Invent.math. DOI10.1007/s00222-015-0623-7 Categorifications and cyclotomic rational double affine Hecke algebras RaphaëlRouquier1 · PengShan2 · MichelaVaragnolo3 · EricVasserot4 Received:29May2013/Accepted:17August2015 ©Springer-VerlagBerlinHeidelberg2015 Abstract Varagnolo and Vasserot conjectured an equivalence between the categoryO forCRDAHA’sandasubcategoryofanaffineparaboliccategory O of type A. We prove this conjecture. As applications, we prove a conjec- ture of Rouquier on the dimension of simple modules of CRDAHA’s and a conjecture of Chuang–Miyachi on the Koszul duality for the category O of CRDAHA’s. ThisresearchwaspartiallysupportedbytheANRGrantnumberANR-10-BLAN-0110, ANR-13-BS01-0001-01andANR-12-JS01-0003.R.Rouquierwaspartiallysupportedbythe NSFGrantDMS-1161999. B EricVasserot [email protected] RaphaëlRouquier [email protected] PengShan [email protected] MichelaVaragnolo [email protected] 1 MathematicsDepartment,UCLA,LosAngeles,CA90095-1555,USA 2 Mathématiques,Bât.425,UniversitéParis-Sud,91405OrsayCedex,France 3 Mathématiques,UniversitédeCergy-Pontoise,95011Cergy-PontoiseCedex,France 4 InstitutdeMathématiquesdeJussieu,UniversitéParisDiderot-Paris7, 75252ParisCedex05,France 123 R.Rouquieretal. Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Highestweightcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Heckealgebras,q-Schuralgebrasandcategorifications . . . . . . . . . . . . . . . . . . . 4 ThecategoryO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ThecategoryO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ThecategoryAandCRDAHA’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Consequencesofthemaintheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 TheKazhdan–Lusztigcategory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indexofnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction Rational Double affine Hecke algebras (RDAHA for short) have been intro- duced by Etingof and Ginzburg in 2002. They are associative algebras associated with a complex reflection group W and a parameter c. Their rep- resentation theory is similar to the representation theory of semi-simple Lie algebras. In particular, they admit a category O which is analogous to the BGGcategoryO. Thiscategoryishighestweightwiththestandardmodules labeledbyirreduciblerepresentationsofW.RepresentationsinOareinfinite dimensional in general, but they admit a character. An important question is todeterminethecharactersofsimplemodules. One of the most important family of RDAHA’s is the cyclotomic one (CRDAHA for short), where W = G((cid:2),1,n) is the wreath product of S n and Z/(cid:2)Z. One reason is that the representation theory of CRDAHA’s is closelyrelatedtotherepresentationtheoryofAriki–Koikealgebras,andthat the latter are important in group theory. Another reason is that the category OofCRDAHA’siscloselyrelatedtotherepresentationtheoryofaffineKac– Moodyalgebras,seee.g.[17,43,46].Athirdreason,isthatthiscategoryhasa veryrichstructurecalledacategoricalactionofanaffineKac–Moodyalgebra. ThisactiononOwasconstructedpreviouslyin[41].Suchstructureshavebeen introducedrecentlyinrepresentationtheoryandhavealreadyhadremarkable applications,seee.g.