Causal Action Theories and Satis(cid:12)ability Planning by CharlesHudsonTurner,B.A.,M.L.I.S., M.S.C.S. Copyright Dissertation by PresentedtotheFacultyoftheGraduateSchoolof CharlesHudsonTurner TheUniversityofTexasatAustin 1998 inPartialFul(cid:12)llment oftheRequirements fortheDegreeof DoctorofPhilosophy The University of Texas at Austin August1998 Causal Action Theories and Satis(cid:12)ability Planning Approvedby DissertationCommittee: Thisdissertationisdedicatedtomywife,CarolGeorge, andmyparents,CharlesandClariceTurner. Causal Action Theories and Satis(cid:12)ability Planning PublicationNo. Acknowledgments CharlesHudsonTurner,Ph.D. TheUniversityofTexasatAustin,1998 IamdeeplygratefultoVladimirLifschitz,who,amongotherthings,madethiswork possibleforme,andtoNormMcCain,whocarefullyandpatientlydiscussedwith memanyoftheideasastheytookshape. Iamgratefulaswellforthehelpand Supervisor:VladimirLifschitz encouragementofmanyotherfriends,teachersandcolleagues. Thisdissertationaddressestheproblemofrepresentingandreasoningaboutcom- monsenseknowledge of action domains. Untilrecently, most suchwork has sup- pressed the notion of causality, despite its central role in everyday talking and CharlesHudsonTurner reasoning about actions. There is good reason for this. In general, causality is adi(cid:14)cultnotion,bothphilosophicallyandmathematically. Nonetheless, itturns TheUniversityofTexasatAustin outthatactionrepresentationscanbemadenotonlymoreexpressivebutalsomath- August1998 ematicallysimplerbyrepresentingcausalitymoreexplicitly.Thekeyistoformalize onlyarelativelysimplekindofcausalknowledge: knowledgeoftheconditionsun- derwhichfacts are caused. Inthe (cid:12)rstpartofthe dissertationwe dothisusing inferencerulesandrule-basednonmonotonicformalisms. Asweshow,aninference (cid:30) rule canbeunderstoodtorepresenttheknowledgethatif(cid:30)iscausedthen is caused. (Noticethatwedonotsay\(cid:30)causes .") Thisleadstosimpleandex- pressiveactionrepresentationsinReiter'sdefaultlogic,arule-basednonmonotonic formalism.Thisapproachalsoyieldsactiondescriptionsinlogicprogramming,thus raisingthepossibility,atleastinprinciple,ofautomatedreasoningaboutactions andplanning.Inthesecondpartofthedissertation,weintroduceanewmodalnon- v vi monotoniclogic|thelogicof\universalcausation"(UCL)|speci(cid:12)callydesignedfor describingtheconditionsunderwhichfacts arecaused. We showthat UCLpro- videsamoretraditionalsemanticaccountofthemathematicallysimpleapproachto causalknowledgethatunderliesourcausaltheoriesofaction. Forinstance,instead (cid:30) oftheinferencerule ,wewritethemodalformulaC(cid:30)(cid:27)C ,whereCisamodal Contents operatorread as\caused." Inthe thirdpartof thedissertation, we showthat a subsetofUCLiswell-suitedforautomatedreasoningaboutactions. Inparticular, weshowthattheclassof\simple"UCLtheoriesprovidesanexpressivebasisfor thecomputationallychallengingtaskofautomatedplanning. SimpleUCLtheories Acknowledgments v haveaconcisetranslationintoclassicallogic,and,asweshow,theclassicalmodels Abstract vi ofthetranslationcorrespondtovalidplans. Thisenables\satis(cid:12)abilityplanning" withcausalactiontheories,with\stateoftheart"performanceonlargeclassical ListofTables xiii planningproblems. ListofFigures xiv Chapter1 Introduction 1 1.1 TheFrameProblemandNonmonotonicity. . . . . . . . . . . . . . . 1 1.2 CommonsenseInertiaasMinimalChange . . . . . . . . . . . . . . . 3 1.2.1 TheYaleShootingProblem . . . . . . . . . . . . . . . . . . . 3 1.2.2 PossibleNextStates . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 StateConstraintsandStaticCausalLaws . . . . . . . . . . . . . . . 5 1.4 ACausalAccountofCommonsenseInertia . . . . . . . . . . . . . . 6 1.5 CausallyPossibleWorldsandUniversalCausation . . . . . . . . . . 8 1.6 AutomatedReasoningaboutActionsandSatis(cid:12)abilityPlanning . . 10 1.7 OutlineofDissertation. . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter2 LiteratureSurvey 14 2.1 TheSituationCalculus. . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 NonmonotonicFormalisms. . . . . . . . . . . . . . . . . . . . . . . . 17 vii viii 2.3 ActionTheoriesinLogicalFormalisms . . . . . . . . . . . . . . . . . 19 Chapter4 ProofsforPrecedingChapter 88 2.4 High-LevelActionLanguages . . . . . . . . . . . . . . . . . . . . . . 21 4.1 SplittingaDefaultTheory. . . . . . . . . . . . . . . . . . . . . . . . 88 2.5 PossibleNextStatesandTheoryUpdate. . . . . . . . . . . . . . . . 24 4.1.1 SplittingSets . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.6 CausalTheoriesofAction . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 SplittingSequences. . . . . . . . . . . . . . . . . . . . . . . . 92 4.2 ProofofSplittingSetTheorem . . . . . . . . . . . . . . . . . . . . . 93 Chapter3 InferenceRulesinCausalActionTheories 27 4.3 ProofofSplittingSequenceTheorem . . . . . . . . . . . . . . . . . . 101 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 ProofofCorrespondenceTheoremandReachabilityCorollary. . . . 106 3.2 FourExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5 Proof of LP Correspondence Theorem, LP Reachability Corollary, 3.3 ACausalDe(cid:12)nitionofPossibleNextStates . . . . . . . . . . . . . . 40 andVividDomainsTheorem . . . . . . . . . . . . . . . . . . . . . . 126 3.3.1 PreliminaryDe(cid:12)nitions . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 PossibleNextStates: RuleUpdate . . . . . . . . . . . . . . . 42 Chapter5 ALogicofUniversalCausation 132 3.3.3 RuleUpdateandMinimalChange . . . . . . . . . . . . . . . 43 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.3.4 ExplicitDe(cid:12)nitionsinRuleUpdate. . . . . . . . . . . . . . . 45 5.2 PropositionalUCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 3.4 TheActionLanguageAC . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.1 SyntaxandSemantics . . . . . . . . . . . . . . . . . . . . . . 137 3.4.1 SyntaxofAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 3.4.2 SemanticsofAC . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 PossibleNextStatesandInertiainUCL . . . . . . . . . . . . . . . . 139 3.4.3 AnExampleACDomainDescription. . . . . . . . . . . . . . 53 5.3.1 InferenceRulesinUCL . . . . . . . . . . . . . . . . . . . . . 139 3.4.4 RemarksontheActionLanguageAC . . . . . . . . . . . . . 56 5.3.2 TwoEmbeddingsofRuleUpdateinUCL . . . . . . . . . . . 142 3.5 RepresentingActionsinDefaultLogic . . . . . . . . . . . . . . . . . 65 5.3.3 AThirdEmbedding:CommonsenseInertiainUCL . . . . . 143 3.5.1 ReviewofDefaultLogic . . . . . . . . . . . . . . . . . . . . . 66 5.4 UCLandDefaultLogic . . . . . . . . . . . . . . . . . . . . . . . . . 146 3.5.2 EmbeddingPossibleNextStatesinDefaultLogic. . . . . . . 67 5.4.1 ReviewofDisjunctiveDefaultLogic . . . . . . . . . . . . . . 146 3.5.3 EmbeddingACinDefaultLogic . . . . . . . . . . . . . . . . 69 5.4.2 UCLandDisjunctiveDefaultLogic. . . . . . . . . . . . . . . 147 3.5.4 TheYaleShootingProbleminDefaultLogic . . . . . . . . . 74 5.5 EmbeddingACinUCL . . . . . . . . . . . . . . . . . . . . . . . . . 