ebook img

Category Theory PDF

80 Pages·2016·0.491 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Category Theory

Category Theory LecturesbyPeterJohnstone NotesbyDavidMehrle [email protected] CambridgeUniversity MathematicalTriposPartIII Michaelmas2015 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 TheYonedaLemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 LimitsandColimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6 FilteredColimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7 AbelianandAdditiveCategories . . . . . . . . . . . . . . . . . . . . . 63 LastupdatedJune5,2016. 1 Contents by Lecture Lecture1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Lecture2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Lecture3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Lecture4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Lecture5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Lecture6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Lecture7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Lecture8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Lecture9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Lecture10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Lecture11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Lecture12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Lecture13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Lecture14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Lecture15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Lecture16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Lecture17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Lecture18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Lecture19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Lecture20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Lecture21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Lecture22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Lecture23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Lecture24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2 1 Introduction 1 Introduction Categorytheoryhasbeenaroundforabouthalfacenturynow,inventedinthe 1940’sbyEilenbergandMacLane. Eilenbergwasanalgebraictopologistand MacLanewasanalgebraist. Theyrealizedthattheyweredoingthesamecalcu- lationsindifferentareasofmathematics,whichledthemtodevelopcategory theory. Categorytheoryisreallyaboutbuildingbridgesbetweendifferentareas ofmathematics. 1.1 Definitionsandexamples Thisisjustaboutsettinguptheterminology. Therewillbenotheoremsinthis chapter. Definition1.1. AcategoryCconsistsof (i) acollectionobCofobjects A,B,C,... (ii) acollectionmorCofmorphisms f,g,h... (iii) twooperations,calleddomp´qandcodp´q,frommorphismstoobjects. f We write A ÝÑ B or f: A Ñ B for f P morC and dompfq “ A and codpfq“ B; (iv) anoperation AÞÑ1 fromobjectstomorphisms,suchthat AÝ1ÑA A; A (v) an operation ˝: pf,gq ÞÑ f ˝g from pairs of morphisms (so long as we have dom f “ codg) to morphisms, such that dompfgq “ dompgq and codpfgq“codpfq. Thesedatamustsatisfy: (vi) forall f: AÑ B, f1 “1 f “ f; A B (vii) compositionisassociative. If fgandgharedefined,then fpghq“pfgqh. Remark1.2. (a) Wedon’trequirethatobCandmorCaresets. (b) Iftheyaresets,thenwecallCasmallcategory. (c) Wecangetawaywithouttalkingaboutobjects,sinceAÞÑ1 isabijection A fromobCtothecollectionofmorphisms f satisfying fg“ gandhf “h whenevertehcompositesaredefined.Essentially,wecanrepresentobjects bytheiridentityarrows. Example1.3. (a) ThecategorySetwhoseobjectsaresetsandwhosearrowsarefunctions. Technically,weshouldspecifythecodomainforthefunctionsbecausere- allythedefinitionofafunctiondoesn’tspecifyacodomain. Somorphisms arepairspf,Bq,whereBisthecodomainofthefunction f. Lecture1 3 9October2015 1 Introduction 1.1 Definitionsandexamples (b) Gpisthecategoryofgroupsandgrouphomomorphisms; (c) Ringisthecategoryofringsandringhomomorphisms; (d) R-ModisthecategoryofR-modulesandR-modulehomomorphisms; (e) Topisthecategoryoftopologicalspacesandcontinuousmaps; (f) Mfisthecategoryofsmoothmanifoldsandsmoothmaps; (g) ThehomotopycategoryoftopologicalspacesHtpyhasthesameobjects asTop,butthemorphisms X Ñ Y arehomotopyclassesofcontinuous maps; (h) foranycategoryC,wecanturnthearrowsaroundtomaketheopposite categoryCop. Example(h)leadstothedualityprinciple,whichisakindof“twoforthe priceofone”dealincategorytheory. Theorem1.4(TheDualityPrinciple). Ifφisavalidstatementaboutcategories, soisthestatementφ˚obtainedbyreversingallthemorphisms. Example(g)abovegivesrisetothefollowingdefinition. Definition 1.5. In general, an equivalence relation „ on the collection of all morphismsofacategoryiscalledacongruenceif (i) f „ g ùñ dom f “domgandcod f “codg; (ii) f „ g ùñ fh„ ghandkf „kgwheneverthecompositesaredefined. There’sacategoryC{„withthesameobjectsasCbut„-equivalenceclassesas morphisms. Example1.6. ContinuedfromExample1.3. (i) A category C with one object ˚ must have dom f “ cod f “ ˚ for all f PmorC. Soallcompositesaredefined,and(ifmorCisaset),morCis justamonoid(whichisasemigroupwithidentity). (j) In particular, a group can be considered as a small category with one object,inwhicheverymorphismisanisomorphism. (k) Agroupoidisacategoryinwhichallmorphismsareisomorphisms. For atopologicalspaceX,thefundamentalgroupoidπpXqisthe“basepoint- lessfundamentalgroup;”theobjectsarepointsofXandthemorphisms x Ñ y are homotopy classes paths from x to y. (Homotopy classes are requiredsothateachpathhasaninverse). (l) a category whose only morphisms are identites is called discrete. A categoryinwhich,foranytwoobjects A,Bthereisatmostonemorphism A Ñ Biscalledpreorder,i.e. it’sacollectionofobjectswithareflexive andtransitiverelation. Inparticular,apartialorderisapreorderinwhich theonlyisomorphismsareidentities. Lecture1 4 9October2015 1 Introduction 1.1 Definitionsandexamples (m) The category Rel has the same objects as Set, but the morphisms are relations instead of functions. Precisely, a morphism A Ñ B is a triple pA,R,BqwhereRĎ AˆB.ThecompositepB,S,CqpA,R,BqispA,R˝S,Cq where R˝S“tpa,cq|DbP Bs.t. pa,bqP Randpb,cqPSu. NotethatSetisasubcategoryofRelandRel–Relop. Let’scontinuewiththeexamples. Example1.7. ContinuedfromExample1.3. (n) Let K beafield. ThecategoryMat hasnaturalnumbersasobjects. A K morphism n Ñ p is a pˆn matrix with entries in K. Composition is op just matrix multiplication. Note that, once again, Mat – Mat , via K k transpositionofmatrices. (o) Anexamplefromlogic. SupposeyouhavesomeformaltheoryT. The categoryDetTofderivationsrelativetoThasformulaeinthelanguage ofTasobjects,andmorphismsφÑψarederivations φ ψ and composition is just concatenation. The identity 1 is the one-line φ derivationφ. Definition1.8. LetCandDbecategories. AfunctorF: CÑDconsistsof (i) anoperation AÞÑ FpAqfromobCtoobD; (ii) anoperation f ÞÑ FpfqfrommorCtomorD, satisfying (i) domFpfq“ Fpdom fq,codFpfq“ Fpcod fqforall f; (ii) Fp1 q“1 forall A; A FpAq (iii) andFpfgq“ FpfqFpgqwhenever fgisdefined. Let’sseesomeexamplesagain. Example1.9. (a) TheforgetfulfunctorGp Ñ Setswhichsendsagroupto itsunderlyingset,andanygrouphomomorphismtoitselfasafunction. Similarly,there’soneRingÑSet,andRingÑAb,andTopÑSet (b) Therearelotsofconstructionsinalgebraandtopologythatturnoutto be functors. For example, the free group construction. Let FA denote the free group on a set A. It comes equipped with an inclusion map Lecture2 5 12October2015 1 Introduction 1.1 Definitionsandexamples η : AÑ FA,andany f: AÑG,whereGisagroup,extendsuniquelyto A ahomomorphismFAÑG. FA G ηA f A FisafunctorfromSettoGp,andgiveng: AÑ B,wedefineFgtobethe uniquehomomorphismextendingthecomposite AÝÑg BÝηÑB FB. (c) TheabelianizationofanarbitrarygroupGisthequotientG{G1 ofGby it’sderivedsubgroupG1 “xxyx´1y´1 | x,y P Gy. Thisgivesthelargest quotientof G whichisabelian. If φ: G Ñ H isahomomorphism, then itmapsthederivedsubgroupofGtothederivedsubgroupofH,sothe abelianizationisfunctorialGpÑAb. (d) Thepowersetfunctor. Foranyset A,letPAdenotethesetofallsubsetsof A. PisafunctorSetÑSet;given f: AÑ B,wedefinePfpA1q“tfpxq| xP A1ufor A1 Ď A. Butwealsomake Pintoafunctor P˚: Set Ñ Setop (orSetop Ñ Set)by settingP˚fpB1q“ f´1pB1qforB1 Ď B. Thislastexampleiswhatwecallacontravariantfunctor. Definition1.10. Acontravariantfunctor F: C Ñ Disafunctor F: C Ñ Dop (equivalently, Cop Ñ D). The term covariant functor is used sometimes to makeitclearthatafunctorisnotcontravariant. Example1.11. ContinuedfromExample1.9 (e) ThedualspaceofavectorspaceoverKdefinesacontravariantfunctor k-ModÑk-Mod. Ifα: V ÑW isalinearmap,thenα˚: W˚ ÑV˚isthe operationofcomposinglinearmapsW ÑKwithα. (f) Let Cat denote the category of small categories and functors between them. ThenCÞÑCopiscovariantfunctorCatÑCat. (g) If M and N are monoids, regarded as one-object categories, what is a functorbetweenthem? It’sjustamonoidhomomorphismfromMtoN: it preservestheidentityelementandcomposition. Inparticular,if M,Nare groups,thenthefunctorisagrouphomomorphism. Hence,wemaythink ofGpisasubcategoryofCat. (h) Similarly,ifPandQarepartiallyorderedsets,regardedascategories,a functorPÑQisjustanorder-preservingmap. (i) LetGbeagroup,regardedasacategory. AfunctorF: GÑSetspicksout asetastheimageoftheoneobjectinG,andeachmorphismofGisan isomorphismsogetsmappedtoabijectionofthisset. Sothisisagroup actionGœFpGq. IfwereplaceSetsbyk-Vectforkafield,wegetlinear representationsofG. Lecture2 6 12October2015 1 Introduction 1.1 Definitionsandexamples (j) In algebraic topology, there are many functors. For example, the fun- damental group π pX,xq defines a functor from Top (the category of 1 ˚ pointedtopologicalspaces,i.e.,thosewithadistinguishedbasepoint)to Gp. Similarly, homology groups are functors H : Top Ñ Ab (or more n commonly,HtpyÑAb). There’sanotherlayertoo. Therearemorphismsbetweenfunctors,called naturaltransformations. Definition1.12. LetCandDbecategoriesandF,G: CÑD. Anaturaltrans- formation α: F Ñ G is an operation A ÞÑ α from obC to morD, such that A dompα q “ FpAq,codpα q “ GpAqforall A,andthefollowingdiagramcom- A A mutes. Ff FA FB αA αB Gf GA GB Again,weshouldmentionsomeexamplesofnaturaltransformations. Example1.13. (a) There’s a natural transformation α: 1 Ñ ˚˚, where k-Mod ˚ is the dual space functor. This is the statement that a vector space is canonically isomorphic to it’s double dual. α : V Ñ V˚˚ sends r P V V tothe“evaluateatr”map V˚ Ñ k. Ifwerestricttofinite-dimensional spaces,thenαbecomesanaturalisomorphism,i.e. anisomorphismin thecategoryrk-fgMod,k-fgMods,whererC,Dsdenotesthecategoryof allfunctorsCÑDwithnaturaltransformationsasarrows. Remark 1.14. Note that if α is a natural transformation, and each α is an A isomorphism,thentheinversesβ oftheα alsoformanaturaltransformation, A A because β ˝Gf “ β ˝Gf ˝α ˝β “ β ˝α ˝Ff ˝β “ Ff ˝β . B B A A B B A A Example1.15. ContinuedfromExample1.13 (b) Let F: Sets Ñ Gp be the free group functor, and let U: Gp Ñ Set be the forgetful functor. The inclusion of generators η : A Ñ UFA is the A A-componentofanaturaltransformation1 ÑUF. Set (c) Foranyset A,themappinga ÞÑ tauisafunctiont´u : A Ñ PpAq. We A seethatt´uisanaturaltransformation1 Ñ P,sinceforany f: AÑ B, Set wehavePfptauq“tfpaqu. (d) Suppose given two groups G,H and two homomorphisms f, f1: G Ñ H. A natural transformation f Ñ f1 is an element h P H such that hfpgq“ f1pgqhforallgPG,orequivalently,hfpgqh´1 “ f1pgq. Sosucha transformationexistsifandonlyif f and f1areconjugate. Lecture3 7 14October2015 1 Introduction 1.1 Definitionsandexamples (e) For any space X with a base point x, there’s a natural homomorphism h : π pX,xq Ñ H pXq called the Hurewicz homomorphism. This pX,xq 1 1 is the pX,xq-component of the natural transformation h from π to the 1 composite Top ÝÑU TopÝHÝÑ1 AbÑÝI Gp, ˚ whereUistheforgetfulfunctorand I istheinclusion. It’snotoftenusefultosaythatfunctorsareinjectiveorsurjectiveonobjects. Generally,afunctormightoutputsomeobjectwhichisisomorphictoabunch of others, but might not actually be surjective – it could be surjective up to isomorphism. This is is similar to the idea that equality is not useful when comparinggroups,butratherisomorphism. Definition1.16. LetF: CÑDbeafunctor. WesayFis (1) faithful if, given f,g P morC, the three equations dompfq “ dompgq, codpfq“codpgq,andFf “ Fgimply f “ g; (2) fullif,giveng: FAÑ FBinD,thereexists f: AÑ BinCwithFf “ g. WesayasubcategoryC1ofCisfulliftheinclusionfunctorC1 ÑCisfull. Example1.17. (a) AbisafullsubcategoryofGp; (b) The category Lat of lattices (that is, posets with top element 1, bottom element 0, binary joint _, binary meet ^) is a non-full subcategory of Posets. Likewise,equalityofcategoriesisaveryrigididea. Isomorphismofcate- gories,aswell,isalittlebittoorigid.Wemighthaveseveralobjectsinacategory CwhichareisomorphicinCandallmappedtothesameobjectinD–inthis case,wewanttoconsiderthesecategoriessomehowthesame. Ifwerequire isomorphismofcategories,wecannotinsistoneventhenumberofobjectsbeing thesame. SeeExample1.20foraconcreterealizationofthis. Definition 1.18. Let C and D be categories. An equivalence of categories betweenCandDisapairoffunctorsF: CÑDandG: DÑCtogetherwith naturalisomorphismsα: 1 ÑGF,β: FGÑ1 . C D ThenotationforthisisC»D. Definition1.19. Wesaythatapropertyofcategoriesisacategoricalproperty ifwheneverChaspropertyPandC»D,thenDhasPaswell. Example1.20. (a) GivenanobjectBofacategoryC,wewriteC{Bforthecategorywhose f objectsaremorphisms AÝÑ BwithcodomainB,andwhosemorphisms Lecture3 8 14October2015 1 Introduction 1.1 Definitionsandexamples g: pAÝÑf BqÝÑpA1 ÝÑf1 Bqarecommutativetriangles g A A1 f f1 B The category Sets{B is equivalent to the category SetsB of B-indexed familiesofsets. Inonedirection, wesendpA ÝÑf Bqtopf´1pbq | b P Bq, andintheotherdirectionwesendpC |bP Bqto b ď C ˆtbuÝπÑ2 B. b bPB Composingthesetwofunctorsdoesn’tgetusbacktowherewestarted, butitdoesgiveussomethingclearlyisomorphic. (b) Let1{SetbethecategoryofpointedsetspA,aq,andletPartbethesubcat- egoryofRelwhosemorphismsarepartialfunctions,i.e. relationsRsuch thatpa,bqP Randpa,b1qP Rimpliesb“b1. Then1{Set»Part:inonedirectionwesendpA,aqtoAztauand f: pA,aqÑ pB,bqto tpx,yq| xP A,yP B, fpxq“y,y‰bu Intheotherdirectionwesend AtopAYtAu,Aqandapartialfunction f ¨A ã B (apparently that’s the notation for partial functions) to the function f definedby $ ’’&fpaq aPdom f fpaq“ B aP Azdom f ’’% B a“ A (c) ThecategoryfdMod offinitedimensionalvectorspacesoverkisequiva- k op lenttofdMod bythedualfunctors k ˚ op fdMod fdMod , k ˚ k andthenaturalisomorphism1 Ñ ˚˚. Thisisanequivalencebut fdModk notanisomorphismofcategories. (d) ThecategoryfdMod isalsoequivalenttoMat : inonedirectionsendan k k objectofnofMat tokn,andamorphism Atothelinearmapwithmatrix k Arelativetothestandardbasis. Intheotherdirection,sendavectorspace V todimV andchooseabasisforeachV tosendalineartransformation θ: V ÑW tothematrixrepresentingθwithrespecttothechosenbases. ThecompositeMat ÑfdMod ÑMat istheidentity;theothercompos- k k k iteisisomorphictotheidentityviatheisomorphismssendingthechosen basestothestandardbasisofkdimV. Lecture4 9 16October2015 1 Introduction 1.1 Definitionsandexamples There’sanothernotionslightlyweakerthansurjectivityofafunctor. Some callit“surjectiveuptoisomorphism.” Definition 1.21. We say a functor F: C Ñ D is essentially surjective if for everyobjectDofD,thereexistsanobjectCofCsuchthatD– FpCq. Thenextlemmasomehowusesamorepowerfulversionoftheaxiomof choiceandisbeyondusualsettheory. Lemma1.22. AfunctorF: CÑDispartofanequivalencebetweenCandDif andonlyifFisfull,faithful,andessentiallysurjective. Proofpùñq. SupposegivenG: DÑC,α: 1 Ñ GFandβ: FG Ñ1 asinthe C D definitionofequivalenceofcategories. ThenB– FGBforallB,soFisclearly essentiallysurjective. Let’s prove faithfulness. Now suppose given f,g: A Ñ B P C such that Ff “ Fg. ThenGFf “ GFg. Usingthenaturalityofα,thefollowingdiagram commutes: GFf“GFg GFA GFB αA αB (1) f A B Now f “α´1pGFfqα B A “α´1pGFgqα B A “ g, thelastlinebythenaturalityofαwithgalongthebottomarrowof(1)instead of f. Therefore, f isfaithful. Forfullness,supposegiveng: FAÑ FBinD. Define f “α´1˝pGgq˝α : AÑGFAÑGFBÑ B. B A ObservethatGg“α ˝ f ˝α´1. Similarly,thefollowingsquarecommutes: B A GFf GFA GFB αA αB f A B bythenaturalityofα. Therefore,GFf “α ˝ f ˝α´1aswell. Hence, B A GFf “α ˝ f ˝α´1 “Gg. B A Applyingtheargumentforfaithfulnessof FtothefunctorGshowsthatGis faithful. Therefore,GFf “GgimpliesthatFf “ g. Hence,thefunctorFisfull. pðùq. WehavetodefinethefunctorG: DÑC. Lecture4 10 16October2015

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.