ebook img

Categorical Probabilistic Theories PDF

0.35 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Categorical Probabilistic Theories

Categorical Probabilistic Theories StefanoGogioso CarloMariaScandolo UniversityofOxford UniversityofOxford [email protected] [email protected] Wepresentasimplecategoricalframeworkforthetreatmentofprobabilistictheories,withtheaim ofreconcilingthefieldsofCategoricalQuantumMechanics(CQM)andOperationalProbabilistic 7 Theories(OPTs). Inrecentyears,bothCQMandOPTshavefoundsuccessfulapplicationtoanumber 1 0 ofareasinquantumfoundationsandinformationtheory: theypresentmanysimilarities,bothinspirit 2 andinformalism,buttheyremainseparatedbyanumberofsubtleyetimportantdifferences. We attempttobridgethisgap,byadoptingaminimalnumberofoperationallymotivatedaxiomswhich n a providecleancategoricalfoundations,inthestyleofCQM,forthetreatmentoftheproblemsthat J OPTsareconcernedwith. 5 2 1 Introduction ] h p Categoricalmethodsarefindingmoreandmoreapplicationsinthefoundationsofquantumtheoryand - t quantuminformation,withtwomainframeworkscurrentlydominatingthescene: CategoricalQuantum n Mechanics(CQM)andOperationalProbabilisticTheories(OPTs). TheCQMframework[4,7,26,30,31] a u concernsitselfwiththecompositionalandalgebraicstructureofquantumsystemandprocesses,andhasa q heavyfocusondiagrammaticmethods[24,48,49]. TheOPTframework[17,18,19,21,43,44,45]was [ developedwiththeaimofobtainingacharacterisationofquantumtheoryintermsofinformation-theoretic 1 axioms,insidethewidercommunityofgeneralisedprobabilistictheories[9,10,11,36,46,50]. v 5 Both frameworks are based on symmetric monoidal categories, and at first sight it looks like they 7 should be complementing each other. However, a number of subtle differences have resulted in a 0 significantdisconnectbetweenthetwocommunities,withduplicationofeffortsandlossofsynergy. The 8 0 OPTframeworkisfoundedonexplicitprobabilisticstructure,axiomsofconcretephysicalinspirationand . 1 traditionalproofmethods, whichmakeithardtoworkwithinacategoricalanddiagrammaticsetting. 0 Conversely,theCQMframeworkhascleancategoricalfoundationsanddiagrammaticproofmethods,but 7 attheexpenseofdirectphysicalinterpretation. 1 : Wesetofftoreconcilethetwoframeworks,byproposingcategoricalfoundationsinthestyleofCQM v forthekindofsystemsandresultsthatareofinterestfortheOPTcommunity. Wedefineaprobabilistic i X theory as a symmetric monoidal category satisfying three additional requirements: the existence of r a classicalsystems,theexistenceofprobabilisticstructure,andthepossibilityofdefininglocalstates. Our requirementsareformulatedinstandardcategoricalterms,andcanbereadilyadoptedwithintheCQM framework;atthesametime,theycorrespondtorelatablephysicalandoperationalrequirementsthatany probabilistictheoryshouldpossess. Theendresultisaframeworkwhichissimpleandrigorousinits foundations,showsdirectoperationalsignificance,andcomeswithmoreexpressivepowerthaneitherof theCQMorOPTframeworksalone. ItshouldbenotedthatsimilareffortstoconnecttheCQMandOPTcommunitiesarebeingundertaken byRef.[53](andongoingworkbyitsauthor): theworkthereinishoweverclosertothelogicaltakeof effectustheory,whileourworkhasamorephysicaltake,withclassicalsystemsatitsveryheart. (cid:13)c S.Gogioso&C.M.Scandolo Submittedto: ThisworkislicensedundertheCreativeCommons QPL2017 Attribution-Noncommercial-ShareAlikeLicense. 