148 3.6 LogicProgramsforRepresentingActions . . . . . . . . . . . . . . . 79 5.6 FlatandDe(cid:12)niteUCLTheories. . . . . . . . . . . . . . . . . . . . . 155 3.6.1 ReviewofLogicProgramming . . . . . . . . . . . . . . . . . 79 5.6.1 FlatUCLTheories . . . . . . . . . . . . . . . . . . . . . . . . 155 3.6.2 LP-SimpleACDomainDescriptions . . . . . . . . . . . . . . 80 5.6.2 De(cid:12)niteUCLTheories . . . . . . . . . . . . . . . . . . . . . . 156 3.6.3 LP-SimpleACDomainDescriptionsasLogicPrograms . . . 82 5.7 (More)CausalTheoriesofActioninUCL . . . . . . . . . . . . . . . 158 3.6.4 MakingVividACDomainDescriptionsLP-Simple . . . . . . 85 5.7.1 L(F;A;T)Languages . . . . . . . . . . . . . . . . . . . . . . 159 ix x 5.7.2 L(F;A;T)DomainDescriptions . . . . . . . . . . . . . . . . 159 6.5.3 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . 209 5.7.3 ExpressivePossibilities. . . . . . . . . . . . . . . . . . . . . . 165 6.6 ProofofMainProposition . . . . . . . . . . . . . . . . . . . . . . . . 212 5.8 ASubsetofUCLinCircumscription . . . . . . . . . . . . . . . . . . 171 Chapter7 ConcludingRemarks 215 5.9 UCLandLin'sCircumscriptiveActionTheories. . . . . . . . . . . . 174 5.9.1 Lin'sCircumscriptiveCausalActionTheories . . . . . . . . . 174 Bibliography 219 5.9.2 Lin'sCircumscriptiveActionTheoriesinUCL . . . . . . . . 177 Vita 233 5.9.3 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 5.10 UCLandAutoepistemicLogic . . . . . . . . . . . . . . . . . . . . . 183 5.11 UCLwithQuanti(cid:12)ers . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5.12 NonpropositionalCausalTheoriesinUCL . . . . . . . . . . . . . . . 188 5.12.1 Lifschitz'sNonpropositionalCausalTheories . . . . . . . . . 188 5.12.2 Second-OrderCausalTheoriesinUCL . . . . . . . . . . . . . 189 Chapter6 Satis(cid:12)abilityPlanningwithCausalActionTheories 192 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.2 PlanningwithL(F;A;T)DomainDescriptions . . . . . . . . . . . . 194 6.2.1 CausallyPossiblePlans . . . . . . . . . . . . . . . . . . . . . 195 6.2.2 Su(cid:14)cientPlans . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.2.3 ExecutablePlans . . . . . . . . . . . . . . . . . . . . . . . . . 197 6.2.4 ValidPlans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 6.2.5 DeterministicPlans . . . . . . . . . . . . . . . . . . . . . . . 198 6.3 Satis(cid:12)abilityPlanningwithL(F;A;T)DomainDescriptions. . . . . 201 6.3.1 SimpleDomainDescriptions. . . . . . . . . . . . . . . . . . . 201 6.3.2 SimpleDomainDescriptionsYieldValidPlans . . . . . . . . 203 6.4 Satis(cid:12)abilityPlanningProgram . . . . . . . . . . . . . . . . . . . . . 204 6.5 LargePlanningProblems . . . . . . . . . . . . . . . . . . . . . . . . 205 6.5.1 BlocksWorldProblems . . . . . . . . . . . . . . . . . . . . . 205 6.5.2 LogisiticsPlanningProblems . . . . . . . . . . . . . . . . . . 209 xi xii List of Tables List of Figures 6.1 Satis(cid:12)ability Planning with Causal Action Theories. Sizes are for 3.1 DefaulttheoryforExample1.. . . . . . . . . . . . . . . . . . . . . . 31 clausaltheoriesobtained,vialiteralcompletion,fromcausalaction 3.2 LogicprogramforExample1.. . . . . . . . . . . . . . . . . . . . . . 33 theories(aftersimpli(cid:12)cation).Timeinsecondsusingthesatis(cid:12)ability 3.3 DefaulttheoryforExample2.. . . . . . . . . . . . . . . . . . . . . . 35 solverrelsat onaSparcstation5.. . . . . . . . . . . . . . . . . . . . 211 3.4 LogicprogramforExample3.. . . . . . . . . . . . . . . . . . . . . . 