ebook img

Causal Action Theories and Satis ability Planning The University of PDF

125 Pages·2007·0.91 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Causal Action Theories and Satis ability Planning The University of

Causal Action Theories and Satis(cid:12)ability Planning by CharlesHudsonTurner,B.A.,M.L.I.S., M.S.C.S. Copyright Dissertation by PresentedtotheFacultyoftheGraduateSchoolof CharlesHudsonTurner TheUniversityofTexasatAustin 1998 inPartialFul(cid:12)llment oftheRequirements fortheDegreeof DoctorofPhilosophy The University of Texas at Austin August1998 Causal Action Theories and Satis(cid:12)ability Planning Approvedby DissertationCommittee: Thisdissertationisdedicatedtomywife,CarolGeorge, andmyparents,CharlesandClariceTurner. Causal Action Theories and Satis(cid:12)ability Planning PublicationNo. Acknowledgments CharlesHudsonTurner,Ph.D. TheUniversityofTexasatAustin,1998 IamdeeplygratefultoVladimirLifschitz,who,amongotherthings,madethiswork possibleforme,andtoNormMcCain,whocarefullyandpatientlydiscussedwith memanyoftheideasastheytookshape. Iamgratefulaswellforthehelpand Supervisor:VladimirLifschitz encouragementofmanyotherfriends,teachersandcolleagues. Thisdissertationaddressestheproblemofrepresentingandreasoningaboutcom- monsenseknowledge of action domains. Untilrecently, most suchwork has sup- pressed the notion of causality, despite its central role in everyday talking and CharlesHudsonTurner reasoning about actions. There is good reason for this. In general, causality is adi(cid:14)cultnotion,bothphilosophicallyandmathematically. Nonetheless, itturns TheUniversityofTexasatAustin outthatactionrepresentationscanbemadenotonlymoreexpressivebutalsomath- August1998 ematicallysimplerbyrepresentingcausalitymoreexplicitly.Thekeyistoformalize onlyarelativelysimplekindofcausalknowledge: knowledgeoftheconditionsun- derwhichfacts are caused. Inthe (cid:12)rstpartofthe dissertationwe dothisusing inferencerulesandrule-basednonmonotonicformalisms. Asweshow,aninference (cid:30) rule canbeunderstoodtorepresenttheknowledgethatif(cid:30)iscausedthen is caused. (Noticethatwedonotsay\(cid:30)causes .") Thisleadstosimpleandex- pressiveactionrepresentationsinReiter'sdefaultlogic,arule-basednonmonotonic formalism.Thisapproachalsoyieldsactiondescriptionsinlogicprogramming,thus raisingthepossibility,atleastinprinciple,ofautomatedreasoningaboutactions andplanning.Inthesecondpartofthedissertation,weintroduceanewmodalnon- v vi monotoniclogic|thelogicof\universalcausation"(UCL)|speci(cid:12)callydesignedfor describingtheconditionsunderwhichfacts arecaused. We showthat UCLpro- videsamoretraditionalsemanticaccountofthemathematicallysimpleapproachto causalknowledgethatunderliesourcausaltheoriesofaction. Forinstance,instead (cid:30) oftheinferencerule ,wewritethemodalformulaC(cid:30)(cid:27)C ,whereCisamodal Contents operatorread as\caused." Inthe thirdpartof thedissertation, we showthat a subsetofUCLiswell-suitedforautomatedreasoningaboutactions. Inparticular, weshowthattheclassof\simple"UCLtheoriesprovidesanexpressivebasisfor thecomputationallychallengingtaskofautomatedplanning. SimpleUCLtheories Acknowledgments v haveaconcisetranslationintoclassicallogic,and,asweshow,theclassicalmodels Abstract vi ofthetranslationcorrespondtovalidplans. Thisenables\satis(cid:12)abilityplanning" withcausalactiontheories,with\stateoftheart"performanceonlargeclassical ListofTables xiii planningproblems. ListofFigures xiv Chapter1 Introduction 1 1.1 TheFrameProblemandNonmonotonicity. . . . . . . . . . . . . . . 1 1.2 CommonsenseInertiaasMinimalChange . . . . . . . . . . . . . . . 