2 CategoricalProbabilisticTheories 2 Classical Theory ThemainingredientdistinguishingOPTsfromthecategoriesusedinthecontextofCQMistheexplicit presenceofprobabilisticmixtures,orequivalentlytheexistenceofclassicalsystemstakingpartinthe processes. FromthepointofviewofOPTs,theseclassicalsystemsareabsorbedintotheformalism,using indicesandsummations. FromthepointofviewofCQM,ontheotherhand,theonlydistinctionbetween classicalandquantumsystemsisoperational,andbothshouldbemodelledexplicitlybyatheory. 2.1 ClassicaltheoryasaSMC Classicalsystems1 andstochasticprocessesbetweenthemformasymmetricmonoidalcategory(SMC), usuallyknownasStoch. TheobjectsofStocharelabelledbyfinitesets,andthemorphismsX →Y in Stoch are theY-by-X stochastic matrices, with matrix composition as sequential composition and the Kroneckerproductasparallelcomposition(akatensorproduct). Fromacategoricalstandpoint,therestrictiontoconvexcombinationsrequiredbyStochisinconvenient: if we wish to use a summation operation, as is usually done in the treatment of classical systems and mixed-statequantumtheory,wehavetointroduceexternalrestrictionsonthekindofsumsthatweallow. Alternatively, we could see the summation as defined on a larger category, with Stoch arising as the sub-categoryofsuitablynormalised processes. Thislatterapproachisinlinewiththegeneralphilosophy ofCQM:onestudiesabroadercollectionofabstractprocesses,easiertodescribeandtomanipulate,and then assembles/restricts them appropriately to obtain the subcategory of concrete, physically relevant processes. Asourmodelofclassicalsystemsand(potentiallynon-normalised)non-deterministicprocesses betweenthem,wetaketheSMCR+-Mat: justlikeStoch,theobjectsarethefinitenon-emptysets,butthe morphismsX →Y areALLtheR+-valuedmatricesin(cid:0)R+(cid:1)Y×X,notjustthestochasticones. Wereferto thesemapsastheprobabilisticprocesses,andusenormalisedtodenotethestochasticones. 2.2 Linearstructure WecanequipR+-Matwithawell-definednotionofsummationbysuitablyenrichingitincommutative monoids: we endow the morphisms X →Y with the linear structure of (cid:0)R+(cid:1)Y×X, i.e. we take matrix additionasoursummationoperationandthezeromatrixasitsneutralelement(modellingtheimpossible process). Traditionally, the only requirement for a category enriched in commutative monoid is that sequentialcompositionbelinear2,butinSMCsitmakessensetofurtherrequirethatparallelcomposition belinearaswell3. Thisisindeedthecaseforourchoiceofenrichment. 2.3 Deterministicprocesses AspecialplaceamongstthemanyprobabilisticprocessesbetweentwoclassicalsystemsX andY isheld bythedeterministicprocesses4,thefunctionsX →Y. Thedeterministicprocessesformthesub-SMC fSet of R+-Mat, and the Kronecker product restricts to the Cartesian product on them. The states in 1Thiswork,likemostworksinOPTsandCQM,isconcernedwithfiniteclassicalsystemsalone. 2Specifically,werequire f◦(g+h)=(f◦g)+(f◦h),(g+h)◦f =(g◦f)+(h◦f),0◦f =0and f◦0=0. 3Thingsareabitmorecomplicatedwiththetensorstructure:furthertothetensorproductbeinglinear,justlikecomposition, butweneedtorequiretheassociatorandunitorstobelinearaswell. 4Inlinewithitscommonmeaningincomputerscience,weusetheworddeterministictodenoteclassicalprocesseswhich mapeachdefiniteinputtoasingledefiniteoutput. Weusestochastic(ornormalisedprobabilistic,inthiswork)todenote classicalprocesseswhichmoregenerallymapdefiniteinputstoprobabilitydistributionsoverdefiniteoutputs. S.Gogioso&C.M.Scandolo 3 fSet for a classical system X are its deterministic states, the probability distributions δ concentrated x entirely on a single point x∈X (or, if you prefer, the linear extensions of the points of X themselves). The singleton set 1:={1} is the terminal object in fSet, and we refer to the unique effect X →1 as thediscardingmap5 ontheclassicalsystemX,whichisgraphicallydenotedbyagroundsymbol . X Thedeterministicprocessessitinsidealargersub-SMCfPFunofpartialdeterministicprocesses,with partialfunctionsasmorphisms. 2.4 Resolutionoftheidentity Inordertoclearlydistinguishclassicalsystemsfrommoregeneralsystemsinthetheory,wewilladopt a graphical convention in which dashed wires are used to denote systems which are guaranteed to be classical,sothattheidentitymorphismX →X foraclassicalsystemX willbedenotedasfollows: X X (2.1) Usingtheenrichment,weobtainthefollowingresolutionoftheidentity: X X = ∑ X x x X (2.2) x∈X Thestatelabelledbyx∈X aboveisthedeterministicstatecorrespondingtox;theeffectlabelledbyx aboveistheonesendingxto1∈R+ andallx(cid:48)(cid:54)=xto0∈R+ (or,ifyouprefer,thelinearextensionofthe partialfunctionX (cid:42)1whichsendsxto1∈1andisundefinedonallotherx(cid:48)∈X). 2.5 Marginalisation Because the resolution of the identity is in terms of deterministic states, we immediately obtain the followingresolutionofthediscardingmap: X = ∑ X x (2.3) x∈X ThismeansthatdiscardingasubsysteminR+-Matcorrespondstotheusualnotionofmarginalisation. From the CQM perspective, the process of localisation of states and processes in arbitrary SMCs is captured by the notion of environment structure [25,32]. Because classical states and processes are localisedbymarginalising,itisnosurprisethatdiscardingmapsinR+-Matsatisfytherequirementsto formanenvironmentstructure: X X⊗Y = 1 = (2.4) Y Theemptydiagramontherighthandsideofthesecondequationisthescalar1,whichasadiagrammatic conventionisusuallyomitted. 5Inanot-at-all-unexpectedcoincidence,itmakestotalsensetocallthisthedeterministiceffect. 4 CategoricalProbabilisticTheories 2.6 Normalisedprocesses Achoiceofenvironmentstructurealwayssinglesoutasub-SMCofnormalisedprocesses,namelythose processes f satisfyingthefollowingcondition: f = (2.5) TheabstractnormalisationconditionaboveallowsustorecoverStochinacategoricallyfashionableway as the sub-SMC of normalised processes in R+-Mat. As a bonus, we also get fSet as the sub-SMC of normalisedprocessesinfPFun. 2.7 Probabilitiesasaresource Incomputerscience,itiscommonforcommutativesemiringstomodelresourcesusedincomputation: forexample,theprobabilitysemiring(R+,+,×)isusedtomodelprobabilisticcomputation,theboolean semiring(B,∨,∧)isusedtomodelexistenceproblems,andthenaturalnumbers(N,+,×)areusedto modelcountingproblems6. Asimilarapproachcouldbeadoptedinphysics: probabilities(corresponding tothesemiringR+)couldbeseenasaresourceprovidingnon-determinisminclassicalsystems,andwe mightwishtostudythetoytheoriesobtainedbyusingotherresources(correspondingtoothersemirings) intheirplace. Thisis,forexample,theroadtakenbythesheaf-theoreticframeworkofRef.[2],wherea numberofimportantresultsonnon-localityandcontextualityareobtainedbyconfrontingtheprobabilities (thesemiringR+)withpossibilities[5](thesemiringB)andsignedprobabilities[6,39](thesemiringR, whichisgivenanoperationalinterpretationinRef.[3]). IfweuseagenericcommutativesemiringRtomodelnon-determinism,theSMCofclassicalsystems andR-probabilisticprocessesbetweenthemisgivenbythecategoryR-MatofR-valuedmatrices: we refertothenormalisedstatesasR-distributions,andtothenormalisedprocessesasR-stochastic. Asan example,B-MatisthecategoryfReloffinitesetsandrelationsbetweenthem,awell-studiedtoymodel inCQM[27,33,40]. AllthetheorywehavedevelopedaboveforR+-Matstraightforwardlyextendsto thegeneralsemirings,aslongaswereplaceStochwithanappropriatenotionofnormalisedprocesses. ThecategoriesfSetandfPFunoftotalandpartialdeterministicprocessesarealwayssub-SMCsofR-Mat, showingthatourinterpretationofRasmodellinganotionofnon-determinismissound. 3 Probabilistic Theories When talking about a theory, we broadly mean a categorical model (a SMC) that captures physical systems and the compositional structure of processes between them. In the spirit of CQM, we avoid restrictingourattentiontophysicalprocessesalone,butinsteadallowthepresenceofawholespectrum ofidealised,abstractprocessesthatprovidebuildingblocksforphysicalprocesses,orotherwisehelpin reasoningaboutthem. ContrarytotheOPTframework, wetaketheviewthatatheoryshouldspecify objectsandprocessesinapurelycompositionalway,andneednotnecessarilymakeimmediatereference to probabilistic outcomes of tests and measurement: as a consequence, we do not take any quotient withrespecttoprobabilisticoutcomes,andweallowforthepossibilitythatatheoryspecifiesprocesses whicharedifferentbutcannotbedistinguishedbymeansoftestsormeasurementsalone(thismeansthat somedifferent“hiddenvariabletheories”withthesameoperationalpredictionscanbemodelledinthis framework). 6Onecouldalsomentionthetropicalsemiring(R,min,+)usedintheFloyd-Warshallalgorithm,ortheViterbisemiring ([0,1],max,×)usedintheViterbialgorithm. S.Gogioso&C.M.Scandolo 5 3.1 Probabilistictheories Whentalkingaboutaprobabilistictheory,wemeanaSMCwhichincludesatleasttheclassicalsystems amongstitsranks,andwhichisfurthermorecompatiblewithacoupleofbasicoperationalfeatures,namely theirprobabilisticstructureandmarginalisation. Webrieflymotivateourrequirementsbelow. 1. Everyprobabilistictheoryhasclassicalprobabilisticsystemsunderthehood: becausetheseare themselves physical systems, we model them explicitly. In particular, their interface with other systems(e.g. measurementsandpreparations)canbetalkedaboutincompositionalterms. 2. Itmakesnosensetotalkaboutaprobabilistictheoryiftheprobabilisticstructuredoesnotextend fromclassicalsystemstoarbitrarysystems. Ifthiswerenotthecase,onewouldnotnecessarilybe abletoworkwithscenariosinwhichmultiplexedprocessesarecontrolledbyaclassicalrandom variable,ortoconditionaprocessbasedonaclassicaloutput. 3. Sensible theories without a notion of local state do exist (e.g. Everettian quantum theory), but theypresentanumberofoperationalchallenges,andtheyarenotprobabilisticinnature. Indeed, the absence of a notion of local state compatible with marginalisation makes most multi-party measurementscenariosandprotocolspecificationsmeaningless,afatetheysharewiththenotionof no-signallingandwiththeprobabilisticfoundationsofthermodynamics. Wenowproceedtoformalisetheserequirementsincategoricalterms. Definition1(ProbabilisticTheory). AprobabilistictheoryisasymmetricmonoidalcategoryC whichsatisfiesthefollowingrequirements. 1. Thereisafullsub-SMCofC,whichwedenotebyC ,whichisequivalenttoR+-Mat. K 2. TheSMCC isenrichedincommutativemonoids7,andtheenrichmentonC coincideswiththe K onegivenbythelinearstructureofR+-Mat. 3. The SMC C comes with an environment structure, i.e. with a family ( H :H →1)H∈objC of morphismswhichsatisfythefollowingrequirements: H H ⊗G = 1 = (3.1) G TheenvironmentstructureonC coincideswiththeonegivenbythediscardingmapsofR+-Mat. K TherequirementsabovecanbegeneralisedbyreplacingR+ withanarbitrarycommutativesemiringR,in whichcasewewilltalkaboutanR-probabilistictheory. InthecontextofaspecificR-probabilistictheory,werefertoC astheclassicaltheory,toitsobjectas K theclassicalsystemsandtoitsmorphismsastheclassicalprocesses. Inparticular,1isthetensorunit forC,andthescalarsofC formthesemiringR. ForeachpairofobjectsH ,K ∈objC,theprocesses H →K inC formacommutativemonoid,withasummationoperation+andazeroelement0which we refer to as the impossible process. In line with the nomenclature adopted for classical systems, werefertothe H mapsinvolvedintheenvironmentstructureasthediscardingmaps, andtothose processes f satisfyingthefollowingequationasnormalised: f = (3.2) R-probabilistictheoriescomewithanumberofhandybuilt-infeatures,whichwenowpresent. 7Withlinearityofbothcompositionandtensorproduct. 6 CategoricalProbabilisticTheories 3.2 Tests Consideraprocess f withaclassicaloutputvaluedinsomefinitesetY: G H f (3.3) Y Operationally, we can think of each output value y∈Y as corresponding to a different process being performed8,andthatprocesscanbeobtainedbytestingagainsttheoutputvaluey: G H f G := H f (3.4) y y Itshouldbenotedthat,evenwhen f isnormalised,theprocess f definedinEquation3.4isnotnecessarily y so,insteadbeingweightedbytheprobabilityofyoccurring. Inthissense,aprocessintheformof3.3 correspondstothenotionofatestinOPTs[18,21];iftheinputsystemH istrivialthenitisapreparation test,whileiftheoutputsystemK istrivialthenitisanobservationtest. Notethatinthisframeworkthe differencebetweenatestandamoregeneralprocessisentirelyintheeyeofthebeholder: whensaying “test”insteadof“process”,wewillmeanthatwearenotinterestedinitsclassicalinputs,butwewillnot excludethepresenceofclassicalsystemsamongsttheinputsystemsoftheprocess. 3.3 Outputprobability Theprobability9 P (y)ofoutputvaluey∈Y occurringinapreparationtestcanbeobtainedasfollows: ρ P (y) := ρ (3.5) ρ y Whentheprobabilityofoutcomeyforapreparationtestρ isinvertible10,wecanconditiononytoobtain thestate 1 ρ ,whichisnormalisedwhenevertheoriginalstateρ is: P (y) y ρ H ρ (3.6) y 1 P (y) ρ If ρ is normalised and the probabilities of all classical outcomes are either zero or invertible, then the reducedstate ρ| canbewrittenasusualintheformofaconvexcombinationoftheconditionedstates: H H H ρ = ∑ P (y) ρ (3.7) ρ ys.t.Pρ(y)(cid:54)=0 y P1(y) ρ 8Avalueywhichisneveroutputcan,withoutlossofgenerality,bethoughttocorrespondtotheimpossibleprocess. 9WeusethewordlooselytointendthevalueinagenericcommutativesemiringR: asthelatterisfixedbythechoiceof R-probabilistictheory,thisshouldcausenoconfusion.Inspecificapplications,onemightwanttousemorespecialisedterms, suchaspossibilityforR=B,orcountforR=N. 10InthecaseofR+,thisboilsdowntotheusualrequirementthattheprobabilitybenon-vanishing. S.Gogioso&C.M.Scandolo 7 3.4 Classicalcontrol ProcessesinR-probabilistictheoriesarenotlimitedtotests: initsmostgeneralform,aprocess f includes bothsomeclassicaloutputsetY andsomeclassicalinput/controlsetX: H G f (3.8) X Y Theprocess f(x) correspondingtoadefiniteinputvaluex∈X isimmediatelyobtainedbyapplying f to thedeterministicstatecorrespondingtox: G H G H f(x) := f (3.9) Y x Y More in general, we can apply the process f above to an arbitrary state p:=(p ) on X to obtain a x x∈X linearcombinationoftheindividualprocesses f(x) correspondingtoeachdefiniteinputvaluex: H G H G f = ∑ px f(x) (3.10) p Y x∈X Y Whenthestateisnormalised,thisgivesaconvexcombination∑xpxf(x) oftheindividualprocesses. 3.5 Preparations As an example of the difference between the constructions above, we look at preparations. In an R- probabilistic theory, there are three possible notions of preparation: we have controlled preparations, preparationtests,andconvexmixturesofthepreparedstates. Acontrolledpreparationtakesaclassical inputx∈X andproducesastate f(x) inH ,whileapreparationtestisastateonthejointsystemH ⊗X: H X f H ρ (3.11) X controlledpreparation preparationtest GivenanormalisedcontrolledpreparationandanormalisedstateqonX,i.e. anR-distribution(q ) , x x∈X wecanalwaysobtainacorrespondingpreparationtestasfollows: classicalcopymaponX ρ H := f H (3.12) X q X Thenormalisationrequirementensuresthattheprobabilityofoutputx∈X inthepreparationtestisthe samespecifiedbytheprobabilitydistribution(q ) : x x∈X f ρ = q = q = q X X X X (3.13) GivenapreparationtestobtainedasinEquation3.12,onecanfurtherdiscardtheclassicaloutputsystem X toobtainthecorrespondingconvexcombinationofpreparedstates,asshowninEquation3.7. There isnocompositionalwayofobtainingthecontrolledpreparationbackfromthepreparationtest, orthe preparationtestbackfromtheconvexcombinationofpreparedstates. 8 CategoricalProbabilisticTheories 3.6 Coarse-graining Sometimes the classical outputs of a process f are not immediately interesting on their own, and one mightwishtoapplysomeformofclassicalpost-processingtothem,bywhichwemeantheapplication ofsomeadditionalclassical(probabilistic)processtotheoutputsystem. Mostcommonly,oneobtains a new process g by applying a deterministic function q:X →Z to the relevant output system X of f, mappingtheoriginaloutputstosome“moreinteresting”valuesinsomeothersetZ: H G H G g := f (3.14) X Z X Y q Z If we now focus on our new values in Z, we see that the process we obtain is exactly what the OPT frameworkreferstoasacoarse-grainingofprocess f: H H G H gz G = f = ∑ fy G X X Y q z ys.t.q(y)=z X (3.15) As a consequence, by a coarse-graining of a process f we will mean a process g taking the form of Equation3.14forsomedeterministicfunctionq:X →Z. JustlikeintheOPTframework,wesaythat f isarefinementofgwhenevergisacoarse-grainingof f. 3.7 Sharppreparations/observationpairs A controlled preparation can be seen as a way of encoding the values of its classical input set X into its output system H . However, not all preparations admit a corresponding decoding process which deterministicallyreturnstheoriginalinputvalues11: werefertothosepreparationsadmittingonesuch decodingassharppreparations,andtheycorrespondtoperfectlydistinguishablestates[18]. Wesay thatapair(p,m)ofacontrolledpreparation p:X →H andanobservationtestm:H →X isasharp preparation/observationpair(orSPOpair,forshort)iftheobservationtestmwitnessesthesharpness ofthecontrolledpreparation p: X p H preparation X p m X = X X (3.16) H m X observation WesaythatanSPOpairisnormalised12 whenboth pandmarenormalisedprocesses. Infact,itsuffices toaskformtobenormalised,asnormalisationof palwaysfollows13: p = p m = (3.17) 11Thesimplestexamplebeinggivenbynon-injectivedeterministicfunctions. 12NormalisedSPOscorrespondtoperfectlydistinguishablestatesinOPTs. 13Theconverseisnotingeneraltrue.Asasimplecounterexample,takeadeterministicfunctionp:X→Y whichisinjective butnotsurjective,andletm:Y (cid:42)X beitsleftinverse,whichisnevertotal:thenpisnormalised,asitisatotalfunction,butm isnottotal,andhencenotnormalised. S.Gogioso&C.M.Scandolo 9 3.8 Decoherencemaps If(p,m)isanormalisedSPOpair,werefertothefollowingprocessastheassociateddecoherencemap: H dec H := H m p H (3.18) p,m decoherence InordertokeeptrackoftheclassicalsystemX interveninginthedecoherencemap,wewilluseK to p,m denoteit. Thereisgoodreasonforourchoiceofname. Firstly,theprocessdec isnormalised(because p,m compositionofnormalisedprocesses)andidempotent: decp,m decp,m = m p m p = m p = decp,m (3.19) Secondly,decoherencemapscanbeusedtoreconstructclassicalsystemsfromarbitraryones: tounder- standhowthisworks,weuseamildvariationonacommonconstructionfromcategorytheory,known asKaroubienvelope(oridempotentcompletion). IfC isaSMCwithanenvironmentstructure,thenwe definethenormalisedKaroubienvelopeofC,denotedbySplit [C],tobetheSMCdefinedasfollows: • thesystemsaregivenbypairsintheform(H ,h),whereH isasystemofC andh:H →H is anormalisedidempotentprocess; • theprocesses f :(H ,h)→(G,g)areexactlythoseprocesses f :H →G inC whichareinvariant underthespecifiedidempotents,i.e. thosewhichsatisfy f =g◦ f ◦h; • the tensor product on systems is given by (H ,h)⊗(G,g):=(H ⊗G,h⊗g), while the tensor productonprocessesistheoneinheritedfromC. Bylookingatobjectsintheform(H ,idH),itisimmediatetoseethatC isafullsub-SMCofSplit [C]; in particular, the two categories have the same scalars. In fact, we can prove that Split [C] is an R-probabilistictheorywheneverC is. Lemma2. IfC isanR-probabilistictheory, thensoisSplit [C], withclassicalsystems, enrichment anddiscardingmapsdirectlyinheritedfromC. AmongstthemanyobjectsofthenormalisedKaroubienvelopeforanR-probabilistictheorysitallobjects intheform(H ,dec ),with(p,m)anormalisedSPOpaironH : werefertosystemsinthisformas p,m decoheredsystems,andwenowshowthattheycanbeusedtorecovertheclassicalsystemsofthetheory. Theorem3(Decoheredsystems). LetC beanR-probabilistictheory,andletDecoh[C]bethefullsubcategoryofSplit [C]spannedby thedecoheredsystems. ThenDecoh[C]isasub-SMC,anditisequivalenttothesub-SMCC ofclassical K systemsinC. Theequivalencesendsadecoheredsystem(H ,dec )totheclassicalsystemK ,anda p,m p,m process f :(H ,dec )→(G,dec )tothefollowingclassicalprocess: p,m q,n Kp,m p f n Kq,n (3.20) Inthecaseofquantumtheory,thedecoherencemapsassociatedwith(possiblydegenerate)observables arisefromthenormalisedSPOpairgivenbyconsideringthedemolitionmeasurementintheobservable together with its adjoint. However, there are more decoherence maps in quantum theory than those associatedwithobservables. Indeed,wehaveimposednorequirementfortheobservationtobeadjoint tothepreparation: hencedecoherencemapsarealwaysnormalisedandidempotent,butnotnecessarily self-adjoint. As such, our notion of decoherence maps in quantum theory is more general than the self-adjointnormalisedidempotentnotionusedinRef.[52]andrelatedworks. 10 CategoricalProbabilisticTheories 4 Quantum Theory InCQM,daggercompactcategoriesaretakentobeabstractmodelsofpure-statequantumtheory,and thecorrespondingmodelsofmixed-statequantumtheoryareobtainedviatheCPMconstruction[51]. The CPM category CPM[fdHilb] contains all positive states and completely positive maps of finite- dimensional quantum theory, it comes with an environment structure given by the trace, and it can be enrichedincommutativemonoids,withR+ assemiringofscalars(theusualR+-linearstructureofCP maps). Unfortunately, CPM[fdHilb]doesnotcomewithawayoftalkingaboutclassicalsystems, and inordertodosooneusuallyappealstotheCP*construction[29,35], whichisrelatedtoC*algebras andquantumlogic. Inthiswork,wewillnotappealtotheCP*construction: instead,wewillrelyonthe normalisedKaroubienvelopetogetaprobabilistictheoryoutofCPM[fdHilb],followingthestepsof[52]. Aswehaveseenbefore,thenormalisedKaroubienvelopeSplit [CPM[fdHilb]]containsCPM[fdHilb] asafullsub-SMC,andwewillrefertotheobjectsinthatsub-SMCasquantumsystems. Italsocon- tains objects in the form (H ,dec ), where is a special commutative †-Frobenius algebra on the finite-dimensional Hilbert space H : we will refer to objects in this form as classical systems. The decoherencemapdec for isthenormalisedidempotentprocessdefinedasfollows: dec := = ∑ x x (4.1) x∈K( ) where(|x(cid:105)) istheorthonormalbasisformedbytheclassicalstatesof (seeRef.[34]). x∈K( ) Theorem4(Classicalsystems[52]). LetD bethefullsubcategoryofSplit [CPM[fdHilb]]spannedbytheclassicalsystems. ThenD isafull sub-SMCequivalenttoR+-Mat. Theequivalencesendsaclassicalsystem(H ,dec )tothesetK( )of classicalstatesfor ,andaprocess f :(H ,dec )→(G,dec )tothefollowingclassicalprocess: (cid:16) (cid:17) (cid:104)y|f|x(cid:105) :K( )→K( ) (4.2) (y,x)∈K( )×K( ) When talking about quantum theory in the context of probabilistic theories, we will refer to the full sub-SMCofSplit [CPM[fdHilb]]jointlyspannedbythequantumsystemsandtheclassicalsystems. 5 Causality and no-signalling 5.1 Causality CausalityisperhapsthetrickiestpointofcontactbetweentheOPTframeworkandprobabilistictheories aswehavedefinedthem. Ontheonehand,causalityispartoftheverydefinitionofprobabilistictheories: adistinguishedfamilyofdiscardingmapsissingledoutbythebasicoperationalrequirementthatstates belocalisable. ThisishowcausalityisusuallyunderstoodintheCQMcommunity[25,32]. Ontheother hand,however,provingcausalityinapurelycompositionalwayisimpossiblewithoutreferencetothat very environment structure. Indeed, one encounters the following issue when trying to formulate the causality axiom as understood by the OPT community: the observation tests in OPTs have additional requirementsthatmakethem“normalised”inasuitablesense,whiletheonesdefinedinthisworkhave nosuchrequirementplaceduponthem. Inordertosingleoutasetofobservationtestswhichwouldbe suitabletoformulatethecausalityaxiom(asunderstoodinOPTs),wewouldhavetosomehowreferto theenvironmentstructuretoimposeanappropriatenormalisationcondition14. 14Forexample,notethatCPM[fdHilb]admitsenvironmentstructuresdifferentfromthecanonicalone.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.