37 6.2 Kautz and Selman Problem Descriptions. Here we establish the 3.5 LogicprogramforExample4.. . . . . . . . . . . . . . . . . . . . . . 39 benchmarks|theresultsfortheclausaltheoriesusedin[KS96],with 3.6 Standardelementsofthetranslation(cid:14).. . . . . . . . . . . . . . . . . 71 solutiontimesobtainedinthesamemannerasinTable6.1. . . . . . 211 3.7 ACdomaindescriptionD1. . . . . . . . . . . . . . . . . . . . . . . . 72 6.3 ProvingPlansOptimal: Satis(cid:12)abilityPlanningwithCausalAction 3.8 Translation(cid:14)(D1)ofACdomaindescriptionD1. . . . . . . . . . . . 73 Theories. Here, in each case, the domain descriptionincludes one 3.9 DefaulttheoryY1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 timesteplessthanneededforasolution. Timereportedisnumber 3.10 DefaulttheoryY2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 ofsecondsrequiredforsolverrelsat todetermineunsatis(cid:12)ability.. . 212 3.11 DefaulttheoryY3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.1 UCLtranslationofdefaulttheoryforExample1. . . . . . . . . . . . 150 5.2 SimplerUCLtheoryforExample1. . . . . . . . . . . . . . . . . . . 150 5.3 UCLtheoryforExample2. . . . . . . . . . . . . . . . . . . . . . . . 151 5.4 UCLtheoryforExample3. . . . . . . . . . . . . . . . . . . . . . . . 151 5.5 AnotherUCLtheoryforExample1. . . . . . . . . . . . . . . . . . . 153 5.6 AnotherUCLtheoryforExample2. . . . . . . . . . . . . . . . . . . 153 5.7 AnotherUCLtheoryforExample3. . . . . . . . . . . . . . . . . . . 154 5.8 L(F;A;T)descriptionD3ofLin'sSuitcasedomain.. . . . . . . . . . 164 xiii xiv 5.9 L(F;A;T)descriptionD4ofCoinTossdomain.. . . . . . . . . . . . 166 5.10 L(F;A;T)descriptionD5ofDominosdomain. . . . . . . . . . . . . 168 5.11 L(F;A;T)descriptionD6ofPendulumdomain.. . . . . . . . . . . . 170 5.12 Lin'sSuitcasedomaininsecond-orderUCL. . . . . . . . . . . . . . . 188 6.1 Exampleinput(cid:12)lefortheplanningsystem: thePendulumdomain.. 204 Chapter 1 6.2 PlanningsessionwithPendulumdomain. . . . . . . . . . . . . . . . 206 6.3 Characterizationoflargeblocksworldproblemsfrom[KS96]. . . . . 206 6.4 Input(cid:12)leforBlocksWorldD. . . . . . . . . . . . . . . . . . . . . . . 207 Introduction 6.5 Input(cid:12)leforLogisticsC. . . . . . . . . . . . . . . . . . . . . . . . . 210 JohnMcCarthyinhis1959paper\ProgramswithCommonSense"[McC59]pro- posedthatresearchersinarti(cid:12)cialintelligencetrytoformalizeandautomatecom- monsensereasoningaboutactions. Thechallengeistoobtaincorrectconclusions abouttheoutcomesofactionsonthebasisofconcisedeclarativerepresentationsof commonsenseknowledgeaboutactiondomains. Thishasproveddi(cid:14)cult. Itiswidelyremarkedthatthenotionofcausalityplayslittleornorolein descriptionsoftheworldinthephysicalsciences. Thesamehasbeengenerallytrue ofproposedformalizationsofreasoningaboutaction,despitethecentralroleplayed bycausalnotionsineverydaydiscourseandthoughtaboutactions.Thisdissertation belongstoalineofrecentworkinvestigatingtheadvantagesofconsideringcausality moreexplicitly. 