3 1.2.1 TheYaleShootingProblem . . . . . . . . . . . . . . . . . . . 3 1.2.2 PossibleNextStates . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 StateConstraintsandStaticCausalLaws . . . . . . . . . . . . . . . 5 1.4 ACausalAccountofCommonsenseInertia . . . . . . . . . . . . . . 6 1.5 CausallyPossibleWorldsandUniversalCausation . . . . . . . . . . 8 1.6 AutomatedReasoningaboutActionsandSatis(cid:12)abilityPlanning . . 10 1.7 OutlineofDissertation. . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter2 LiteratureSurvey 14 2.1 TheSituationCalculus. . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 NonmonotonicFormalisms. . . . . . . . . . . . . . . . . . . . . . . . 17 vii viii 2.3 ActionTheoriesinLogicalFormalisms . . . . . . . . . . . . . . . . . 19 Chapter4 ProofsforPrecedingChapter 88 2.4 High-LevelActionLanguages . . . . . . . . . . . . . . . . . . . . . . 21 4.1 SplittingaDefaultTheory. . . . . . . . . . . . . . . . . . . . . . . . 88 2.5 PossibleNextStatesandTheoryUpdate. . . . . . . . . . . . . . . . 24 4.1.1 SplittingSets . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.6 CausalTheoriesofAction . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 SplittingSequences. . . . . . . . . . . . . . . . . . . . . . . . 92 4.2 ProofofSplittingSetTheorem . . . . . . . . . . . . . . . . . . . . . 93 Chapter3 InferenceRulesinCausalActionTheories 27 4.3 ProofofSplittingSequenceTheorem . . . . . . . . . . . . . . . . . . 101 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 ProofofCorrespondenceTheoremandReachabilityCorollary. . . . 106 3.2 FourExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5 Proof of LP Correspondence Theorem, LP Reachability Corollary, 3.3 ACausalDe(cid:12)nitionofPossibleNextStates . . . . . . . . . . . . . . 40 andVividDomainsTheorem . . . . . . . . . . . . . . . . . . . . . . 126 3.3.1 PreliminaryDe(cid:12)nitions . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 PossibleNextStates: RuleUpdate . . . . . . . . . . . . . . . 42 Chapter5 ALogicofUniversalCausation 132 3.3.3 RuleUpdateandMinimalChange . . . . . . . . . . . . . . . 43 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.3.4 ExplicitDe(cid:12)nitionsinRuleUpdate. . . . . . . . . . . . . . . 45 5.2 PropositionalUCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 3.4 TheActionLanguageAC . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.1 SyntaxandSemantics . . . . . . . . . . . . . . . . . . . . . . 137 3.4.1 SyntaxofAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 3.4.2 SemanticsofAC . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 PossibleNextStatesandInertiainUCL . . . . . . . . . . . . . . . . 139 3.4.3 AnExampleACDomainDescription. . . . . . . . . . . . . . 53 5.3.1 InferenceRulesinUCL . . . . . . . . . . . . . . . . . . . . . 139 3.4.4 RemarksontheActionLanguageAC . . . . . . . . . . . . . 56 5.3.2 TwoEmbeddingsofRuleUpdateinUCL . . . . . . . . . . . 142 3.5 RepresentingActionsinDefaultLogic . . . . . . . . . . . . . . . . . 65 5.3.3 AThirdEmbedding:CommonsenseInertiainUCL . . . . . 143 3.5.1 ReviewofDefaultLogic . . . . . . . . . . . . . . . . . . . . . 66 5.4 UCLandDefaultLogic . . . . . . . . . . . . . . . . . . . . . . . . . 146 3.5.2 EmbeddingPossibleNextStatesinDefaultLogic. . . . . . . 67 5.4.1 ReviewofDisjunctiveDefaultLogic . . . . . . . . . . . . . . 146 3.5.3 EmbeddingACinDefaultLogic . . . . . . . . . . . . . . . . 69 5.4.2 UCLandDisjunctiveDefaultLogic. . . . . . . . . . . . . . . 147 3.5.4 TheYaleShootingProbleminDefaultLogic . . . . . . . . . 