ebook img

Category Theory Course [Lecture notes] PDF

59 Pages·2016·0.412 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Category Theory Course [Lecture notes]

Category Theory Course John Baez 8 2016 May , 1 Contents 1 CategoryTheory: 4 1.1 DefinitionofaCategory . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1 Categoriesofmathematicalobjects. . . . . . . . . . . . . 5 1.1.2 Categoriesasmathematicalobjects . . . . . . . . . . . . 6 1.2 DoingMathematicsinsideaCategory . . . . . . . . . . . . . . . 10 1.3 LimitsandColimits . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.2 Coproducts . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 GeneralLimitsandColimits . . . . . . . . . . . . . . . . . . . . . 15 2 Equalizers,Coequalizers,Pullbacks,andPushouts(Week3) 16 2.1 Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Coequalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 PullbacksandPushouts . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Limitsforallfinitediagrams . . . . . . . . . . . . . . . . . . . . 21 3 Week4 22 3.1 MathematicsBetweenCategories . . . . . . . . . . . . . . . . . . 22 3.2 NaturalTransformations . . . . . . . . . . . . . . . . . . . . . . . 25 4 MapsBetweenCategories 28 4.1 NaturalTransformations . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.1 Examplesofnaturaltransformations . . . . . . . . . . . 28 4.2 EquivalenceofCategories . . . . . . . . . . . . . . . . . . . . . . 28 4.3 Adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.1 Whatareadjunctions? . . . . . . . . . . . . . . . . . . . . 29 4.3.2 ExamplesofAdjunctions . . . . . . . . . . . . . . . . . . 30 4.3.3 DiagonalFunctor . . . . . . . . . . . . . . . . . . . . . . . 31 5 DiagramsinaCategoryasFunctors 33 5.1 UnitsandCounitsofAdjunctions . . . . . . . . . . . . . . . . . 39 6 CartesianClosedCategories 40 6.1 EvaluationandCoevaluationinCartesianClosedCategories . 41 6.1.1 InternalizingComposition . . . . . . . . . . . . . . . . . 42 6.2 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7 Week9 43 7.1 Subobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8 SymmetricMonoidalCategories 50 8.1 GuestlecturebyChristinaOsborne . . . . . . . . . . . . . . . . 50 8.1.1 WhatisaMonoidalCategory? . . . . . . . . . . . . . . . 50 8.1.2 Going back to the definition of a symmetric monoidal category... . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2 9 Week10 54 9.1 ThesubobjectclassifierinGraph . . . . . . . . . . . . . . . . . . 54 9.2 SetTheory,Topos,andLogic . . . . . . . . . . . . . . . . . . . . 56 9.3 Wheredoestopostheorygofromhere? . . . . . . . . . . . . . . 59 3 1 Category Theory: • Unifiesmathematics. • Studiesthemathematicsofmathematics(similartomathematicallogic). • Moves towards higher-dimensional algebra (“homotopifying” mathe- matics). • • • • • • • • • • SetTheory CategoryTheory 0-dimensional 1-dimensional 4 1.1 Definition of a Category Acategory C consistsof: • AclassOb(C) of objects. If x ∈Ob(C),wesimplywrite x ∈ C. • Givenx,y ∈ C,there’saset Hom (x,y),calledahomset,whoseelements C are called morphisms or arrows from x to y. If f ∈ Hom (x,y), we write C f : x → y. • Given f : x → yandg : y → z,thereisamorphismcalledtheircomposite g◦ f : x → z. y f g x z g◦f • Compositionisassociative: (h◦g)◦ f = h◦(g◦ f) ifeithersideiswell- defined. g • • f h g◦f h◦f • • h◦(g◦f)=(h◦g)◦f • Forany x ∈ C,thereisanidentitymorphism1 : x → x x 1x x • Wehavetheleftandrightunitylaws: 1 ◦ f = f forany f : x(cid:48) → x x g◦1 = g forany g : x → x(cid:48) x Examples of Categories 1.1.1 Categoriesofmathematicalobjects For any kind of mathematical object, there’s a category with objects of that kindandmorhpismsbeingthestructure-preservingmapsbetweentheobjects ofthatkind. Example 1.1. Set is the category with sets as objects and functions as mor- phisms. 5 Example1.2. Grpisthecategorywithgroupsasobjectsandhomomorphisms asmorphisms. Example 1.3. For any field k, Vect is the category with vector spaces over a k fieldkasobjectsandlinearmapsasmorphisms. Example 1.4. Ring is the category with rings as objects and ring homomor- phismsasmorphisms. These are categories of “algebraic” objects, namely, a set (stuff) with oper- ations (structure) such that a bunch of equations hold (properties), with mor- phisms being functions that preserve the operations. All this is formalized in “universal algebra”, using “algebraic theories”. There are also categories of non-algebraicgadgets: Example 1.5. Top is the category with topological spaces as objects and con- tinuousmapsasmorphisms. Example1.6. Metisthecategorywithmetricspacesasobjectsandcontinuous mapsasmorphisms. Example 1.7. Meas is the category with measurable spaces as objects and measurablemapsasmorphisms. 1.1.2 Categoriesasmathematicalobjects Therearelotsofsmall,managebablecategories: Definition1.1. Amonoidisacategorywithoneobject. Remark. Hom (•,•) for this object •, is a set with associative product and C unit. 1• g • f Example1.8. 1• • f ◦ 1• f 1• 1• f f f 1• Themultiplicationtableabovetellsushowtocomposemorphisms. The resultingmonoidisusuallycalledZ/2Z. Now,considerthesamediagram butwiththismultiplicationtableinstead: ◦ 1• f 1• 1• f f f f Herewegetanotherfamousmonoid: 1• =true 1• =false f =false oralternatively f =true ◦ =or ◦ =and 6 Definition 1.2. A morphism f : x → y is an isomorphism if it has an inverse g : y → x,thatis,amorphismwith: g◦ f =1 x f ◦g =1 y Ifthereexistsanisomorphismbetweentwoobjects x,y ∈ C,wesaythey’re isomorphic. Definition1.3. Acategorywhereallmorphismsareisomorphismsiscalleda groupoid. Example1.9. "Thegroupoidoffinitesets"isobtainedbytaking FinSet, with finite sets as objects and functions as morphisms, and then throwing out all morphismsexceptisomorphisms(i.e. bijections). Definition1.4. Amonoidthatisagroupoidiscalledagroup. Remark. theusual"elements"ofagrouparenowthemorphisms. Definition1.5. Acategorywithonlyidentitymorphismsisadiscretecategory. Remark. So any set is the set of objects of some discrete category in a unique way. Soadiscretecategoryis"essentiallythesame"asaset. 1• 1• • • 1• 1x • x Definition 1.6. A preorder is a category with at most one morphism in each homset. Ifthereisamorphism f : x → y inapreorder,wesay“x ≤ y”;ifnot,wesay (cid:2) “x y. Forapreorder,thecategoryaxiomsjustsay: • Composition: x ≤ y and y ≤ z =⇒ x ≤ z. • Associativityisautomatic. • Identities: x ≤ x always. • Leftandrightunitlawsareautomatic. • We’renotgettingantisymmetry: x ≤ y and y ≤ x =⇒ x = y. Definition1.7. Anequivalencerelationisapreorderthat’salsoagroupoid. Proposition 1.1. A preoder is a groupoid if and only if this extra law holds for all x,y ∈ C: x ≤ y =⇒ y ≤ x 7 Herewehavetransitivity,reflexivity,andsymmetryof“≤”. Soweusually callthisrelation ∼. Proposition1.2. Apreorderisskeletal,i.e. isomorphicobjectsareequal,ifandonly ifthisextralawholdsforall x,y ∈ C: (x ≤ y)∧(y ≤ x) =⇒ x = y Inthiscasewesaythat C isaposet. Example1.10. Preorderthatisagroupoidbutnotaposet: • • Example1.11. Preordersthatareposetsbutnotgroupoids: • • • • • • Example1.12. Preorderthatisbothaposetandagroupoid: • Sincecategoriescanbeseenasmathematicalobjects,weshoulddefinemaps betweenthem: Definition1.8. Givencategories C and D,afunctor F : C → D consistsof: • afunctioncalled F fromOb(C) toOb(D): if x ∈ C then F(x) ∈ D. • functions called F from Hom (x,y) to Hom (F(x),F(y)), for all objects C C x,y ∈ C: if f : x → y then F(f) : F(x) → F(y) suchthat: • F(g◦ f) = F(g)◦F(f) whenevereithersideiswelldefined. • F(1 ) = 1 forall x ∈ C. x F(x) Soafunctorlookslikethis: y F F(y) f g F(f) F(g) x z F(x) F(z) g◦f F(g)◦F(f) 1x 1F(x) 8 Example1.13. There’sacategorycalled"1". Itlookslikethis: 1• • Whatisafunctor F : 1 → C where C isanycategory? • F • F(•) • 1• 1• Theansweris: “anobjectin C”,sinceforanyobject x ∈ C,thereexistsa uniquefunctor F : 2 → C suchthat F(•) = x. Example1.14. There’sacategorycalled"2". Itlookslikethis: Remark. Alsoaposet. f 1x x y 1y Whatisafunctor F : 2 → C where C isanycategory? It’sjustamorphismor arrowin C! Foranymorphism g : X → X in C,thereexistsauniquefunctor F : 2 → C suchthat F(f) = g. Proposition 1.3. If F : C → D and G : D → E arefunctors,thenyoucandefinea functor G◦F : C → E and (H◦G)◦F = H◦(G◦F). Also, for any category C there’sanidentityfunctor1 : C → Cwith: C • 1 (x) = x forall x ∈ C C • 1 (f) = f forall f : x → y in C C • F◦1 = F forall F : C → D C • 1 ◦H = H forall H : D → C C Definition 1.9. Cat is the category whose objects are "small" categories and whosemorphismsarefunctors. Remark. A "small" category is one with a set of objects. For example, Set is notasmallcategorybecauseSethasaclassofobjects. GrpandRingarealso notsmallcategoriesforthesamereasonasSet. Thecategories1and2onthe otherhand,aresmallcategories. 9 1.2 Doing Mathematics inside a Category A lot of math is done inside Set, the category of sets and functions. Let’s try to generalize all that stuff to other categories by replacing Set with a general category C. In Set, we have “onto” and “one-to-one” functions. In a category C, we generalize these concepts to epimorphisms or “epis” and monomorphisms or “monos”respectively. Definition 1.10. A morhpism f : X → Y is a mono if for all g,h : Q → X we have: f ◦g = f ◦h =⇒ g = h g f Q X Y h Remark. Alsoknownasbeingaleft-cancellativemorhpism Proposition1.4. InSet,amorphismismonicifandonlyit’saone-to-onefunction. Turningaroundthearrowsinthedefinitionofmono,weget: Definition 1.11. A morhpism f : Y → X is a epi if for all g,h : X → Q we have: g◦ f = h◦ f =⇒ g = h f g Y X Q h Remark. Alsoknownasbeingaright-cancellativemorhpism Proposition1.5. InSet,amorphismisanepiifandonlyifit’sanontofunction. Definition 1.12. A morphism f : X → Y is an iso if there exists f−1 : Y → X that’saleftinverse f−1◦ f = 1 andarightinverse f ◦ f−1 = 1 X Y Proposition 1.6. In Set, f : X → Y is a mono if and only if it has a left inverse, and an epi if and only if it has a right inverse (using the axiom of choice). Thus, f is anisomorhpismifandonlyifitismonoandepi. Proposition1.7. InRing(ringsandringhomomorphisms) f :Z→Q(n → n)is amonoandanepi,butnotaniso. Infact,ithasneitheraleftnorarightinverse. Proof. There isn’t a ring homorphism g : Q → Z, since it would send 1 to 2 somemultiplicativeinverseof2. Whyisfmono? Weneed: f ◦g = f ◦h =⇒ g = h R g Z f Q h If (f ◦g)(r) = (f ◦h)(r) ∀r ∈ R,since f isone-to-one g(r) = h(r) ∀r (asa function),thisimplies g = h. Whyisfepi? Weneed: 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.