[9,29,40]. ThestructureofO dependsheavilyontheparameterc.Forgenericvalues of c the category is semi-simple. The most non semi-simple case (which is alsothemostcomplicatedone)occurswhenctakesaparticularformofratio- nal numbers, see (6.2). For these parameters Rouquier made a conjecture to determinethecharactersofsimplemodulesinO[39].Roughlyspeaking,this conjecturesaysthattheJordan–Höldermultiplicitiesofthestandardmodules inOaregivenbysomeparabolicKazhdan–Lusztigpolynomials.Thisconjec- turewasknowntobetrueintheparticularcase(cid:2) = 1[39].Motivatedbythis conjecture,Varagnolo–Vasserotintroducedin[46]anewcategoryAwhichis 123 Categorificationsandcyclotomicrationaldoubleaffine… asubcategoryofanaffineparaboliccategoryOatanegativelevelandshould beviewedasanaffineandhigherlevelanalogueofthecategoryofpolynomial representationsofGL .Theyconjecturedthatthereshouldbeanequivalence N ofhighestweightcategoriesbetweenO andA. In this paper we prove Varagnolo–Vasserot’s conjecture (Theorem 6.9). A firstconsequenceisaproofofRouquier’sconjecture(Theorem7.3).Asecond remarkableapplicationisaproofthatthecategoryOisKoszul(Theorem7.4), yielding a proof of a conjecture of Chuang–Miyachi [8], because the affine paraboliccategoryOisKoszulby[42]. OurproofisbasedonanextensionofRouquier’stheoryofhighestweight coversdevelopedin[39].Basically,[39]saysthattwohighestweightcovers ofthesamealgebraareequivalentashighestweightcategoriesiftheysatisfy asocalled1-faithfulconditionandifthehighestweightordersonbothcovers are compatible. Here, given a situation where the highest weight covers are notnecessarily1-faithful,weconstructbiggerfunctorstowhichwecanapply Rouquier’stheory(seeProposition2.20). ThecategoryOisahighestweightcoveroverthemodulecategoryHofthe Ariki–Koike algebra via the KZ functor introduced in [22]. It is a 0-faithful coverandiftheparametersoftheRDAHAsatisfysometechnicalcondition, then it is even 1-faithful. A similar functor (cid:3) : A → H was introduced in [46]usingtheKazhdan–LusztigfusionproductontheaffinecategoryOata negative level. A previous work of Dunkl and Griffeth [16] allows to show withoutmuchdifficultythatthereisahighestweightorderonOwhichrefines the linkage order on A. A difficult part of the proof consists of showing that the functor (cid:3) is indeed a cover, meaning that it is an exact quotient functor, andthatithasthesamefaithfulnesspropertiesastheKZfunctor.Oncethisis done, the equivalence between O and A follows directly from the unicity of 1-faithfulcoversifthetechnicalconditiononparametersmentionedaboveis satisfied.Toprovetheequivalencewithoutthiscondition,weneedtoreplace KZ and (cid:3) by some other covers, see the end of the introduction for more detailsonthis. Akeyingredientinourproofisadeformationargument.Moreprecisely,the highestweightcategoriesA,Oadmitdeformedversionsoveraregularlocal ring Rofdimension2.SometechnicalresultsprovethattheKazhdan–Lusztig tensor product can also be deformed properly, which allows us to define the deformed version of (cid:3). Next, a theorem of Fiebig asserts that the structure of the category O of a Kac–Moody algebra only depends on the associated Coxetersystem[20].Inparticular,thelocalizationofAataheightoneprime ideal p ⊂ R can be described in simpler terms. Two cases appear, either p is subgeneric or generic. In the first case, considered in Sect. 5.7.2, the cate- gory A reduces to an analog subcategory A inside the parabolic category O of gl associated with a Levi subalgebra of gl with 2 blocks. The latter is N N 123 R.Rouquieretal. closelyrelatedtothehigherlevelSchur–WeyldualitystudiedbyBrundanand Kleshchev in [5]. In the second case, considered in Sect. 5.7.3, the category A reduces to the corresponding category for (cid:2) = 1, which is precisely the Kazhdan–LusztigcategoryassociatedwithaffineLiealgebrasatnegativelev- els.Finally,weshowthattoprovethedesiredpropertiesofthefunctor(cid:3)itis enoughtocheckthemforthelocalizationof(cid:3)ateachheightoneprimeideal pandthisprovesthemainresult. Now,letussayafewwordsconcerningtheorganizationofthispaper. Section2containssomebasicfactsonhighestweightcategoriesandsome developmentsonthetheoryofhighestweightcoversin[39]. Section3isareminderonHeckealgebras,q-Schuralgebrasandcategori- fications. Section 4 contains basic facts on the parabolic category O of gl and the N subcategory A ⊂ O introducedin[5].Theresultsin[5]arenotenoughforus since we need to consider a deformed category A with integral deformation parameters.ThenewmaterialisgatheredinSect.4.7. InSect.5weconsidertheaffineparaboliccategoryO(atanegativelevel). The monoidal structure on O is defined later in Sect. 8. Using this monoidal structureweconstructacategoricalactiononOinSect.5.4.Then,wedefine the subcategory A ⊂ O in Sect. 5.5. The rest of the section is devoted to the deformation argument and the proof that A is a highest weight cover of the module category of a cyclotomic Hecke algebra satisfying some faithfulness conditions. InSect.6wefirstgiveareminderonthecategoryOofCRDAHA’s,follow- ing[22,39].Then,weproveourmaintheoremsinSects.6.3.2,6.3.3usingthe resultsfromSect.5.8.ThisyieldsaproofofVaragnolo–Vasserot’sconjecture [46]. For the clarity of the exposition we separate the cases of rational and irrationallevels,althoughbothproofsareverysimilar. InSect.7wegivesomeapplicationsofourmaintheorem,includingproofs forRouquier’sconjectureandChuang–Miyachi’sconjecture. Section8isareminderontheKazhdan–Lusztigtensorproductontheaffine categoryOatanegativelevel.Wegeneralizetheirconstructioninordertogeta monoidalstructureonarbitraryparaboliccategories,deformedoverananalytic two-dimensional regular local ring. Several technical results concerning the Kazhdan–Lusztigtensorproductarepostponedtotheappendix. Tofinish,letusexplaintherelationofthisworkwithotherrecentworks. Thecaseofirrationallevel(provedinTheorem6.11)wasconjecturedin[46, rem.8.10(b)],asadegenerateanalogueofthemainconjecture[46,conj.8.8]. There,itwasmentionedthatitshouldfollowfrom[5,thm.C].Inthedominant case,thishasbeenprovedrecently[24,thm.6.9.1]. While we were writing this paper I. Losev made public several papers with some overlaps with ours. In [31,32] he developed a general formalism 123 Categorificationsandcyclotomicrationaldoubleaffine… of categorical actions on highest weight categories. Then, he used this for- malism in [33] to prove that the category A is equipped with a categorical action, induced by the categorical action on O introduced in [46] (using the Kazhdan–Lusztigfusionproduct).ThecategoricalactiononAgivesaninde- pendent proof of Theorem 5.37(a), (b). Finally, he proposed a combinatorial approach to prove that A is a 1-faithful highest weight cover of the cyclo- tomicHeckealgebraundersometechnicalconditionontheparametersofthe CRDAHA. A first version of our paper was announced in July 2012 and has been presentedatseveraloccasionssincethen.There,weprovedthis1-faithfulness forA(andtheVaragnolo–Vasserot’sconjecture)underthesameconditionon theparametersbyadeformationargumentsimilar,butweaker,totheoneused inthepresentpaper. Theproofwhichwegiveinthisarticleavoidsthistechnicalconditiononthe parameters. It uses an idea introduced later, in [33]. There, I. Losev replaces the highest weight cover A of the cyclotomic Hecke algebra H by a highest weightcover,byA,ofabiggeralgebrathanH,whichhasbetterproperties. After this paper was written, B. Webster sent us a copy of a preliminary versionofhisrecentpreprint[47]proposinganotherproofofRouquier’scon- jecturewhichdoesnotusetheaffineparaboliccategoryO. NotethatourconstructiondoesnotuseanycategoricalactiononA.Itonly uses representation theoretic arguments. However, since Theorem 6.9 yields an equivalence between A and O, we can recover a categorical action on A fromourtheoremandthemainresultof[41].ThisisexplainedinSect.7.4. 2 Highestweightcategories InthepaperthesymbolRwillalwaysdenoteanoetheriancommutativedomain (with1).Wedenoteby K itsfractionfield.When R isalocalring,wedenote byk itsresiduefieldandbymitsmaximalideal. 2.1 Ringsandmodules For any R-module M, let M∗ = Hom (M,R) denote the dual module. An R S-point of R is a morphism χ : R → S of commutative rings with 1. If χ is a morphism of local rings, we say that it is a local S-point. We write SM = M(χ) = M ⊗ S.Ifφ isa R-modulehomomorphism,weabbreviate R also Sφ = φ⊗ S. R Let P, M be the spectrum and the maximal spectrum of R. Let P ⊂ P 1 be the subset of height 1 prime ideals. For each p ∈ P, let R denote the p localizationof R atp.Themaximalidealof R ism = R panditsresidue p p p fieldisk = Frac(R/p). p 123 R.Rouquieretal. A closed k-point of R is a quotient R → R/m = k where m ∈ M. To unburdenthenotationwemaywritek ∈ M. Afiniteprojective R-algebraisan R-algebrawhichisfinitelygeneratedand projectiveasan R-module. Wewillmainlybeinterestedinthecasewhere Risalocalring.Inthiscase, any projective module is free by Kaplansky’s theorem. Therefore, we’ll use indifferentlythewordsfreeorprojective. 2.2 Categories Given A a ring, we denote by Aop the opposite ring in which the order of multiplication is reversed. Given C is a category, let Cop be the opposite category. An R-categoryC isanadditivecategoryenrichedoverthetensorcategory of R-modules.Allthefunctors F onC areassumedtobe R-linear.Wedenote theidentityelementintheendomorphismringEnd(F)againbyF.Wedenote theidentityfunctoronC by1C.WesaythatC isHom-finiteiftheHomspaces arefinitelygeneratedover R.IfthecategoryC isabelianorexact,let K (C) 0 be the Grothendieck group and write [C] = K0(C)⊗Z C. If C is additive, it is an exact category with split exact sequences and [C] is the complexi- fied split Grothendieck group. Let [M] denote the class of an object M of C. Assume now that C is abelian and has enough projectives. We say that an object M ∈ C is projective over R if HomC(P,M) is a projective R- module for all projective objects P of C. The full subcategory C ∩ R-proj of objects of C projective over R is an exact subcategory and the canonical functor Db(C ∩ R-proj) → Db(C)isfullyfaithful.Anobject X ∈ C which isprojectiveover R isrelatively R-injectiveifExt1(Y,X) = 0forallobjects C Y ofC thatareprojectiveover R. IfC isthecategory A-modoffinitelygenerated(left)modulesoverafinite projective R-algebra A,thenanobject X ∈ C isprojectiveover R ifandonly if it is projective as an R-module. It is relatively R-injective if in addition the dual X∗ = Hom (X,R) is a projective right A-module. If there is no R risk of confusion we will say injective