1.1 The Frame Problem and Nonmonotonicity Afundamentaldi(cid:14)cultyinreasoningaboutaction|theso-called\frameproblem"| was recognized and named by McCarthy and Hayes in their 1969 paper \Some PhilosophicalProblemsfromthe StandpointofArti(cid:12)calIntelligence"[MH69]. A xv 1 naturalstrategyformakingactionrepresentationsconciseistofocusondescribing 1.2 Commonsense Inertia as Minimal Change thechangescausedbyanaction,whileleavingimplicitourknowledgeoffactsun- In most proposalsfor reasoning about action, the commonsense law of inertia is a(cid:11)ectedbytheaction. Aboutfactsuna(cid:11)ectedbyanaction,weassumethatthey understoodaccordingtoaprincipleofminimalchange. Roughlyspeaking,theidea simplypersist,accordingtoa\commonsenselawofinertia."Thus,generallyspeak- is to capture the assumption that things change as little as possible, while also ing,theframeproblemistheproblemofmakingthecommonsenselawofinertia re(cid:13)ectingourknowledgeofwhatdoeschange. mathematicallyprecise. Itisclearthatsolutionstotheframeproblemwillbenonmonotonic: thatis, 1.2.1 TheYaleShootingProblem incontrasttoclassicallogic,conclusionsmaybelostwhenpremisesareadded. For In1986McCarthyproposedaformalizationofcommonsenseknowledgeaboutac- example,consideranactiondomaindescriptioninvolvingtwopropositional(cid:13)uents, tionsinwhichthecommonsenselawofinertiaisunderstoodaccordingtoaprinciple PandQ,andasingleactionA. (Apropositional(cid:13)uentisapropositionwhosevalue ofminimalchange[McC86]. Essentially,McCarthysaidthatchangeisabnormal, dependsontime.) SupposeyouaretoldthatP andQareinitiallyfalse,andthat andheusedtechnicalmeans|namely,circumscription(introducedin[McC80])|to AmakesP true. YouareexpectedtoconcludenotonlythatP wouldbecometrue select models of his action theory inwhichthat kindof abnormality is minimal. ifAwereperformed,butalsothatQwouldnot. Nowsupposethatyouaretold Thatis,hepreferredmodelsinwhichthingschangeaslittleaspossible. inadditionthatAmakesQtrue. YoushouldnolongerconcludethatQwouldbe HanksandMcDermottfamouslyexposedafundamentaldi(cid:14)cultywithMc- falseafterA;instead,QwouldbetrueafterA. Carthy's proposal, by introducing a counterexample widely known as the \Yale Althoughthepreviousinformalexampledemonstratesthatsolutionstothe Shooting" domain [HM87]. The essential elements can be described as follows. frameproblemwillbenonmonotonic, itdoeslittletosuggestthatsuchsolutions Thereisaturkey(Fred)andagun. Ifthegunisloaded,shootingitkillsFred. The may besubtleor di(cid:14)cultto (cid:12)nd. Nonetheless, thisseems so farto bethe case, questionisthis: IfFredisinitiallyaliveandthegunisinitiallyloaded,willFred particularlyasweattempttorepresentmoreelaboratekindsofdomainknowledge. bedeadaftertheactionsWait andShoot areperformedinsequence? Clearlythe Forinstance,inthisdissertationweareinterestednotonlyinhowtorepresentthe answershouldbeyes. Unfortunately,McCarthy'sformalizationcouldnotpredict \direct" e(cid:11)ects of actions, butalso inhow to represent \background knowledge" this. concerningrelationshipsbetween(cid:13)uents,inordertocorrectlyinferthe\indirect" Thefundamentaldi(cid:14)cultywithMcCarthy's1986proposalisthatitmini- e(cid:11)ectsofactions. Forexample,youmightbetoldnotonlythatAmakesP true, mizeschangeglobally(i.e.acrossallsituations). IntheintendedmodelsoftheYale butalsothatQcanbemadetruebymakingP true. Youshouldagainconclude Shootingdomain,no(cid:13)uentschangeasaresultoftheWaitaction|inparticular,the thatQwouldbetrueafterA. gunremainsloaded|andthenFredbecomesdeadasaresultoftheShoot action. McCarthycallsthedeathofFredabnormal,andisinprinciplewillingtotradethe deathofFredforotherpossibleabnormalities.Thus,theglobalminimizationpolicy 2 3 issatis(cid:12)edbyanomalousmodelsinwhichthegunbecomesunloadedasaresultof 1.3 State Constraints and Static Causal Laws the Wait action, and then no (cid:13)uents change as a result of the Shoot action|in Stateconstraintsareformulasofclassicallogicthataresaidtoholdineverypossible particular,FredremainsaliveaftertheShoot action.1 stateofanactiondomain. Traditionally,stateconstraintshavebeenusedtoderive ThisaccountoftheYaleShootingproblemsuggeststhatitiswrongtomin- indirecte(cid:11)ects,or\rami(cid:12)cations,"ofactions. Adaptingawidelyfamiliarexample imizechangeglobally,butdoesnotshowthattheprincipleofminimalchangewill (from[Bak91]),let'sassumethatyoucanmakeFredstopwalkingbymakinghimnot neverdo. alive.SoifshootingFredkillshim,youcanmakehimstopwalkingbyshootinghim: notwalkingisarami(cid:12)cationofshooting. Traditionally,thebackgroundknowledge 1.2.2 PossibleNextStates usedinthisexamplehasbeenexpressedbythestateconstraint Theprincipleofminimalchangecancarryusalongwayifappliedmorecarefully. Theessence oftheframeproblemcanbeformulatedasfollows. Givenaninitial :Alive(cid:27):Walking: (1.1) stateoftheworldandadescriptionofthee(cid:11)ectsofanactionwhenperformedin Thisstateconstraintisequivalentinclassicallogictoitscontrapositive thatstate,wemustsaywhichstatesoftheworldmayresult|sofarasweknow| aftertheactionisperformed. Wesayade(cid:12)nitionofthiskindidenti(cid:12)es\possible Walking(cid:27)Alive: nextstates." Winslett[Win88]proposedade(cid:12)nitionofpossiblenextstatesinwhich Thisistroublesomebecauseitisclearthatthecausalrelationitselfisnotcontra- thecommonsenselawofinertiaiscapturedmathematicallyasthestraightforward positive. Thatis,roughlyspeaking,althoughyoucanmakeFredstopwalkingby requirementthatthingschangeaslittleaspossible(whilestillsatisfyingthee(cid:11)ects killinghim, it does not follow from this that you can bringFred back to life by oftheaction). makinghimwalk. Thissimpleidea(invariousguises)hasledtoconsiderableprogress. Infact, Recently, a number of researchers have argued that state constraints are it seems that a good deal of the widely-remarked technical di(cid:14)culty in work on inadequateforrepresentingbackgroundknowledgeinactiondomains,becausethey reasoningaboutactioncanbeattributedtotheneedto(cid:12)ndmathematicalmeans do not adequately represent causal relations [Gef90, Elk92, BH93, Bar95, Lin95, forcapturingthissimplede(cid:12)nitionofpossiblenextstateswithindescriptionsthat MT95b,Thi95a,Gus96]. Inthisdissertationweexploretheuseof\staticcausal aremorecomplexprimarilybecausetheyencompassmorethananinitialsituation, laws"ofthekindintroducedbyMcCainandTurnerin[MT95b]:ifa(cid:13)uentformula(cid:30) anactionandaresultingsituation. (Seeforexample[Bak91],orChapter4ofthis iscausedtobetrue,thena(cid:13)uentformula isalsocausedtobetrue. Fromsuch dissertation.)2 acausallawitfollowsthatonecanmake truebymaking(cid:30)true. Italsofollows 1Accordingtotheinformaldescriptiongivenhere,therewillbeanotherclassofmodels,inwhich thatineverypossiblestate, istrueif(cid:30)is. Thatis,thestateconstraint(cid:30)(cid:27) FreddiesasaresultoftheWaitaction(whilethegunremainsloaded). Asithappens,thiskind ofanomalousmodelisruledoutinMcCarthy'sstyleofformalization,whichforcesanabnormality statesoftheworld.KatsunoandMendelzonemphasizeasimilarpointintheirin(cid:13)uentialpaper\On withrespecttoAlivewheneverShootisperformedwithaloadedgun,evenifFredisalreadydead. theDi(cid:11)erenceBetweenUpdatingaKnowledgeBaseandRevisingIt"[KM91].Wewillalludetothis 2InpassingweremarkthatWinslettalsoemphasizedasecondcrucialelementinthepossible pointseveraltimesinthisdissertation,sinceitalsohelpsexplaintechnicaldi(cid:14)cultiesencountered nextstatessetting.Reasoningaboutactionisbyitsnatureamatterofreasoningaboutcomplete insomeformalizationsofactions. 4 5
Description: