Properties of Myosin Light-Chain Kinases ............ 103 2.2. Enzymatic Properties of Myosin Light-Chain Kinases .......... 104 2.3. Activation of Myosin Light-Chain Kinases by Ca2+ and Calmodulin ................................................ 105 Contents 2.4. Effects of Phenothiazine Antipsychotic Drugs on Myosin Light-Chain Kinase Activation ............................... 109 2.5. Regulation of Myosin Light-Chain Kinases by Cyclic-AMP-Dependent Protein Kinase ....................... 110 3. Myosin Light-Chain Phosphatases ................................ 111 4. Properties of Myosin Phosphorylation in Living Cells ............... 112 4.1. Smooth Muscles ............................................ 112 4.2. Platelets ................................................... 113 4.3. Skeletal Muscles ............................................ 113 4.4. Heart .................................................... .114 5. The Function of Myosin Phosphorylation ........................ .'114 5.1. Smooth Muscles ........................................... .115 5.2. Skeletal and Cardiac Muscles ................................ 123 5.3. Nonmuscle Cells ........................................... 126 References Chapter 5 Fine-Structural and Related Aspects of Nonmuscle-Cell Motility Ian K. Buckley 1. Introduction ................................................... 135 1.1. Purpose and Scope ......................................... 135 1.2. Related Reviews ............................................ 136 2. Cell-Motility Phenomena ........................................ 137 2.1. Initial Adhesion and Spreading .............................. 137 2.2. Cell Retraction ............................................ .139 2.3. Cytokinesis ................................................ 140 2.4. Movements of Spread Cells .................................. 140 3. Fine-Structural Correlations ..................................... 147 3.1. Brief Overview of the Spread Cell .......................... .148 3.2. Regional Fine Structure ..................................... 152 4. In Situ Identification of Filament Proteins ........................ .162 4.1. Light-Microscopic Studies .................................. .163 4.2. Electron-Microscopic Studies ................................ 168 5. Model Studies .................................................. 177 5.1. Physarum ................................................. .178 5.2. Characeae ................................................ .180 5.3. Cultured Cells ............................................ .183 6. Summary, Problems, and Prospects .............................. .184 6.1. A Codistribution of Actin and Myosin? ...................... .185 6.2. Specific Inhibitors ............... , ......................... .187 6.3. Improved Fine Structure .................................... 187 6.4. Reality and Nature of Cross-Links .......................... .187 References Contents Chapter 6 The Role of Intermediate (1 O-nm) Filaments in the Development and Integration of the Myofibrillar Contractile Apparatus in the Embryonic Mammalian Heart John W. Fuseler, Jerry W. Shay, and Howard Feit 1. Introduction ................................................... 205 1.1. Distribution and Classes of Intermediate Filaments in Various Cell Types ................................................., 205 1.2. Techniques of Immunocytochemistry for Intermediate Filaments .................................................. 206 1.3. Methods of Myocyte Isolation ...............................2 11 104. Methods of Indirect Immunofluorescence .................... 212 1.5. Microscopy ................................................2 12 2. Alterations in Distribution and Morphology of Intermediate Filaments with Developmental Time in the Embryonic Mammalian Heart ....................................2 12 2.1. Desmin Changes in Embryonic Myocytes .....................2 12 2.2. Desmin Changes in Embryonic Nonmyocytes .................2 18 2.3. Comparison of Desmin Changes in Developing Cardiac, Skeletal, and Smooth Muscle ................................2 19 204. Nervous-Tissue Intermediate Filaments Found in Developing Heart Cells ................................................2 22 3. Properties of Cardiac Intermediate Filaments ......................2 30 3.1. Effects of Temperature ..................................... 230 3.2. Effects of Colchicine and Vinblastine .........................2 32 4. Association of Creatine Phosphokinase with Cytoskeletal Elements" of Developing Cardiac Cells ...................................... 240 4.1. Association with M and Z Lines ..............................2 40 4.2. Association with Intermediate Filaments ...................... 242 4.3. Association with Actin Fibers ................................2 42 404. Association with the Mitotic Spindle .......................... 248 5. Possible Functions qf Intermediate Filaments in the Development of the Embryonic Mammalian Heart .............................. 250 5.1. Integration of Cytoskeletal Elements ......................... 250 5.2. Support and Localized Energy Generation .................... 253 References Chapter 7 Creatine Kinase and Intermediate Filaments in Cultured Mammalian Cells Barry S. Eckert, Stephen J. Koons, and C. Richard Zobel 1. Introduction ...................................................2 61