74 5.5 EmbeddingACinUCL . . . . . . . . . . . . . . . . . . . . . . . . . 148 3.6 LogicProgramsforRepresentingActions . . . . . . . . . . . . . . . 79 5.6 FlatandDe(cid:12)niteUCLTheories. . . . . . . . . . . . . . . . . . . . . 155 3.6.1 ReviewofLogicProgramming . . . . . . . . . . . . . . . . . 79 5.6.1 FlatUCLTheories . . . . . . . . . . . . . . . . . . . . . . . . 155 3.6.2 LP-SimpleACDomainDescriptions . . . . . . . . . . . . . . 80 5.6.2 De(cid:12)niteUCLTheories . . . . . . . . . . . . . . . . . . . . . . 156 3.6.3 LP-SimpleACDomainDescriptionsasLogicPrograms . . . 82 5.7 (More)CausalTheoriesofActioninUCL . . . . . . . . . . . . . . . 158 3.6.4 MakingVividACDomainDescriptionsLP-Simple . . . . . . 85 5.7.1 L(F;A;T)Languages . . . . . . . . . . . . . . . . . . . . . . 159 ix x 5.7.2 L(F;A;T)DomainDescriptions . . . . . . . . . . . . . . . . 159 6.5.3 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . 209 5.7.3 ExpressivePossibilities. . . . . . . . . . . . . . . . . . . . . . 165 6.6 ProofofMainProposition . . . . . . . . . . . . . . . . . . . . . . . . 212 5.8 ASubsetofUCLinCircumscription . . . . . . . . . . . . . . . . . . 171 Chapter7 ConcludingRemarks 215 5.9 UCLandLin'sCircumscriptiveActionTheories. . . . . . . . . . . . 174 5.9.1 Lin'sCircumscriptiveCausalActionTheories . . . . . . . . . 174 Bibliography 219 5.9.2 Lin'sCircumscriptiveActionTheoriesinUCL . . . . . . . . 177 Vita 233 5.9.3 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 5.10 UCLandAutoepistemicLogic . . . . . . . . . . . . . . . . . . . . . 183 5.11 UCLwithQuanti(cid:12)ers . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5.12 NonpropositionalCausalTheoriesinUCL . . . . . . . . . . . . . . . 188 5.12.1 Lifschitz'sNonpropositionalCausalTheories . . . . . . . . . 188 5.12.2 Second-OrderCausalTheoriesinUCL . . . . . . . . . . . . . 189 Chapter6 Satis(cid:12)abilityPlanningwithCausalActionTheories 192 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.2 PlanningwithL(F;A;T)DomainDescriptions . . . . . . . . . . . . 194 6.2.1 CausallyPossiblePlans . . . . . . . . . . . . . . . . . . . . . 195 6.2.2 Su(cid:14)cientPlans . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.2.3 ExecutablePlans . . . . . . . . . . . . . . . . . . . . . . . . . 197 6.2.4 ValidPlans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 6.2.5 DeterministicPlans . . . . . . . . . . . . . . . . . . . . . . . 198 6.3 Satis(cid:12)abilityPlanningwithL(F;A;T)DomainDescriptions. . . . . 201 6.3.1 SimpleDomainDescriptions. . . . . . . . . . . . . . . . . . . 201 6.3.2 SimpleDomainDescriptionsYieldValidPlans . . . . . . . . 203 6.4 Satis(cid:12)abilityPlanningProgram . . . . . . . . . . . . . . . . . . . . . 204 6.5 LargePlanningProblems . . . . . . . . . . . . . . . . . . . . . . . . 205 6.5.1 BlocksWorldProblems . . . . . . . . . . . . . . . . . . . . . 205 6.5.2 LogisiticsPlanningProblems . . . . . . . . . . . . . . . . . . 209 xi xii List of Tables List of Figures 6.1 Satis(cid:12)ability Planning with Causal Action Theories. Sizes are for 3.1 DefaulttheoryforExample1.. . . . . . . . . . . . . . . . . . . . . . 31 clausaltheoriesobtained,vialiteralcompletion,fromcausalaction 3.2 LogicprogramforExample1.. . . . . . . . . . . . . . . . . . . . . . 33 theories(aftersimpli(cid:12)cation).Timeinsecondsusingthesatis(cid:12)ability 3.3 DefaulttheoryforExample2.. . . . . . . . . . . . . . . . . . . . . . 35 solverrelsat onaSparcstation5.. . . . . . . . . . . . . . . . . . . . 211 3.4 LogicprogramforExample3.. . . . . . . . . . . . . . . . . . . . . . 37 6.2 Kautz and Selman Problem Descriptions. Here we establish the 3.5 LogicprogramforExample4.. . . . . . . . . . . . . . . . . . . . . . 39 benchmarks|theresultsfortheclausaltheoriesusedin[KS96],with 3.6 Standardelementsofthetranslation(cid:14).. . . . . . . . . . . . . . . . . 71 solutiontimesobtainedinthesamemannerasinTable6.1. . . . . . 211 3.7 ACdomaindescriptionD1. . . . . . . . . . . . . . . . . . . . . . . . 72 6.3 ProvingPlansOptimal: Satis(cid:12)abilityPlanningwithCausalAction 3.8 Translation(cid:14)(D1)ofACdomaindescriptionD1. . . . . . . . . . . . 73 Theories. Here, in each case, the domain descriptionincludes one 3.9 DefaulttheoryY1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 timesteplessthanneededforasolution. Timereportedisnumber 3.10 DefaulttheoryY2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 ofsecondsrequiredforsolverrelsat todetermineunsatis(cid:12)ability.. . 212 3.11 DefaulttheoryY3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.1 UCLtranslationofdefaulttheoryforExample1. . . . . . . . . . . . 150 5.2 SimplerUCLtheoryforExample1. . . . . . . . . . . . . . . . . . . 150 5.3 UCLtheoryforExample2. . . . . . . . . . . . . . . . . . . . . . . . 151 5.4 UCLtheoryforExample3. . . . . . . . . . . . . . . . . . . . . . . . 151 5.5 AnotherUCLtheoryforExample1. . . . . . . . . . . . . . . . . . . 153 5.6 AnotherUCLtheoryforExample2. . . . . . . . . . . . . . . . . . . 153 5.7 AnotherUCLtheoryforExample3. . . . . . . . . . . . . . . . . . . 154 5.8 L(F;A;T)descriptionD3ofLin'sSuitcasedomain.. . . . . . . . . . 164 xiii xiv 5.9 L(F;A;T)descriptionD4ofCoinTossdomain.. . . . . . . . . . . . 166 5.10 L(F;A;T)descriptionD5ofDominosdomain. . . . . . . . . . . . . 168 5.11 L(F;A;T)descriptionD6ofPendulumdomain.. . . . . . . . . . . . 170 5.12 Lin'sSuitcasedomaininsecond-orderUCL. . . . . . . . . . . . . . . 188 6.1 Exampleinput(cid:12)lefortheplanningsystem: thePendulumdomain.. 204 Chapter 1 6.2 PlanningsessionwithPendulumdomain. . . . . . . . . . . . . . . . 206 6.3 Characterizationoflargeblocksworldproblemsfrom[KS96]. . . . . 206 6.4 Input(cid:12)leforBlocksWorldD. . . . . . . . . . . . . . . . . . . . . . . 207 Introduction 6.5 Input(cid:12)leforLogisticsC. . . . . . . . . . . . . . . . . . . . . . . . . 210 JohnMcCarthyinhis1959paper\ProgramswithCommonSense"[McC59]pro- posedthatresearchersinarti(cid:12)cialintelligencetrytoformalizeandautomatecom- monsensereasoningaboutactions. Thechallengeistoobtaincorrectconclusions abouttheoutcomesofactionsonthebasisofconcisedeclarativerepresentationsof commonsenseknowledgeaboutactiondomains. Thishasproveddi(cid:14)cult. Itiswidelyremarkedthatthenotionofcausalityplayslittleornorolein descriptionsoftheworldinthephysicalsciences. Thesamehasbeengenerallytrue ofproposedformalizationsofreasoningaboutaction,despitethecentralroleplayed bycausalnotionsineverydaydiscourseandthoughtaboutactions.Thisdissertation belongstoalineofrecentworkinvestigatingtheadvantagesofconsideringcausality moreexplicitly. 1.1 The Frame Problem and Nonmonotonicity Afundamentaldi(cid:14)cultyinreasoningaboutaction|theso-called\frameproblem"| was recognized and named by McCarthy and Hayes in their 1969 paper \Some PhilosophicalProblemsfromthe StandpointofArti(cid:12)calIntelligence"[MH69]. A xv 1 naturalstrategyformakingactionrepresentationsconciseistofocusondescribing 1.2 Commonsense Inertia as Minimal Change thechangescausedbyanaction,whileleavingimplicitourknowledgeoffactsun- In most proposalsfor reasoning about action, the commonsense law of inertia is a(cid:11)ectedbytheaction. Aboutfactsuna(cid:11)ectedbyanaction,weassumethatthey