instead of relatively R-injective. We put C∗ = Aop-mod. The functor Hom (•,R) : Cop → C∗ restricts to an R equivalenceofexactcategoriesCop∩ R-proj→∼C∗∩ R-proj. We denote by Irr(C) the sets of isomorphism classes of simple objects of C. Let Cproj,Cinj ⊂ C be the full subcategories of projective and of relatively R-injectiveobjects.IfC = A-mod,weabbreviateIrr(A) = Irr(C), A-proj = Cproj and A-inj = Cinj. Given an S-point R → S and C = A-mod, we can form the S-category SC = SA-mod.GivenanotherR-categoryC(cid:9)asaboveandanexact(R-linear) 123 Categorificationsandcyclotomicrationaldoubleaffine… functor F : C → C(cid:9),then F isrepresentedbyaprojectiveobject P ∈ C.We set SF = HomSC(SP,•) : SC → SC(cid:9). Let A be a Serre subcategory of C. The canonical embedding functor h : A → C has a left adjoint h∗ which takes an object M in C to its maximal quotient in C which belongs to A. It admits also a right adjoint h! which takes an object M in C to its maximal subobject in C which belongs to A. The functor h∗ is right exact, while h! is left exact. The functor h is fully faithful. Hence the adjunction morphisms h∗h → 1A and 1A → h!h are isomorphisms. By definition, the adjunction morphisms 1C → hh∗ and hh! → 1C arerespectivelyanepimorphismandamonomorphism. Here,andintherestofthepaper,weusethefollowingnotation:acomposi- tionoffunctors E and F iswrittenas EF whileacompositionofmorphisms offunctorsψ andφ iswrittenasψ ◦φ. 2.3 Highestweightcategoriesoverlocalrings Let R be a commutative local ring. We recall and complete some basic facts abouthighestweightcategoriesover R (cf[39,§4.1]and[11],[15,§2]). LetC beanabelian R-categorywhichisequivalenttothecategory A-mod offinitelygeneratedmodulesoverafiniteprojective R-algebra A. The category C is a highest weight R-category if it is equipped with a posetofisomorphismclassesofobjects((cid:7)(C),(cid:2))calledthestandardobjects satisfyingthefollowingconditions: • theobjectsof(cid:7)(C)areprojectiveover R • given M ∈ C such that HomC(D,M) = 0 for all D ∈ (cid:7)(C), we have M = 0 • given D ∈ (cid:7)(C), there is P ∈ Cproj and a surjection f : P (cid:3) D such that ker f has a (finite) filtration whose successive quotients are objects D(cid:9) ∈ (cid:7)with D(cid:9) > D • given D ∈ (cid:7),wehaveEndC(D) = R • given D1,D2 ∈ (cid:7)withHomC(D1,D2) (cid:11)= 0,wehave D1 ≤ D2. Thepartialorder(cid:2)iscalledthehighestweightorderofC.Wewrite(cid:7)(C) = {(cid:7)(λ)}λ∈(cid:9),for(cid:9)anindexingposet.Notethatif≤(cid:9)isanordercoarserthan≤ (i.e.,λ ≤ μimpliesλ ≤(cid:9) μ),thenC isalsoahighestweightcategoryrelative totheorder≤(cid:9). An equivalence of highest weight categories C(cid:9) −→∼ C is an equivalence whichinducesabijection(cid:7)(C(cid:9)) −→∼ (cid:7)(C).Ahighestweightsubcategory is afullSerresubcategoryC(cid:9) ⊂ C thatisahighestweightcategorywithposet (cid:7)(C(cid:9)) an ideal of (cid:7)(C) (i.e., if D(cid:9) ∈ (cid:7)(C(cid:9)), D ∈ (cid:7)(C) and D(cid:9) < D, then D(cid:9) ∈ (cid:7)(C(cid:9))). 