Cavitation in Non-Newtonian Fluids Emil-Alexandru Brujan Cavitation in Non-Newtonian Fluids With Biomedical and Bioengineering Applications 123 Emil-AlexandruBrujan UniversityPolitechnicaofBucharest DepartmentofHydraulics Spl.Independentei313,sector6 060042Bucharest Romania [email protected] ISBN978-3-642-15342-6 e-ISBN978-3-642-15343-3 DOI10.1007/978-3-642-15343-3 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2010935497 ©Springer-VerlagBerlinHeidelberg2011 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesignGmbH,Heidelberg Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Cavitation is the formation of voids or bubbles containing vapour and gas in an otherwise homogeneous fluid in regions where the pressure falls locally to that of thevapourpressurecorrespondingtotheambienttemperature.Theregionsoflow pressuremaybeassociatedwitheitherahighfluidvelocityorvibrations.Cavitation is an important factor in many areas of science and engineering, including acous- tics, biomedicine, botany, chemistry and hydraulics. It occurs in many industrial processes such as cleaning, lubrication, printing and coating. While much of the research effort into cavitation has been stimulated by its occurrence in pumps and other fluid mechanical devices involving high speed flows, cavitation is also an importantfactorinthelifeofplantsandanimals,includinghumans. Several books and review articles have addressed general aspects of bubble dynamicsandcavitationinNewtonianfluidsbutthereis,atpresent,nobookdevoted totheelucidationofthesephenomenainnon-Newtonianfluids.Theproposedbook is intended to provide such a resource, its significance being that non-Newtonian fluidsarefarmoreprevalentintherapidlyemergingfieldsofbiomedicineandbio- engineering,inadditiontobeingwidelyencounteredintheprocessindustries.The objective of this book is to present a comprehensive perspective of cavitation and bubbledynamicsfromthestandpointofnon-Newtonianfluidmechanics,physics, chemical engineering and biomedical engineering. In the last three decades this field has expanded tremendously and new advances have been made in all fronts. Those that affect the basic understanding of cavitation and bubble dynamics in non-Newtonianfluidsaredescribedinthisbook. Itisessentialtounderstandthattheeffectsofnon-Newtonianpropertiesonbub- ble dynamics and cavitation are fundamentally different from those of Newtonian fluids.Arguablythemostsignificanteffectarisesfromthedramaticincreaseinvis- cosity of polymer solutions in an extensional flow, such as that generated about a sphericalbubbleduringitsgrowthorcollapsephase.Specifically,polymers,which arerandomly-orientedcoilsintheabsenceofanimposedflow-field,arepulledapart andmayincreasetheirlengthbythreeordersofmagnitudeinthedirectionofexten- sion. As a result, the solution can sustain much greater stresses, and pinching is stoppedinregionswherepolymersarestretched.Furthermore,manybiologicalflu- ids, such as blood, synovial fluid, and saliva, have non-Newtonian properties and v vi Preface candisplaysignificantviscoelasticbehaviour.Therefore,thisisanimportanttopic because cavitationisplayinganincreasingly importantroleinthedevelopment of modernultrasoundandlaser-assistedsurgicalprocedures. Despitetheirincreasingbioengineeringapplications,acomprehensivepresenta- tion of the fundamental processes involved in bubble dynamics and cavitation in non-Newtonian fluids has not appeared in the scientific literature. This is not sur- prising,astheelementsrequiredforanunderstandingoftherelevantprocessesare wide-ranging.Consequently,researcherswhoinvestigatecavitationphenomenonin non-Newtonianfluidsoriginatefromseveraldisciplines.Moreover,theresultingsci- entificreportsareoftennarrowinscopeandscatteredinjournalswhosefocirange fromthephysicalsciencesandengineeringtomedicalsciences.Thepurposeofthis book is to provide, for the first time, an improved mechanistic understanding of bubbledynamicsandcavitationinnon-Newtonianfluids. The book starts with a concise but readable introduction into non-Newtonian fluids with a special emphasis on biological fluids (blood, synovial liquid, saliva, and cell constituents). A distinct chapter is devoted to nucleation and its role on cavitationinception.Thedynamicsofsphericalandnon-sphericalbubblesoscillat- inginnon-Newtonianfluidsareexaminedusingvariousmathematicalmodels.One mainmessagehereisthattheintroductionofideasfromtheoreticalstudiesofnon- linear acoustics and modern optical techniques has led to some major revisions in ourunderstandingofthistopic.Twochaptersaredevotedtohydrodynamiccavita- tionandcavitationerosion,withspecialemphasisonthemechanismsofcavitation erosioninnon-Newtonianfluids. The second part of the book describes the role of cavitation and bubbles in the therapeuticapplicationsofultrasoundandlasersurgery.Wheneverlaserpulsesare usedtoablateordisrupttissueinaliquidenvironment,cavitationbubblesarepro- ducedwhichinteractwiththetissue.Theinteractionbetweencavitationbubblesand tissuemaycausecollateraldamagetosensitivetissuestructuresinthevicinityofthe laserfocus,anditmayalsocontributeinseveralwaystoablationandcutting.These situations are encountered in laser angioplasty and transmyocardial laser revascu- larization.Cavitationisalsooneofthemostexploitedbioeffectsofultrasoundfor therapeutic advantage. In both cases, the violent implosion of cavitation bubbles can lead to the generation of shock waves, high-velocity liquid jets, free radical species, and strong shear forces that can damage the nearby tissue. Knowledge of these physical mechanisms is therefore of vital importance and would provide a frameworkwhereinnovelandimprovedsurgicaltechniquescanbedeveloped. This field is as interdisciplinary as any, and the numerous disciplines involved will continue to overlook and reinvent each others’ work. My hope in this book is to attempt to bridge the various communities involved, and to convey the inter- est, elegance, and variety of physical phenomena that manifest themselves on the micrometerandmicrosecondscales.Thisbookisofferedtomechanicalengineers, chemicalengineersandbiomedicalengineers;itcanbeusedforselfstudy,aswell asinconjunctionwithalecturecourse. I would like to gratefully acknowledge the advice and help I received from Professor Alfred Vogel (Institute of Biomedical Optics, University of Lübeck), Preface vii ProfessorYoichiroMatsumoto(UniversityofTokyo),ProfessorGaryA.Williams (University California Los Angeles), and Professor J.R. Blake (University of Birmingham).IalsoappreciatefruitfulconversationswithandkindhelpIreceived from Professor Werner Lauterborn (Göttingen University), Dr. Teiichiro Ikeda (Hitachi Ltd), Dr. Kester Nahen (Heidelberg Engineering GmbH), and Peter Schmidt. Bucharest,Romania Emil-AlexandruBrujan June2010 Contents 1 Non-NewtonianFluids . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 NewtonianFluids . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Non-NewtonianFluids . . . . . . . . . . . . . . . . . . . 4 1.2 Non-NewtonianFluidBehaviour . . . . . . . . . . . . . . . . . . 7 1.2.1 SimpleFlows . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 IntrinsicViscosityandSolutionClassification . . . . . . . 12 1.2.3 DimensionlessNumbers . . . . . . . . . . . . . . . . . . 13 1.2.4 ConstitutiveEquations . . . . . . . . . . . . . . . . . . . 15 1.3 Rheometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.1 ShearRheometry . . . . . . . . . . . . . . . . . . . . . . 25 1.3.2 ExtensionalRheometry . . . . . . . . . . . . . . . . . . . 29 1.3.3 MicrorheologyMeasurementTechniques. . . . . . . . . . 32 1.4 ParticularNon-NewtonianFluids . . . . . . . . . . . . . . . . . . 34 1.4.1 Blood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.4.2 SynovialFluid . . . . . . . . . . . . . . . . . . . . . . . . 37 1.4.3 Saliva . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.4.4 CellConstituents . . . . . . . . . . . . . . . . . . . . . . 41 1.4.5 OtherViscoelasticBiologicalFluids . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2 Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.1 NucleationModels . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.2 NucleiDistribution . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.2.1 DistributionofCavitationNucleiinWater . . . . . . . . . 53 2.2.2 DistributionofCavitationNucleiinPolymerSolutions . . 54 2.2.3 CavitationNucleiinBlood . . . . . . . . . . . . . . . . . 55 2.3 TensileStrength . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 BubbleDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1 SphericalBubbleDynamics. . . . . . . . . . . . . . . . . . . . . 63 3.1.1 GeneralEquationsofBubbleDynamics . . . . . . . . . . 63 ix x Contents 3.1.2 TheEquationsofMotionfortheBubbleRadius . . . . . . 65 3.1.3 HeatandMassTransferThroughtheBubbleWall . . . . . 81 3.1.4 ExperimentalResults . . . . . . . . . . . . . . . . . . . . 82 3.1.5 BubblesinaSound-IrradiatedLiquid . . . . . . . . . . . . 86 3.2 AsphericalBubbleDynamics . . . . . . . . . . . . . . . . . . . . 91 3.2.1 BubblesNearaRigidWall . . . . . . . . . . . . . . . . . 92 3.2.2 BubblesBetweenTwoRigidWalls . . . . . . . . . . . . . 98 3.2.3 BubblesinaShearFlow . . . . . . . . . . . . . . . . . . 98 3.2.4 Shock-WaveBubbleInteraction . . . . . . . . . . . . . . 99 3.3 BubblesNearanElasticBoundary . . . . . . . . . . . . . . . . . 101 3.4 BubblesinTissuePhantoms . . . . . . . . . . . . . . . . . . . . 107 3.5 EstimationofExtensionalViscosity . . . . . . . . . . . . . . . . 110 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4 HydrodynamicCavitation . . . . . . . . . . . . . . . . . . . . . . . . 117 4.1 Non-cavitatingFlows . . . . . . . . . . . . . . . . . . . . . . . . 118 4.1.1 DragReduction . . . . . . . . . . . . . . . . . . . . . . . 118 4.1.2 ReductionofPressureDropinFlowsThroughOrifices . . 121 4.1.3 VortexInhibition . . . . . . . . . . . . . . . . . . . . . . 123 4.2 CavitatingFlows . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.2.1 CavitationNumber . . . . . . . . . . . . . . . . . . . . . 124 4.2.2 JetCavitation . . . . . . . . . . . . . . . . . . . . . . . . 126 4.2.3 CavitationAroundBluntBodies . . . . . . . . . . . . . . 129 4.2.4 VortexCavitation . . . . . . . . . . . . . . . . . . . . . . 134 4.2.5 CavitationinConfinedSpaces . . . . . . . . . . . . . . . 143 4.2.6 MechanismsofCavitationSuppression byPolymerAdditives . . . . . . . . . . . . . . . . . . . . 148 4.3 EstimationofExtensionalViscosity . . . . . . . . . . . . . . . . 149 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5 CavitationErosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.1 CavitationErosioninNon-NewtonianFluids. . . . . . . . . . . . 156 5.2 MechanismsofCavitationDamageinNewtonianFluids . . . . . 163 5.3 ReductionofCavitationErosioninPolymerSolutions . . . . . . . 171 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 6 CardiovascularCavitation . . . . . . . . . . . . . . . . . . . . . . . 175 6.1 CavitationforUltrasonicSurgery . . . . . . . . . . . . . . . . . . 175 6.1.1 Sonothrombolysis . . . . . . . . . . . . . . . . . . . . . . 175 6.1.2 UltrasoundContrastAgents . . . . . . . . . . . . . . . . . 177 6.2 CavitationinLaserSurgery . . . . . . . . . . . . . . . . . . . . . 199 6.2.1 TransmyocardialLaserRevascularization . . . . . . . . . 199 6.2.2 LaserAngioplasty . . . . . . . . . . . . . . . . . . . . . . 202 6.3 CavitationinMechanicalHeartValves . . . . . . . . . . . . . . . 206 6.3.1 DetectionofCavitationinMechanicalHeartValves . . . . 206