understoodaccordingtoaprincipleofminimalchange. Roughlyspeaking,theidea simplypersist,accordingtoa\commonsenselawofinertia."Thus,generallyspeak- is to capture the assumption that things change as little as possible, while also ing,theframeproblemistheproblemofmakingthecommonsenselawofinertia re(cid:13)ectingourknowledgeofwhatdoeschange. mathematicallyprecise. Itisclearthatsolutionstotheframeproblemwillbenonmonotonic: thatis, 1.2.1 TheYaleShootingProblem incontrasttoclassicallogic,conclusionsmaybelostwhenpremisesareadded. For In1986McCarthyproposedaformalizationofcommonsenseknowledgeaboutac- example,consideranactiondomaindescriptioninvolvingtwopropositional(cid:13)uents, tionsinwhichthecommonsenselawofinertiaisunderstoodaccordingtoaprinciple PandQ,andasingleactionA. (Apropositional(cid:13)uentisapropositionwhosevalue ofminimalchange[McC86]. Essentially,McCarthysaidthatchangeisabnormal, dependsontime.) SupposeyouaretoldthatP andQareinitiallyfalse,andthat andheusedtechnicalmeans|namely,circumscription(introducedin[McC80])|to AmakesP true. YouareexpectedtoconcludenotonlythatP wouldbecometrue select models of his action theory inwhichthat kindof abnormality is minimal. ifAwereperformed,butalsothatQwouldnot. Nowsupposethatyouaretold Thatis,hepreferredmodelsinwhichthingschangeaslittleaspossible. inadditionthatAmakesQtrue. YoushouldnolongerconcludethatQwouldbe HanksandMcDermottfamouslyexposedafundamentaldi(cid:14)cultywithMc- falseafterA;instead,QwouldbetrueafterA. Carthy's proposal, by introducing a counterexample widely known as the \Yale Althoughthepreviousinformalexampledemonstratesthatsolutionstothe Shooting" domain [HM87]. The essential elements can be described as follows. frameproblemwillbenonmonotonic, itdoeslittletosuggestthatsuchsolutions Thereisaturkey(Fred)andagun. Ifthegunisloaded,shootingitkillsFred. The may besubtleor di(cid:14)cultto (cid:12)nd. Nonetheless, thisseems so farto bethe case, questionisthis: IfFredisinitiallyaliveandthegunisinitiallyloaded,willFred particularlyasweattempttorepresentmoreelaboratekindsofdomainknowledge. bedeadaftertheactionsWait andShoot areperformedinsequence? Clearlythe Forinstance,inthisdissertationweareinterestednotonlyinhowtorepresentthe answershouldbeyes. Unfortunately,McCarthy'sformalizationcouldnotpredict \direct" e(cid:11)ects of actions, butalso inhow to represent \background knowledge" this. concerningrelationshipsbetween(cid:13)uents,inordertocorrectlyinferthe\indirect" Thefundamentaldi(cid:14)cultywithMcCarthy's1986proposalisthatitmini- e(cid:11)ectsofactions. Forexample,youmightbetoldnotonlythatAmakesP true, mizeschangeglobally(i.e.acrossallsituations). IntheintendedmodelsoftheYale butalsothatQcanbemadetruebymakingP true. Youshouldagainconclude Shootingdomain,no(cid:13)uentschangeasaresultoftheWaitaction|inparticular,the thatQwouldbetrueafterA. gunremainsloaded|andthenFredbecomesdeadasaresultoftheShoot action. McCarthycallsthedeathofFredabnormal,andisinprinciplewillingtotradethe deathofFredforotherpossibleabnormalities.Thus,theglobalminimizationpolicy 2 3 issatis(cid:12)edbyanomalousmodelsinwhichthegunbecomesunloadedasaresultof 1.3 State Constraints and Static Causal Laws the Wait action, and then no (cid:13)uents change as a result of the Shoot action|in Stateconstraintsareformulasofclassicallogicthataresaidtoholdineverypossible particular,FredremainsaliveaftertheShoot action.1 stateofanactiondomain. Traditionally,stateconstraintshavebeenusedtoderive ThisaccountoftheYaleShootingproblemsuggeststhatitiswrongtomin- indirecte(cid:11)ects,or\rami(cid:12)cations,"ofactions. Adaptingawidelyfamiliarexample