123 R.Rouquieretal. Highestweightcategoriescomewithassociatedprojective,injective,tilting andcostandardobjects,asdescribedinthenextproposition. Proposition2.1 LetC beahighestweightR-category.Givenλ∈ (cid:9),thereare indecomposableobjectsP(λ) ∈ Cproj,I(λ) ∈ Cinj,T(λ) ∈ C and∇(λ) ∈ C (the projective, injective, tilting and costandard objects associated with λ), uniqueuptoisomorphismsuchthat (∇) HomC((cid:7)(μ),∇(λ)) (cid:14) δλμR and Ext1C((cid:7)(μ),∇(λ)) = 0 for all μ ∈ (cid:9), (P)thereisasurjection f : P(λ) (cid:3) (cid:7)(λ)suchthatker f hasafiltration whosesuccessivequotientsare(cid:7)(μ)’swithμ > λ, (I)thereisaninjection f : ∇(λ) (cid:11)→ I(λ)suchthatcoker f hasafiltration whosesuccessivequotientsare∇(μ)’swithμ > λ, (T)thereisaninjection f : (cid:7)(λ) (cid:11)→ T(λ)andasurjection g : T(λ) (cid:3) ∇(λ) such that coker f (resp. kerg) has a filtration whose successive quotientsare(cid:7)(μ)’s(resp.∇(μ)’s)withμ < λ. Wehavethefollowingpropertiesofthoseobjects. • ∇(λ),(cid:7)(λ), P(λ), I(λ)andT(λ)areprojectiveover R. • Given a commutative local R-algebra S, then SC is a highest weight S-category on the poset (cid:9) with standard objects S(cid:7)(λ) and costandard objects S∇(λ).If R → S isalocal S-point,thentheprojective,injective andtiltingobjectsassociatedwithλare SP(λ),SI(λ)and ST(λ). • C∗ is a highest weight R-category on the poset (cid:9) with standard objects (cid:7)∗(λ) = ∇(λ)∗ and with P∗(λ) = I(λ)∗, I∗(λ) = P(λ)∗, ∇∗(λ) = (cid:7)(λ)∗ andT∗(λ) = T(λ)∗. Proof Note that the statements of the proposition are classical when R is a field. The existence of the objects ∇(λ) giving Cop the structure of a highest weight category and satisfying the Hom and Ext conditions is given by [39, Proposition4.19].TheunicityfollowsfromLemma2.7below.Thedescription oftheprojective,tiltingandinjectiveobjectsofC∗ isclear. Itisshownin[39,Proposition4.14]thatSC isahighestweightcategorywith (cid:7)(SC) = S(cid:7)(C). We denote by P (λ), I (λ), etc. the projective, injective, S S etc.of SC associatedwithλ. The existence of P(λ) is granted in the definition of highest weight cate- gories. We show by descending induction on λ that kP(λ) (cid:14) P (λ). This is k clearifλismaximal,forthen P(λ) = (cid:7)(λ).WehavekP(λ) = P (λ)⊕ Q, k whereQisadirectsumofP (μ)’swithμ > λ.Byinduction,P (μ) = kP(μ), k k hence Q lifts to Q˜ ∈ Cproj, and there are maps f : Q˜ → P(λ) and g : P(λ) → Q˜ such that k(gf) = id . Since R is local and Q˜ is a finitely Q ˜ generatedprojective R-module,wededucethatgf isanautomorphismof Q, 123 Categorificationsandcyclotomicrationaldoubleaffine… hence Q˜ is a direct summand of P(λ), so Q˜ = 0 and kP(λ) = P (λ). k The unicity of P(λ) is then clear, since given M,N ∈ Cproj, we have ∼ kHomC(M,N)→HomkC(kM,kN). Given R → Salocalpoint,theresiduefieldk(cid:9)ofSisafieldextensionofk. SincekAisasplitk-algebra,itfollowsthatgiven P aprojectiveindecompos- (cid:9) (cid:9) able kA-module, then k P is a projective indecomposable k A-module. We deducethat Pk(cid:9)(λ) (cid:14) k(cid:9)⊗k kP(λ),hence PS(λ) (cid:14) SP(λ). Thestatementsabout I(λ)followfromthoseabout P(λ)byduality. The statements about T(λ) are proven in the same way as those for P(λ), usingProposition2.4(b)below. (cid:16)(cid:17) Note that (C,(cid:7)(C)) is a highest weight R-category if and only if (kC,k(cid:7)(C)) is a highest weight k-category and the objects of (cid:7)(C) are projectiveover R,see[39,thm.4.15].Notealsothat(cid:7)(λ)hasauniquesimple quotient L(λ),andIrr(C) = {L(λ)}λ∈(cid:9). LetC(cid:7) andC∇ bethefullsubcategoriesofC consistingofthe(cid:7)-filtered and∇-filteredobjects,i.e.,objectshavingafinitefiltrationwhosesuccessive quotientsarestandard,costandardrespectively.Theseareexactsubcategories of C. Note that every object of C(cid:7) has a finite projective resolution, where the kernels of the differentials are in C(cid:7). As a consequence, the canonical functor Db(C(cid:7)) → Db(C)isfullyfaithful.Similarly,the canonicalfunctor Db(C∇) → Db(C)isfullyfaithful,aseveryobjectofC∇hasafiniterelatively R-injectiveresolution. Lemma2.2 LetC,C(cid:9) behighestweight R-categories.Anexactfunctor(cid:3) : C → C(cid:9) whichrestrictsto an equivalence(cid:3) : C(cid:7)→∼C(cid:9)(cid:7) is an equivalence ofhighestweightcategoriesC→∼C(cid:9). Proof Since (cid:3) identifies the projective objects in C and C(cid:9), it induces an equivalence of their bounded homotopy categories, hence an equivalence Db(C) → Db(C(cid:9)).Since(cid:3)isexact,wearedone. (cid:16)(cid:17) LetCtilt = C(cid:7)∩C∇ bethefullsubcategoryofC consistingofthetilting objects,i.e.,th(cid:2)eobjectswhichareboth(cid:7)-filteredand∇-filtered. Let T = T(λ). The Ringel dual of C is the category C(cid:18) = λ∈(cid:9) EndC(T)op-mod.Itisahighestweightcategoryontheposet(cid:9)op.Thefunctor Hom(T,•) : C → C(cid:18) restricts to an equivalence R : C∇→∼(C(cid:18))(cid:7), called theRingelequivalence.WehaveR(∇(λ)) = (cid:7)(cid:18)(λ),R(T(λ)) (cid:14) P(cid:18)(λ)and R(I(λ)) (cid:14) T(cid:18)(λ)forλ ∈ (cid:9),see[39,Proposition4.26].Thehighestweight categoryC isdetermined,uptoequivalence,byC(cid:18) andweput(C(cid:18))(cid:2) = C. There is an equivalence of highest weight categories C→∼C(cid:18)(cid:18) such that the composition 123 R.Rouquieretal. Cproj→∼(C(cid:18)(cid:18))proj −R−−→1 (C(cid:18))tilt −R−−→1 Cinj ∼ ∼ is isomorphic to the Nakayama duality Hom (•,A)∗. This provides also an A equivalenceofhighestweightcategoriesC(cid:2)→∼C(cid:18). Now,for M ∈ C weset lcdC(M) = min{i; ∃μ ∈ (cid:9),Exti(M,T(μ)) (cid:11)= 0}, (2.1) rcdC(M) = min{i; ∃μ ∈ (cid:9),Exti(T(μ),M) (cid:11)= 0}. Lemma2.3 Assume R isafield.Letλ ∈ (cid:9).Then min{i; ∃μ ∈ (cid:9),Exti(L(λ),T(μ)) (cid:11)= 0} = min{i; ∃μ ∈ (cid:9),Exti(L(λ),(cid:7)(μ)) (cid:11)= 0} = min{i; ∃M ∈ C(cid:7),Exti(L(λ),M) (cid:11)= 0}. Proof Letc ,c andc bethequantitiesdefinedbythetermsinvolvingrespec- 1 2 3 tively T(μ)’s,(cid:7)(μ)’sand M ∈ C(cid:7) inthefirsttwoequalities.Itisclearthat c ≥ c = c . 1 2 3 Take μ minimal such that Extc2(L(λ),(cid:7)(μ)) (cid:11)= 0. There is an exact sequence 0 → (cid:7)(μ) → T(μ) → M → 0 where M has a filtration with subquotients (cid:7)(ν)’s where ν < μ. We deduce that Extc2(L(λ),T(μ)) (cid:11)= 0, hencec ≤ c . (cid:16)(cid:17) 1 2 Letusrecallafewfactsonbasechangeforhighestweightcategories. Proposition2.4 LetC beahighestweight R-category,andlet R → S bea local S-point.Forany M,N ∈ C thefollowingholds: (a) if S is R-flatthen SExtd(M,N) = Extd (SM,SN)foralld ∈ N, C SC (b) if either M ∈ Cproj or (M ∈ C(cid:7) and N ∈ C∇), then we have SHomC (M,N) = HomSC(SM,SN), (c) if M is R-projective then M ∈ Cproj (resp. M ∈ Ctilt, C(cid:7), Cinj) if and onlyifkM ∈ kCproj (resp.kM ∈ kCtilt,kC(cid:7),kCinj), (d) ifeither(M ∈ Cproj and N is R-projective)or (M ∈ C(cid:7) and N ∈ C∇) thenHomC(M,N)is R-projective. Proof Part(a)is[Bourbaki,Algèbre,ch.X,§6,prop.7.c]. Thestatementsin(b),(d)areclearifMisafreeA-module,andarepreserved undertakingdirectsummands,sotheyholdfor M ∈ Cproj. LetM ∈ C(cid:7)andN ∈ C∇.WehaveExt1(M,N) = Ext1 (SM,SN) = 0. C SC Asaconsequence,ifMisanextensionofM ,M ∈ C(cid:7)andthestatements(b), 1 2 (d)holdfor M ,N,thentheyholdfor M,N.Weproceednowbydescending i induction on λ to prove that the statement for M = (cid:7)(λ). There is an exact 123
Description: