ebook img

Categorifications and cyclotomic rational double affine Hecke algebras PDF

116 Pages·2015·1.55 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Categorifications and cyclotomic rational double affine Hecke algebras

Invent.math. DOI10.1007/s00222-015-0623-7 Categorifications and cyclotomic rational double affine Hecke algebras RaphaëlRouquier1 · PengShan2 · MichelaVaragnolo3 · EricVasserot4 Received:29May2013/Accepted:17August2015 ©Springer-VerlagBerlinHeidelberg2015 Abstract Varagnolo and Vasserot conjectured an equivalence between the categoryO forCRDAHA’sandasubcategoryofanaffineparaboliccategory O of type A. We prove this conjecture. As applications, we prove a conjec- ture of Rouquier on the dimension of simple modules of CRDAHA’s and a conjecture of Chuang–Miyachi on the Koszul duality for the category O of CRDAHA’s. ThisresearchwaspartiallysupportedbytheANRGrantnumberANR-10-BLAN-0110, ANR-13-BS01-0001-01andANR-12-JS01-0003.R.Rouquierwaspartiallysupportedbythe NSFGrantDMS-1161999. B EricVasserot [email protected] RaphaëlRouquier [email protected] PengShan [email protected] MichelaVaragnolo [email protected] 1 MathematicsDepartment,UCLA,LosAngeles,CA90095-1555,USA 2 Mathématiques,Bât.425,UniversitéParis-Sud,91405OrsayCedex,France 3 Mathématiques,UniversitédeCergy-Pontoise,95011Cergy-PontoiseCedex,France 4 InstitutdeMathématiquesdeJussieu,UniversitéParisDiderot-Paris7, 75252ParisCedex05,France 123 R.Rouquieretal. Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Highestweightcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Heckealgebras,q-Schuralgebrasandcategorifications . . . . . . . . . . . . . . . . . . . 4 ThecategoryO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ThecategoryO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ThecategoryAandCRDAHA’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Consequencesofthemaintheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 TheKazhdan–Lusztigcategory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indexofnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction Rational Double affine Hecke algebras (RDAHA for short) have been intro- duced by Etingof and Ginzburg in 2002. They are associative algebras associated with a complex reflection group W and a parameter c. Their rep- resentation theory is similar to the representation theory of semi-simple Lie algebras. In particular, they admit a category O which is analogous to the BGGcategoryO. Thiscategoryishighestweightwiththestandardmodules labeledbyirreduciblerepresentationsofW.RepresentationsinOareinfinite dimensional in general, but they admit a character. An important question is todeterminethecharactersofsimplemodules. One of the most important family of RDAHA’s is the cyclotomic one (CRDAHA for short), where W = G((cid:2),1,n) is the wreath product of S n and Z/(cid:2)Z. One reason is that the representation theory of CRDAHA’s is closelyrelatedtotherepresentationtheoryofAriki–Koikealgebras,andthat the latter are important in group theory. Another reason is that the category OofCRDAHA’siscloselyrelatedtotherepresentationtheoryofaffineKac– Moodyalgebras,seee.g.[17,43,46].Athirdreason,isthatthiscategoryhasa veryrichstructurecalledacategoricalactionofanaffineKac–Moodyalgebra. ThisactiononOwasconstructedpreviouslyin[41].Suchstructureshavebeen introducedrecentlyinrepresentationtheoryandhavealreadyhadremarkable applications,seee.g.[9,29,40]. ThestructureofO dependsheavilyontheparameterc.Forgenericvalues of c the category is semi-simple. The most non semi-simple case (which is alsothemostcomplicatedone)occurswhenctakesaparticularformofratio- nal numbers, see (6.2). For these parameters Rouquier made a conjecture to determinethecharactersofsimplemodulesinO[39].Roughlyspeaking,this conjecturesaysthattheJordan–Höldermultiplicitiesofthestandardmodules inOaregivenbysomeparabolicKazhdan–Lusztigpolynomials.Thisconjec- turewasknowntobetrueintheparticularcase(cid:2) = 1[39].Motivatedbythis conjecture,Varagnolo–Vasserotintroducedin[46]anewcategoryAwhichis 123 Categorificationsandcyclotomicrationaldoubleaffine… asubcategoryofanaffineparaboliccategoryOatanegativelevelandshould beviewedasanaffineandhigherlevelanalogueofthecategoryofpolynomial representationsofGL .Theyconjecturedthatthereshouldbeanequivalence N ofhighestweightcategoriesbetweenO andA. In this paper we prove Varagnolo–Vasserot’s conjecture (Theorem 6.9). A firstconsequenceisaproofofRouquier’sconjecture(Theorem7.3).Asecond remarkableapplicationisaproofthatthecategoryOisKoszul(Theorem7.4), yielding a proof of a conjecture of Chuang–Miyachi [8], because the affine paraboliccategoryOisKoszulby[42]. OurproofisbasedonanextensionofRouquier’stheoryofhighestweight coversdevelopedin[39].Basically,[39]saysthattwohighestweightcovers ofthesamealgebraareequivalentashighestweightcategoriesiftheysatisfy asocalled1-faithfulconditionandifthehighestweightordersonbothcovers are compatible. Here, given a situation where the highest weight covers are notnecessarily1-faithful,weconstructbiggerfunctorstowhichwecanapply Rouquier’stheory(seeProposition2.20). ThecategoryOisahighestweightcoveroverthemodulecategoryHofthe Ariki–Koike algebra via the KZ functor introduced in [22]. It is a 0-faithful coverandiftheparametersoftheRDAHAsatisfysometechnicalcondition, then it is even 1-faithful. A similar functor (cid:3) : A → H was introduced in [46]usingtheKazhdan–LusztigfusionproductontheaffinecategoryOata negative level. A previous work of Dunkl and Griffeth [16] allows to show withoutmuchdifficultythatthereisahighestweightorderonOwhichrefines the linkage order on A. A difficult part of the proof consists of showing that the functor (cid:3) is indeed a cover, meaning that it is an exact quotient functor, andthatithasthesamefaithfulnesspropertiesastheKZfunctor.Oncethisis done, the equivalence between O and A follows directly from the unicity of 1-faithfulcoversifthetechnicalconditiononparametersmentionedaboveis satisfied.Toprovetheequivalencewithoutthiscondition,weneedtoreplace KZ and (cid:3) by some other covers, see the end of the introduction for more detailsonthis. Akeyingredientinourproofisadeformationargument.Moreprecisely,the highestweightcategoriesA,Oadmitdeformedversionsoveraregularlocal ring Rofdimension2.SometechnicalresultsprovethattheKazhdan–Lusztig tensor product can also be deformed properly, which allows us to define the deformed version of (cid:3). Next, a theorem of Fiebig asserts that the structure of the category O of a Kac–Moody algebra only depends on the associated Coxetersystem[20].Inparticular,thelocalizationofAataheightoneprime ideal p ⊂ R can be described in simpler terms. Two cases appear, either p is subgeneric or generic. In the first case, considered in Sect. 5.7.2, the cate- gory A reduces to an analog subcategory A inside the parabolic category O of gl associated with a Levi subalgebra of gl with 2 blocks. The latter is N N 123 R.Rouquieretal. closelyrelatedtothehigherlevelSchur–WeyldualitystudiedbyBrundanand Kleshchev in [5]. In the second case, considered in Sect. 5.7.3, the category A reduces to the corresponding category for (cid:2) = 1, which is precisely the Kazhdan–LusztigcategoryassociatedwithaffineLiealgebrasatnegativelev- els.Finally,weshowthattoprovethedesiredpropertiesofthefunctor(cid:3)itis enoughtocheckthemforthelocalizationof(cid:3)ateachheightoneprimeideal pandthisprovesthemainresult. Now,letussayafewwordsconcerningtheorganizationofthispaper. Section2containssomebasicfactsonhighestweightcategoriesandsome developmentsonthetheoryofhighestweightcoversin[39]. Section3isareminderonHeckealgebras,q-Schuralgebrasandcategori- fications. Section 4 contains basic facts on the parabolic category O of gl and the N subcategory A ⊂ O introducedin[5].Theresultsin[5]arenotenoughforus since we need to consider a deformed category A with integral deformation parameters.ThenewmaterialisgatheredinSect.4.7. InSect.5weconsidertheaffineparaboliccategoryO(atanegativelevel). The monoidal structure on O is defined later in Sect. 8. Using this monoidal structureweconstructacategoricalactiononOinSect.5.4.Then,wedefine the subcategory A ⊂ O in Sect. 5.5. The rest of the section is devoted to the deformation argument and the proof that A is a highest weight cover of the module category of a cyclotomic Hecke algebra satisfying some faithfulness conditions. InSect.6wefirstgiveareminderonthecategoryOofCRDAHA’s,follow- ing[22,39].Then,weproveourmaintheoremsinSects.6.3.2,6.3.3usingthe resultsfromSect.5.8.ThisyieldsaproofofVaragnolo–Vasserot’sconjecture [46]. For the clarity of the exposition we separate the cases of rational and irrationallevels,althoughbothproofsareverysimilar. InSect.7wegivesomeapplicationsofourmaintheorem,includingproofs forRouquier’sconjectureandChuang–Miyachi’sconjecture. Section8isareminderontheKazhdan–Lusztigtensorproductontheaffine categoryOatanegativelevel.Wegeneralizetheirconstructioninordertogeta monoidalstructureonarbitraryparaboliccategories,deformedoverananalytic two-dimensional regular local ring. Several technical results concerning the Kazhdan–Lusztigtensorproductarepostponedtotheappendix. Tofinish,letusexplaintherelationofthisworkwithotherrecentworks. Thecaseofirrationallevel(provedinTheorem6.11)wasconjecturedin[46, rem.8.10(b)],asadegenerateanalogueofthemainconjecture[46,conj.8.8]. There,itwasmentionedthatitshouldfollowfrom[5,thm.C].Inthedominant case,thishasbeenprovedrecently[24,thm.6.9.1]. While we were writing this paper I. Losev made public several papers with some overlaps with ours. In [31,32] he developed a general formalism 123 Categorificationsandcyclotomicrationaldoubleaffine… of categorical actions on highest weight categories. Then, he used this for- malism in [33] to prove that the category A is equipped with a categorical action, induced by the categorical action on O introduced in [46] (using the Kazhdan–Lusztigfusionproduct).ThecategoricalactiononAgivesaninde- pendent proof of Theorem 5.37(a), (b). Finally, he proposed a combinatorial approach to prove that A is a 1-faithful highest weight cover of the cyclo- tomicHeckealgebraundersometechnicalconditionontheparametersofthe CRDAHA. A first version of our paper was announced in July 2012 and has been presentedatseveraloccasionssincethen.There,weprovedthis1-faithfulness forA(andtheVaragnolo–Vasserot’sconjecture)underthesameconditionon theparametersbyadeformationargumentsimilar,butweaker,totheoneused inthepresentpaper. Theproofwhichwegiveinthisarticleavoidsthistechnicalconditiononthe parameters. It uses an idea introduced later, in [33]. There, I. Losev replaces the highest weight cover A of the cyclotomic Hecke algebra H by a highest weightcover,byA,ofabiggeralgebrathanH,whichhasbetterproperties. After this paper was written, B. Webster sent us a copy of a preliminary versionofhisrecentpreprint[47]proposinganotherproofofRouquier’scon- jecturewhichdoesnotusetheaffineparaboliccategoryO. NotethatourconstructiondoesnotuseanycategoricalactiononA.Itonly uses representation theoretic arguments. However, since Theorem 6.9 yields an equivalence between A and O, we can recover a categorical action on A fromourtheoremandthemainresultof[41].ThisisexplainedinSect.7.4. 2 Highestweightcategories InthepaperthesymbolRwillalwaysdenoteanoetheriancommutativedomain (with1).Wedenoteby K itsfractionfield.When R isalocalring,wedenote byk itsresiduefieldandbymitsmaximalideal. 2.1 Ringsandmodules For any R-module M, let M∗ = Hom (M,R) denote the dual module. An R S-point of R is a morphism χ : R → S of commutative rings with 1. If χ is a morphism of local rings, we say that it is a local S-point. We write SM = M(χ) = M ⊗ S.Ifφ isa R-modulehomomorphism,weabbreviate R also Sφ = φ⊗ S. R Let P, M be the spectrum and the maximal spectrum of R. Let P ⊂ P 1 be the subset of height 1 prime ideals. For each p ∈ P, let R denote the p localizationof R atp.Themaximalidealof R ism = R panditsresidue p p p fieldisk = Frac(R/p). p 123 R.Rouquieretal. A closed k-point of R is a quotient R → R/m = k where m ∈ M. To unburdenthenotationwemaywritek ∈ M. Afiniteprojective R-algebraisan R-algebrawhichisfinitelygeneratedand projectiveasan R-module. Wewillmainlybeinterestedinthecasewhere Risalocalring.Inthiscase, any projective module is free by Kaplansky’s theorem. Therefore, we’ll use indifferentlythewordsfreeorprojective. 2.2 Categories Given A a ring, we denote by Aop the opposite ring in which the order of multiplication is reversed. Given C is a category, let Cop be the opposite category. An R-categoryC isanadditivecategoryenrichedoverthetensorcategory of R-modules.Allthefunctors F onC areassumedtobe R-linear.Wedenote theidentityelementintheendomorphismringEnd(F)againbyF.Wedenote theidentityfunctoronC by1C.WesaythatC isHom-finiteiftheHomspaces arefinitelygeneratedover R.IfthecategoryC isabelianorexact,let K (C) 0 be the Grothendieck group and write [C] = K0(C)⊗Z C. If C is additive, it is an exact category with split exact sequences and [C] is the complexi- fied split Grothendieck group. Let [M] denote the class of an object M of C. Assume now that C is abelian and has enough projectives. We say that an object M ∈ C is projective over R if HomC(P,M) is a projective R- module for all projective objects P of C. The full subcategory C ∩ R-proj of objects of C projective over R is an exact subcategory and the canonical functor Db(C ∩ R-proj) → Db(C)isfullyfaithful.Anobject X ∈ C which isprojectiveover R isrelatively R-injectiveifExt1(Y,X) = 0forallobjects C Y ofC thatareprojectiveover R. IfC isthecategory A-modoffinitelygenerated(left)modulesoverafinite projective R-algebra A,thenanobject X ∈ C isprojectiveover R ifandonly if it is projective as an R-module. It is relatively R-injective if in addition the dual X∗ = Hom (X,R) is a projective right A-module. If there is no R risk of confusion we will say injective instead of relatively R-injective. We put C∗ = Aop-mod. The functor Hom (•,R) : Cop → C∗ restricts to an R equivalenceofexactcategoriesCop∩ R-proj→∼C∗∩ R-proj. We denote by Irr(C) the sets of isomorphism classes of simple objects of C. Let Cproj,Cinj ⊂ C be the full subcategories of projective and of relatively R-injectiveobjects.IfC = A-mod,weabbreviateIrr(A) = Irr(C), A-proj = Cproj and A-inj = Cinj. Given an S-point R → S and C = A-mod, we can form the S-category SC = SA-mod.GivenanotherR-categoryC(cid:9)asaboveandanexact(R-linear) 123 Categorificationsandcyclotomicrationaldoubleaffine… functor F : C → C(cid:9),then F isrepresentedbyaprojectiveobject P ∈ C.We set SF = HomSC(SP,•) : SC → SC(cid:9). Let A be a Serre subcategory of C. The canonical embedding functor h : A → C has a left adjoint h∗ which takes an object M in C to its maximal quotient in C which belongs to A. It admits also a right adjoint h! which takes an object M in C to its maximal subobject in C which belongs to A. The functor h∗ is right exact, while h! is left exact. The functor h is fully faithful. Hence the adjunction morphisms h∗h → 1A and 1A → h!h are isomorphisms. By definition, the adjunction morphisms 1C → hh∗ and hh! → 1C arerespectivelyanepimorphismandamonomorphism. Here,andintherestofthepaper,weusethefollowingnotation:acomposi- tionoffunctors E and F iswrittenas EF whileacompositionofmorphisms offunctorsψ andφ iswrittenasψ ◦φ. 2.3 Highestweightcategoriesoverlocalrings Let R be a commutative local ring. We recall and complete some basic facts abouthighestweightcategoriesover R (cf[39,§4.1]and[11],[15,§2]). LetC beanabelian R-categorywhichisequivalenttothecategory A-mod offinitelygeneratedmodulesoverafiniteprojective R-algebra A. The category C is a highest weight R-category if it is equipped with a posetofisomorphismclassesofobjects((cid:7)(C),(cid:2))calledthestandardobjects satisfyingthefollowingconditions: • theobjectsof(cid:7)(C)areprojectiveover R • given M ∈ C such that HomC(D,M) = 0 for all D ∈ (cid:7)(C), we have M = 0 • given D ∈ (cid:7)(C), there is P ∈ Cproj and a surjection f : P (cid:3) D such that ker f has a (finite) filtration whose successive quotients are objects D(cid:9) ∈ (cid:7)with D(cid:9) > D • given D ∈ (cid:7),wehaveEndC(D) = R • given D1,D2 ∈ (cid:7)withHomC(D1,D2) (cid:11)= 0,wehave D1 ≤ D2. Thepartialorder(cid:2)iscalledthehighestweightorderofC.Wewrite(cid:7)(C) = {(cid:7)(λ)}λ∈(cid:9),for(cid:9)anindexingposet.Notethatif≤(cid:9)isanordercoarserthan≤ (i.e.,λ ≤ μimpliesλ ≤(cid:9) μ),thenC isalsoahighestweightcategoryrelative totheorder≤(cid:9). An equivalence of highest weight categories C(cid:9) −→∼ C is an equivalence whichinducesabijection(cid:7)(C(cid:9)) −→∼ (cid:7)(C).Ahighestweightsubcategory is afullSerresubcategoryC(cid:9) ⊂ C thatisahighestweightcategorywithposet (cid:7)(C(cid:9)) an ideal of (cid:7)(C) (i.e., if D(cid:9) ∈ (cid:7)(C(cid:9)), D ∈ (cid:7)(C) and D(cid:9) < D, then D(cid:9) ∈ (cid:7)(C(cid:9))). 123 R.Rouquieretal. Highestweightcategoriescomewithassociatedprojective,injective,tilting andcostandardobjects,asdescribedinthenextproposition. Proposition2.1 LetC beahighestweightR-category.Givenλ∈ (cid:9),thereare indecomposableobjectsP(λ) ∈ Cproj,I(λ) ∈ Cinj,T(λ) ∈ C and∇(λ) ∈ C (the projective, injective, tilting and costandard objects associated with λ), uniqueuptoisomorphismsuchthat (∇) HomC((cid:7)(μ),∇(λ)) (cid:14) δλμR and Ext1C((cid:7)(μ),∇(λ)) = 0 for all μ ∈ (cid:9), (P)thereisasurjection f : P(λ) (cid:3) (cid:7)(λ)suchthatker f hasafiltration whosesuccessivequotientsare(cid:7)(μ)’swithμ > λ, (I)thereisaninjection f : ∇(λ) (cid:11)→ I(λ)suchthatcoker f hasafiltration whosesuccessivequotientsare∇(μ)’swithμ > λ, (T)thereisaninjection f : (cid:7)(λ) (cid:11)→ T(λ)andasurjection g : T(λ) (cid:3) ∇(λ) such that coker f (resp. kerg) has a filtration whose successive quotientsare(cid:7)(μ)’s(resp.∇(μ)’s)withμ < λ. Wehavethefollowingpropertiesofthoseobjects. • ∇(λ),(cid:7)(λ), P(λ), I(λ)andT(λ)areprojectiveover R. • Given a commutative local R-algebra S, then SC is a highest weight S-category on the poset (cid:9) with standard objects S(cid:7)(λ) and costandard objects S∇(λ).If R → S isalocal S-point,thentheprojective,injective andtiltingobjectsassociatedwithλare SP(λ),SI(λ)and ST(λ). • C∗ is a highest weight R-category on the poset (cid:9) with standard objects (cid:7)∗(λ) = ∇(λ)∗ and with P∗(λ) = I(λ)∗, I∗(λ) = P(λ)∗, ∇∗(λ) = (cid:7)(λ)∗ andT∗(λ) = T(λ)∗. Proof Note that the statements of the proposition are classical when R is a field. The existence of the objects ∇(λ) giving Cop the structure of a highest weight category and satisfying the Hom and Ext conditions is given by [39, Proposition4.19].TheunicityfollowsfromLemma2.7below.Thedescription oftheprojective,tiltingandinjectiveobjectsofC∗ isclear. Itisshownin[39,Proposition4.14]thatSC isahighestweightcategorywith (cid:7)(SC) = S(cid:7)(C). We denote by P (λ), I (λ), etc. the projective, injective, S S etc.of SC associatedwithλ. The existence of P(λ) is granted in the definition of highest weight cate- gories. We show by descending induction on λ that kP(λ) (cid:14) P (λ). This is k clearifλismaximal,forthen P(λ) = (cid:7)(λ).WehavekP(λ) = P (λ)⊕ Q, k whereQisadirectsumofP (μ)’swithμ > λ.Byinduction,P (μ) = kP(μ), k k hence Q lifts to Q˜ ∈ Cproj, and there are maps f : Q˜ → P(λ) and g : P(λ) → Q˜ such that k(gf) = id . Since R is local and Q˜ is a finitely Q ˜ generatedprojective R-module,wededucethatgf isanautomorphismof Q, 123 Categorificationsandcyclotomicrationaldoubleaffine… hence Q˜ is a direct summand of P(λ), so Q˜ = 0 and kP(λ) = P (λ). k The unicity of P(λ) is then clear, since given M,N ∈ Cproj, we have ∼ kHomC(M,N)→HomkC(kM,kN). Given R → Salocalpoint,theresiduefieldk(cid:9)ofSisafieldextensionofk. SincekAisasplitk-algebra,itfollowsthatgiven P aprojectiveindecompos- (cid:9) (cid:9) able kA-module, then k P is a projective indecomposable k A-module. We deducethat Pk(cid:9)(λ) (cid:14) k(cid:9)⊗k kP(λ),hence PS(λ) (cid:14) SP(λ). Thestatementsabout I(λ)followfromthoseabout P(λ)byduality. The statements about T(λ) are proven in the same way as those for P(λ), usingProposition2.4(b)below. (cid:16)(cid:17) Note that (C,(cid:7)(C)) is a highest weight R-category if and only if (kC,k(cid:7)(C)) is a highest weight k-category and the objects of (cid:7)(C) are projectiveover R,see[39,thm.4.15].Notealsothat(cid:7)(λ)hasauniquesimple quotient L(λ),andIrr(C) = {L(λ)}λ∈(cid:9). LetC(cid:7) andC∇ bethefullsubcategoriesofC consistingofthe(cid:7)-filtered and∇-filteredobjects,i.e.,objectshavingafinitefiltrationwhosesuccessive quotientsarestandard,costandardrespectively.Theseareexactsubcategories of C. Note that every object of C(cid:7) has a finite projective resolution, where the kernels of the differentials are in C(cid:7). As a consequence, the canonical functor Db(C(cid:7)) → Db(C)isfullyfaithful.Similarly,the canonicalfunctor Db(C∇) → Db(C)isfullyfaithful,aseveryobjectofC∇hasafiniterelatively R-injectiveresolution. Lemma2.2 LetC,C(cid:9) behighestweight R-categories.Anexactfunctor(cid:3) : C → C(cid:9) whichrestrictsto an equivalence(cid:3) : C(cid:7)→∼C(cid:9)(cid:7) is an equivalence ofhighestweightcategoriesC→∼C(cid:9). Proof Since (cid:3) identifies the projective objects in C and C(cid:9), it induces an equivalence of their bounded homotopy categories, hence an equivalence Db(C) → Db(C(cid:9)).Since(cid:3)isexact,wearedone. (cid:16)(cid:17) LetCtilt = C(cid:7)∩C∇ bethefullsubcategoryofC consistingofthetilting objects,i.e.,th(cid:2)eobjectswhichareboth(cid:7)-filteredand∇-filtered. Let T = T(λ). The Ringel dual of C is the category C(cid:18) = λ∈(cid:9) EndC(T)op-mod.Itisahighestweightcategoryontheposet(cid:9)op.Thefunctor Hom(T,•) : C → C(cid:18) restricts to an equivalence R : C∇→∼(C(cid:18))(cid:7), called theRingelequivalence.WehaveR(∇(λ)) = (cid:7)(cid:18)(λ),R(T(λ)) (cid:14) P(cid:18)(λ)and R(I(λ)) (cid:14) T(cid:18)(λ)forλ ∈ (cid:9),see[39,Proposition4.26].Thehighestweight categoryC isdetermined,uptoequivalence,byC(cid:18) andweput(C(cid:18))(cid:2) = C. There is an equivalence of highest weight categories C→∼C(cid:18)(cid:18) such that the composition 123 R.Rouquieretal. Cproj→∼(C(cid:18)(cid:18))proj −R−−→1 (C(cid:18))tilt −R−−→1 Cinj ∼ ∼ is isomorphic to the Nakayama duality Hom (•,A)∗. This provides also an A equivalenceofhighestweightcategoriesC(cid:2)→∼C(cid:18). Now,for M ∈ C weset lcdC(M) = min{i; ∃μ ∈ (cid:9),Exti(M,T(μ)) (cid:11)= 0}, (2.1) rcdC(M) = min{i; ∃μ ∈ (cid:9),Exti(T(μ),M) (cid:11)= 0}. Lemma2.3 Assume R isafield.Letλ ∈ (cid:9).Then min{i; ∃μ ∈ (cid:9),Exti(L(λ),T(μ)) (cid:11)= 0} = min{i; ∃μ ∈ (cid:9),Exti(L(λ),(cid:7)(μ)) (cid:11)= 0} = min{i; ∃M ∈ C(cid:7),Exti(L(λ),M) (cid:11)= 0}. Proof Letc ,c andc bethequantitiesdefinedbythetermsinvolvingrespec- 1 2 3 tively T(μ)’s,(cid:7)(μ)’sand M ∈ C(cid:7) inthefirsttwoequalities.Itisclearthat c ≥ c = c . 1 2 3 Take μ minimal such that Extc2(L(λ),(cid:7)(μ)) (cid:11)= 0. There is an exact sequence 0 → (cid:7)(μ) → T(μ) → M → 0 where M has a filtration with subquotients (cid:7)(ν)’s where ν < μ. We deduce that Extc2(L(λ),T(μ)) (cid:11)= 0, hencec ≤ c . (cid:16)(cid:17) 1 2 Letusrecallafewfactsonbasechangeforhighestweightcategories. Proposition2.4 LetC beahighestweight R-category,andlet R → S bea local S-point.Forany M,N ∈ C thefollowingholds: (a) if S is R-flatthen SExtd(M,N) = Extd (SM,SN)foralld ∈ N, C SC (b) if either M ∈ Cproj or (M ∈ C(cid:7) and N ∈ C∇), then we have SHomC (M,N) = HomSC(SM,SN), (c) if M is R-projective then M ∈ Cproj (resp. M ∈ Ctilt, C(cid:7), Cinj) if and onlyifkM ∈ kCproj (resp.kM ∈ kCtilt,kC(cid:7),kCinj), (d) ifeither(M ∈ Cproj and N is R-projective)or (M ∈ C(cid:7) and N ∈ C∇) thenHomC(M,N)is R-projective. Proof Part(a)is[Bourbaki,Algèbre,ch.X,§6,prop.7.c]. Thestatementsin(b),(d)areclearifMisafreeA-module,andarepreserved undertakingdirectsummands,sotheyholdfor M ∈ Cproj. LetM ∈ C(cid:7)andN ∈ C∇.WehaveExt1(M,N) = Ext1 (SM,SN) = 0. C SC Asaconsequence,ifMisanextensionofM ,M ∈ C(cid:7)andthestatements(b), 1 2 (d)holdfor M ,N,thentheyholdfor M,N.Weproceednowbydescending i induction on λ to prove that the statement for M = (cid:7)(λ). There is an exact 123

Description:
Jun 3, 2013 arXiv:1305.4456v2 [math.RT] 3 Jun 2013 . In this paper we prove Varagnolo- Vasserot's conjecture (Theorem 6.9). A first consequence is a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.