imizechangeglobally,butdoesnotshowthattheprincipleofminimalchangewill (from[Bak91]),let'sassumethatyoucanmakeFredstopwalkingbymakinghimnot neverdo. alive.SoifshootingFredkillshim,youcanmakehimstopwalkingbyshootinghim: notwalkingisarami(cid:12)cationofshooting. Traditionally,thebackgroundknowledge 1.2.2 PossibleNextStates usedinthisexamplehasbeenexpressedbythestateconstraint Theprincipleofminimalchangecancarryusalongwayifappliedmorecarefully. Theessence oftheframeproblemcanbeformulatedasfollows. Givenaninitial :Alive(cid:27):Walking: (1.1) stateoftheworldandadescriptionofthee(cid:11)ectsofanactionwhenperformedin Thisstateconstraintisequivalentinclassicallogictoitscontrapositive thatstate,wemustsaywhichstatesoftheworldmayresult|sofarasweknow| aftertheactionisperformed. Wesayade(cid:12)nitionofthiskindidenti(cid:12)es\possible Walking(cid:27)Alive: nextstates." Winslett[Win88]proposedade(cid:12)nitionofpossiblenextstatesinwhich Thisistroublesomebecauseitisclearthatthecausalrelationitselfisnotcontra- thecommonsenselawofinertiaiscapturedmathematicallyasthestraightforward positive. Thatis,roughlyspeaking,althoughyoucanmakeFredstopwalkingby requirementthatthingschangeaslittleaspossible(whilestillsatisfyingthee(cid:11)ects killinghim, it does not follow from this that you can bringFred back to life by oftheaction). makinghimwalk. Thissimpleidea(invariousguises)hasledtoconsiderableprogress. Infact, Recently, a number of researchers have argued that state constraints are it seems that a good deal of the widely-remarked technical di(cid:14)culty in work on inadequateforrepresentingbackgroundknowledgeinactiondomains,becausethey reasoningaboutactioncanbeattributedtotheneedto(cid:12)ndmathematicalmeans do not adequately represent causal relations [Gef90, Elk92, BH93, Bar95, Lin95, forcapturingthissimplede(cid:12)nitionofpossiblenextstateswithindescriptionsthat MT95b,Thi95a,Gus96]. Inthisdissertationweexploretheuseof\staticcausal aremorecomplexprimarilybecausetheyencompassmorethananinitialsituation, laws"ofthekindintroducedbyMcCainandTurnerin[MT95b]:ifa(cid:13)uentformula(cid:30) anactionandaresultingsituation. (Seeforexample[Bak91],orChapter4ofthis iscausedtobetrue,thena(cid:13)uentformula isalsocausedtobetrue. Fromsuch dissertation.)2 acausallawitfollowsthatonecanmake truebymaking(cid:30)true. Italsofollows 1Accordingtotheinformaldescriptiongivenhere,therewillbeanotherclassofmodels,inwhich thatineverypossiblestate, istrueif(cid:30)is. Thatis,thestateconstraint(cid:30)(cid:27) FreddiesasaresultoftheWaitaction(whilethegunremainsloaded). Asithappens,thiskind ofanomalousmodelisruledoutinMcCarthy'sstyleofformalization,whichforcesanabnormality statesoftheworld.KatsunoandMendelzonemphasizeasimilarpointintheirin(cid:13)uentialpaper\On withrespecttoAlivewheneverShootisperformedwithaloadedgun,evenifFredisalreadydead. theDi(cid:11)erenceBetweenUpdatingaKnowledgeBaseandRevisingIt"[KM91].Wewillalludetothis 2InpassingweremarkthatWinslettalsoemphasizedasecondcrucialelementinthepossible pointseveraltimesinthisdissertation,sinceitalsohelpsexplaintechnicaldi(cid:14)cultiesencountered nextstatessetting.Reasoningaboutactionisbyitsnatureamatterofreasoningaboutcomplete insomeformalizationsofactions. 4 5

Description:
have a concise translation into classical logic, and, as we show, the classical models Chapter 1 Introduction. 1 Chapter 2 Literature Survey. 14 for logic programs GL88], later renamed the \answer set" semantics and extended .. applicability of the de nitions introduced in this chapter, by con
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.