Categorical Probabilistic Theories StefanoGogioso CarloMariaScandolo UniversityofOxford UniversityofOxford [email protected] [email protected] Wepresentasimplecategoricalframeworkforthetreatmentofprobabilistictheories,withtheaim ofreconcilingthefieldsofCategoricalQuantumMechanics(CQM)andOperationalProbabilistic 7 Theories(OPTs). Inrecentyears,bothCQMandOPTshavefoundsuccessfulapplicationtoanumber 1 0 ofareasinquantumfoundationsandinformationtheory: theypresentmanysimilarities,bothinspirit 2 andinformalism,buttheyremainseparatedbyanumberofsubtleyetimportantdifferences. We attempttobridgethisgap,byadoptingaminimalnumberofoperationallymotivatedaxiomswhich n a providecleancategoricalfoundations,inthestyleofCQM,forthetreatmentoftheproblemsthat J OPTsareconcernedwith. 5 2 1 Introduction ] h p Categoricalmethodsarefindingmoreandmoreapplicationsinthefoundationsofquantumtheoryand - t quantuminformation,withtwomainframeworkscurrentlydominatingthescene: CategoricalQuantum n Mechanics(CQM)andOperationalProbabilisticTheories(OPTs). TheCQMframework[4,7,26,30,31] a u concernsitselfwiththecompositionalandalgebraicstructureofquantumsystemandprocesses,andhasa q heavyfocusondiagrammaticmethods[24,48,49]. TheOPTframework[17,18,19,21,43,44,45]was [ developedwiththeaimofobtainingacharacterisationofquantumtheoryintermsofinformation-theoretic 1 axioms,insidethewidercommunityofgeneralisedprobabilistictheories[9,10,11,36,46,50]. v 5 Both frameworks are based on symmetric monoidal categories, and at first sight it looks like they 7 should be complementing each other. However, a number of subtle differences have resulted in a 0 significantdisconnectbetweenthetwocommunities,withduplicationofeffortsandlossofsynergy. The 8 0 OPTframeworkisfoundedonexplicitprobabilisticstructure,axiomsofconcretephysicalinspirationand . 1 traditionalproofmethods, whichmakeithardtoworkwithinacategoricalanddiagrammaticsetting. 0 Conversely,theCQMframeworkhascleancategoricalfoundationsanddiagrammaticproofmethods,but 7 attheexpenseofdirectphysicalinterpretation. 1 : Wesetofftoreconcilethetwoframeworks,byproposingcategoricalfoundationsinthestyleofCQM v forthekindofsystemsandresultsthatareofinterestfortheOPTcommunity. Wedefineaprobabilistic i X theory as a symmetric monoidal category satisfying three additional requirements: the existence of r a classicalsystems,theexistenceofprobabilisticstructure,andthepossibilityofdefininglocalstates. Our requirementsareformulatedinstandardcategoricalterms,andcanbereadilyadoptedwithintheCQM framework;atthesametime,theycorrespondtorelatablephysicalandoperationalrequirementsthatany probabilistictheoryshouldpossess. Theendresultisaframeworkwhichissimpleandrigorousinits foundations,showsdirectoperationalsignificance,andcomeswithmoreexpressivepowerthaneitherof theCQMorOPTframeworksalone. ItshouldbenotedthatsimilareffortstoconnecttheCQMandOPTcommunitiesarebeingundertaken byRef.[53](andongoingworkbyitsauthor): theworkthereinishoweverclosertothelogicaltakeof effectustheory,whileourworkhasamorephysicaltake,withclassicalsystemsatitsveryheart. (cid:13)c S.Gogioso&C.M.Scandolo Submittedto: ThisworkislicensedundertheCreativeCommons QPL2017 Attribution-Noncommercial-ShareAlikeLicense. 2 CategoricalProbabilisticTheories 2 Classical Theory ThemainingredientdistinguishingOPTsfromthecategoriesusedinthecontextofCQMistheexplicit presenceofprobabilisticmixtures,orequivalentlytheexistenceofclassicalsystemstakingpartinthe processes. FromthepointofviewofOPTs,theseclassicalsystemsareabsorbedintotheformalism,using indicesandsummations. FromthepointofviewofCQM,ontheotherhand,theonlydistinctionbetween classicalandquantumsystemsisoperational,andbothshouldbemodelledexplicitlybyatheory. 2.1 ClassicaltheoryasaSMC Classicalsystems1 andstochasticprocessesbetweenthemformasymmetricmonoidalcategory(SMC), usuallyknownasStoch. TheobjectsofStocharelabelledbyfinitesets,andthemorphismsX →Y in Stoch are theY-by-X stochastic matrices, with matrix composition as sequential composition and the Kroneckerproductasparallelcomposition(akatensorproduct). Fromacategoricalstandpoint,therestrictiontoconvexcombinationsrequiredbyStochisinconvenient: if we wish to use a summation operation, as is usually done in the treatment of classical systems and mixed-statequantumtheory,wehavetointroduceexternalrestrictionsonthekindofsumsthatweallow. Alternatively, we could see the summation as defined on a larger category, with Stoch arising as the sub-categoryofsuitablynormalised processes. Thislatterapproachisinlinewiththegeneralphilosophy ofCQM:onestudiesabroadercollectionofabstractprocesses,easiertodescribeandtomanipulate,and then assembles/restricts them appropriately to obtain the subcategory of concrete, physically relevant processes. Asourmodelofclassicalsystemsand(potentiallynon-normalised)non-deterministicprocesses betweenthem,wetaketheSMCR+-Mat: justlikeStoch,theobjectsarethefinitenon-emptysets,butthe morphismsX →Y areALLtheR+-valuedmatricesin(cid:0)R+(cid:1)Y×X,notjustthestochasticones. Wereferto thesemapsastheprobabilisticprocesses,andusenormalisedtodenotethestochasticones. 2.2 Linearstructure WecanequipR+-Matwithawell-definednotionofsummationbysuitablyenrichingitincommutative monoids: we endow the morphisms X →Y with the linear structure of (cid:0)R+(cid:1)Y×X, i.e. we take matrix additionasoursummationoperationandthezeromatrixasitsneutralelement(modellingtheimpossible process). Traditionally, the only requirement for a category enriched in commutative monoid is that sequentialcompositionbelinear2,butinSMCsitmakessensetofurtherrequirethatparallelcomposition belinearaswell3. Thisisindeedthecaseforourchoiceofenrichment. 2.3 Deterministicprocesses AspecialplaceamongstthemanyprobabilisticprocessesbetweentwoclassicalsystemsX andY isheld bythedeterministicprocesses4,thefunctionsX →Y. Thedeterministicprocessesformthesub-SMC fSet of R+-Mat, and the Kronecker product restricts to the Cartesian product on them. The states in 1Thiswork,likemostworksinOPTsandCQM,isconcernedwithfiniteclassicalsystemsalone. 2Specifically,werequire f◦(g+h)=(f◦g)+(f◦h),(g+h)◦f =(g◦f)+(h◦f),0◦f =0and f◦0=0. 3Thingsareabitmorecomplicatedwiththetensorstructure:furthertothetensorproductbeinglinear,justlikecomposition, butweneedtorequiretheassociatorandunitorstobelinearaswell. 4Inlinewithitscommonmeaningincomputerscience,weusetheworddeterministictodenoteclassicalprocesseswhich mapeachdefiniteinputtoasingledefiniteoutput. Weusestochastic(ornormalisedprobabilistic,inthiswork)todenote classicalprocesseswhichmoregenerallymapdefiniteinputstoprobabilitydistributionsoverdefiniteoutputs. S.Gogioso&C.M.Scandolo 3 fSet for a classical system X are its deterministic states, the probability distributions δ concentrated x entirely on a single point x∈X (or, if you prefer, the linear extensions of the points of X themselves). The singleton set 1:={1} is the terminal object in fSet, and we refer to the unique effect X →1 as thediscardingmap5 ontheclassicalsystemX,whichisgraphicallydenotedbyagroundsymbol . X Thedeterministicprocessessitinsidealargersub-SMCfPFunofpartialdeterministicprocesses,with partialfunctionsasmorphisms. 2.4 Resolutionoftheidentity Inordertoclearlydistinguishclassicalsystemsfrommoregeneralsystemsinthetheory,wewilladopt a graphical convention in which dashed wires are used to denote systems which are guaranteed to be classical,sothattheidentitymorphismX →X foraclassicalsystemX willbedenotedasfollows: X X (2.1) Usingtheenrichment,weobtainthefollowingresolutionoftheidentity: X X = ∑ X x x X (2.2) x∈X Thestatelabelledbyx∈X aboveisthedeterministicstatecorrespondingtox;theeffectlabelledbyx aboveistheonesendingxto1∈R+ andallx(cid:48)(cid:54)=xto0∈R+ (or,ifyouprefer,thelinearextensionofthe partialfunctionX (cid:42)1whichsendsxto1∈1andisundefinedonallotherx(cid:48)∈X). 2.5 Marginalisation Because the resolution of the identity is in terms of deterministic states, we immediately obtain the followingresolutionofthediscardingmap: X = ∑ X x (2.3) x∈X ThismeansthatdiscardingasubsysteminR+-Matcorrespondstotheusualnotionofmarginalisation. From the CQM perspective, the process of localisation of states and processes in arbitrary SMCs is captured by the notion of environment structure [25,32]. Because classical states and processes are localisedbymarginalising,itisnosurprisethatdiscardingmapsinR+-Matsatisfytherequirementsto formanenvironmentstructure: X X⊗Y = 1 = (2.4) Y Theemptydiagramontherighthandsideofthesecondequationisthescalar1,whichasadiagrammatic conventionisusuallyomitted. 5Inanot-at-all-unexpectedcoincidence,itmakestotalsensetocallthisthedeterministiceffect. 4 CategoricalProbabilisticTheories 2.6 Normalisedprocesses Achoiceofenvironmentstructurealwayssinglesoutasub-SMCofnormalisedprocesses,namelythose processes f satisfyingthefollowingcondition: f = (2.5) TheabstractnormalisationconditionaboveallowsustorecoverStochinacategoricallyfashionableway as the sub-SMC of normalised processes in R+-Mat. As a bonus, we also get fSet as the sub-SMC of normalisedprocessesinfPFun. 2.7 Probabilitiesasaresource Incomputerscience,itiscommonforcommutativesemiringstomodelresourcesusedincomputation: forexample,theprobabilitysemiring(R+,+,×)isusedtomodelprobabilisticcomputation,theboolean semiring(B,∨,∧)isusedtomodelexistenceproblems,andthenaturalnumbers(N,+,×)areusedto modelcountingproblems6. Asimilarapproachcouldbeadoptedinphysics: probabilities(corresponding tothesemiringR+)couldbeseenasaresourceprovidingnon-determinisminclassicalsystems,andwe mightwishtostudythetoytheoriesobtainedbyusingotherresources(correspondingtoothersemirings) intheirplace. Thisis,forexample,theroadtakenbythesheaf-theoreticframeworkofRef.[2],wherea numberofimportantresultsonnon-localityandcontextualityareobtainedbyconfrontingtheprobabilities (thesemiringR+)withpossibilities[5](thesemiringB)andsignedprobabilities[6,39](thesemiringR, whichisgivenanoperationalinterpretationinRef.[3]). IfweuseagenericcommutativesemiringRtomodelnon-determinism,theSMCofclassicalsystems andR-probabilisticprocessesbetweenthemisgivenbythecategoryR-MatofR-valuedmatrices: we refertothenormalisedstatesasR-distributions,andtothenormalisedprocessesasR-stochastic. Asan example,B-MatisthecategoryfReloffinitesetsandrelationsbetweenthem,awell-studiedtoymodel inCQM[27,33,40]. AllthetheorywehavedevelopedaboveforR+-Matstraightforwardlyextendsto thegeneralsemirings,aslongaswereplaceStochwithanappropriatenotionofnormalisedprocesses. ThecategoriesfSetandfPFunoftotalandpartialdeterministicprocessesarealwayssub-SMCsofR-Mat, showingthatourinterpretationofRasmodellinganotionofnon-determinismissound. 3 Probabilistic Theories When talking about a theory, we broadly mean a categorical model (a SMC) that captures physical systems and the compositional structure of processes between them. In the spirit of CQM, we avoid restrictingourattentiontophysicalprocessesalone,butinsteadallowthepresenceofawholespectrum ofidealised,abstractprocessesthatprovidebuildingblocksforphysicalprocesses,orotherwisehelpin reasoningaboutthem. ContrarytotheOPTframework, wetaketheviewthatatheoryshouldspecify objectsandprocessesinapurelycompositionalway,andneednotnecessarilymakeimmediatereference to probabilistic outcomes of tests and measurement: as a consequence, we do not take any quotient withrespecttoprobabilisticoutcomes,andweallowforthepossibilitythatatheoryspecifiesprocesses whicharedifferentbutcannotbedistinguishedbymeansoftestsormeasurementsalone(thismeansthat somedifferent“hiddenvariabletheories”withthesameoperationalpredictionscanbemodelledinthis framework). 6Onecouldalsomentionthetropicalsemiring(R,min,+)usedintheFloyd-Warshallalgorithm,ortheViterbisemiring ([0,1],max,×)usedintheViterbialgorithm. S.Gogioso&C.M.Scandolo 5 3.1 Probabilistictheories Whentalkingaboutaprobabilistictheory,wemeanaSMCwhichincludesatleasttheclassicalsystems amongstitsranks,andwhichisfurthermorecompatiblewithacoupleofbasicoperationalfeatures,namely theirprobabilisticstructureandmarginalisation. Webrieflymotivateourrequirementsbelow. 1. Everyprobabilistictheoryhasclassicalprobabilisticsystemsunderthehood: becausetheseare themselves physical systems, we model them explicitly. In particular, their interface with other systems(e.g. measurementsandpreparations)canbetalkedaboutincompositionalterms. 2. Itmakesnosensetotalkaboutaprobabilistictheoryiftheprobabilisticstructuredoesnotextend fromclassicalsystemstoarbitrarysystems. Ifthiswerenotthecase,onewouldnotnecessarilybe abletoworkwithscenariosinwhichmultiplexedprocessesarecontrolledbyaclassicalrandom variable,ortoconditionaprocessbasedonaclassicaloutput. 3. Sensible theories without a notion of local state do exist (e.g. Everettian quantum theory), but theypresentanumberofoperationalchallenges,andtheyarenotprobabilisticinnature. Indeed, the absence of a notion of local state compatible with marginalisation makes most multi-party measurementscenariosandprotocolspecificationsmeaningless,afatetheysharewiththenotionof no-signallingandwiththeprobabilisticfoundationsofthermodynamics. Wenowproceedtoformalisetheserequirementsincategoricalterms. Definition1(ProbabilisticTheory). AprobabilistictheoryisasymmetricmonoidalcategoryC whichsatisfiesthefollowingrequirements. 1. Thereisafullsub-SMCofC,whichwedenotebyC ,whichisequivalenttoR+-Mat. K 2. TheSMCC isenrichedincommutativemonoids7,andtheenrichmentonC coincideswiththe K onegivenbythelinearstructureofR+-Mat. 3. The SMC C comes with an environment structure, i.e. with a family ( H :H →1)H∈objC of morphismswhichsatisfythefollowingrequirements: H H ⊗G = 1 = (3.1) G TheenvironmentstructureonC coincideswiththeonegivenbythediscardingmapsofR+-Mat. K TherequirementsabovecanbegeneralisedbyreplacingR+ withanarbitrarycommutativesemiringR,in whichcasewewilltalkaboutanR-probabilistictheory. InthecontextofaspecificR-probabilistictheory,werefertoC astheclassicaltheory,toitsobjectas K theclassicalsystemsandtoitsmorphismsastheclassicalprocesses. Inparticular,1isthetensorunit forC,andthescalarsofC formthesemiringR. ForeachpairofobjectsH ,K ∈objC,theprocesses H →K inC formacommutativemonoid,withasummationoperation+andazeroelement0which we refer to as the impossible process. In line with the nomenclature adopted for classical systems, werefertothe H mapsinvolvedintheenvironmentstructureasthediscardingmaps, andtothose processes f satisfyingthefollowingequationasnormalised: f = (3.2) R-probabilistictheoriescomewithanumberofhandybuilt-infeatures,whichwenowpresent. 7Withlinearityofbothcompositionandtensorproduct. 6 CategoricalProbabilisticTheories 3.2 Tests Consideraprocess f withaclassicaloutputvaluedinsomefinitesetY: G H f (3.3) Y Operationally, we can think of each output value y∈Y as corresponding to a different process being performed8,andthatprocesscanbeobtainedbytestingagainsttheoutputvaluey: G H f G := H f (3.4) y y Itshouldbenotedthat,evenwhen f isnormalised,theprocess f definedinEquation3.4isnotnecessarily y so,insteadbeingweightedbytheprobabilityofyoccurring. Inthissense,aprocessintheformof3.3 correspondstothenotionofatestinOPTs[18,21];iftheinputsystemH istrivialthenitisapreparation test,whileiftheoutputsystemK istrivialthenitisanobservationtest. Notethatinthisframeworkthe differencebetweenatestandamoregeneralprocessisentirelyintheeyeofthebeholder: whensaying “test”insteadof“process”,wewillmeanthatwearenotinterestedinitsclassicalinputs,butwewillnot excludethepresenceofclassicalsystemsamongsttheinputsystemsoftheprocess. 3.3 Outputprobability Theprobability9 P (y)ofoutputvaluey∈Y occurringinapreparationtestcanbeobtainedasfollows: ρ P (y) := ρ (3.5) ρ y Whentheprobabilityofoutcomeyforapreparationtestρ isinvertible10,wecanconditiononytoobtain thestate 1 ρ ,whichisnormalisedwhenevertheoriginalstateρ is: P (y) y ρ H ρ (3.6) y 1 P (y) ρ If ρ is normalised and the probabilities of all classical outcomes are either zero or invertible, then the reducedstate ρ| canbewrittenasusualintheformofaconvexcombinationoftheconditionedstates: H H H ρ = ∑ P (y) ρ (3.7) ρ ys.t.Pρ(y)(cid:54)=0 y P1(y) ρ 8Avalueywhichisneveroutputcan,withoutlossofgenerality,bethoughttocorrespondtotheimpossibleprocess. 9WeusethewordlooselytointendthevalueinagenericcommutativesemiringR: asthelatterisfixedbythechoiceof R-probabilistictheory,thisshouldcausenoconfusion.Inspecificapplications,onemightwanttousemorespecialisedterms, suchaspossibilityforR=B,orcountforR=N. 10InthecaseofR+,thisboilsdowntotheusualrequirementthattheprobabilitybenon-vanishing. S.Gogioso&C.M.Scandolo 7 3.4 Classicalcontrol ProcessesinR-probabilistictheoriesarenotlimitedtotests: initsmostgeneralform,aprocess f includes bothsomeclassicaloutputsetY andsomeclassicalinput/controlsetX: H G f (3.8) X Y Theprocess f(x) correspondingtoadefiniteinputvaluex∈X isimmediatelyobtainedbyapplying f to thedeterministicstatecorrespondingtox: G H G H f(x) := f (3.9) Y x Y More in general, we can apply the process f above to an arbitrary state p:=(p ) on X to obtain a x x∈X linearcombinationoftheindividualprocesses f(x) correspondingtoeachdefiniteinputvaluex: H G H G f = ∑ px f(x) (3.10) p Y x∈X Y Whenthestateisnormalised,thisgivesaconvexcombination∑xpxf(x) oftheindividualprocesses. 3.5 Preparations As an example of the difference between the constructions above, we look at preparations. In an R- probabilistic theory, there are three possible notions of preparation: we have controlled preparations, preparationtests,andconvexmixturesofthepreparedstates. Acontrolledpreparationtakesaclassical inputx∈X andproducesastate f(x) inH ,whileapreparationtestisastateonthejointsystemH ⊗X: H X f H ρ (3.11) X controlledpreparation preparationtest GivenanormalisedcontrolledpreparationandanormalisedstateqonX,i.e. anR-distribution(q ) , x x∈X wecanalwaysobtainacorrespondingpreparationtestasfollows: classicalcopymaponX ρ H := f H (3.12) X q X Thenormalisationrequirementensuresthattheprobabilityofoutputx∈X inthepreparationtestisthe samespecifiedbytheprobabilitydistribution(q ) : x x∈X f ρ = q = q = q X X X X (3.13) GivenapreparationtestobtainedasinEquation3.12,onecanfurtherdiscardtheclassicaloutputsystem X toobtainthecorrespondingconvexcombinationofpreparedstates,asshowninEquation3.7. There isnocompositionalwayofobtainingthecontrolledpreparationbackfromthepreparationtest, orthe preparationtestbackfromtheconvexcombinationofpreparedstates. 8 CategoricalProbabilisticTheories 3.6 Coarse-graining Sometimes the classical outputs of a process f are not immediately interesting on their own, and one mightwishtoapplysomeformofclassicalpost-processingtothem,bywhichwemeantheapplication ofsomeadditionalclassical(probabilistic)processtotheoutputsystem. Mostcommonly,oneobtains a new process g by applying a deterministic function q:X →Z to the relevant output system X of f, mappingtheoriginaloutputstosome“moreinteresting”valuesinsomeothersetZ: H G H G g := f (3.14) X Z X Y q Z If we now focus on our new values in Z, we see that the process we obtain is exactly what the OPT frameworkreferstoasacoarse-grainingofprocess f: H H G H gz G = f = ∑ fy G X X Y q z ys.t.q(y)=z X (3.15) As a consequence, by a coarse-graining of a process f we will mean a process g taking the form of Equation3.14forsomedeterministicfunctionq:X →Z. JustlikeintheOPTframework,wesaythat f isarefinementofgwhenevergisacoarse-grainingof f. 3.7 Sharppreparations/observationpairs A controlled preparation can be seen as a way of encoding the values of its classical input set X into its output system H . However, not all preparations admit a corresponding decoding process which deterministicallyreturnstheoriginalinputvalues11: werefertothosepreparationsadmittingonesuch decodingassharppreparations,andtheycorrespondtoperfectlydistinguishablestates[18]. Wesay thatapair(p,m)ofacontrolledpreparation p:X →H andanobservationtestm:H →X isasharp preparation/observationpair(orSPOpair,forshort)iftheobservationtestmwitnessesthesharpness ofthecontrolledpreparation p: X p H preparation X p m X = X X (3.16) H m X observation WesaythatanSPOpairisnormalised12 whenboth pandmarenormalisedprocesses. Infact,itsuffices toaskformtobenormalised,asnormalisationof palwaysfollows13: p = p m = (3.17) 11Thesimplestexamplebeinggivenbynon-injectivedeterministicfunctions. 12NormalisedSPOscorrespondtoperfectlydistinguishablestatesinOPTs. 13Theconverseisnotingeneraltrue.Asasimplecounterexample,takeadeterministicfunctionp:X→Y whichisinjective butnotsurjective,andletm:Y (cid:42)X beitsleftinverse,whichisnevertotal:thenpisnormalised,asitisatotalfunction,butm isnottotal,andhencenotnormalised. S.Gogioso&C.M.Scandolo 9 3.8 Decoherencemaps If(p,m)isanormalisedSPOpair,werefertothefollowingprocessastheassociateddecoherencemap: H dec H := H m p H (3.18) p,m decoherence InordertokeeptrackoftheclassicalsystemX interveninginthedecoherencemap,wewilluseK to p,m denoteit. Thereisgoodreasonforourchoiceofname. Firstly,theprocessdec isnormalised(because p,m compositionofnormalisedprocesses)andidempotent: decp,m decp,m = m p m p = m p = decp,m (3.19) Secondly,decoherencemapscanbeusedtoreconstructclassicalsystemsfromarbitraryones: tounder- standhowthisworks,weuseamildvariationonacommonconstructionfromcategorytheory,known asKaroubienvelope(oridempotentcompletion). IfC isaSMCwithanenvironmentstructure,thenwe definethenormalisedKaroubienvelopeofC,denotedbySplit [C],tobetheSMCdefinedasfollows: • thesystemsaregivenbypairsintheform(H ,h),whereH isasystemofC andh:H →H is anormalisedidempotentprocess; • theprocesses f :(H ,h)→(G,g)areexactlythoseprocesses f :H →G inC whichareinvariant underthespecifiedidempotents,i.e. thosewhichsatisfy f =g◦ f ◦h; • the tensor product on systems is given by (H ,h)⊗(G,g):=(H ⊗G,h⊗g), while the tensor productonprocessesistheoneinheritedfromC. Bylookingatobjectsintheform(H ,idH),itisimmediatetoseethatC isafullsub-SMCofSplit [C]; in particular, the two categories have the same scalars. In fact, we can prove that Split [C] is an R-probabilistictheorywheneverC is. Lemma2. IfC isanR-probabilistictheory, thensoisSplit [C], withclassicalsystems, enrichment anddiscardingmapsdirectlyinheritedfromC. AmongstthemanyobjectsofthenormalisedKaroubienvelopeforanR-probabilistictheorysitallobjects intheform(H ,dec ),with(p,m)anormalisedSPOpaironH : werefertosystemsinthisformas p,m decoheredsystems,andwenowshowthattheycanbeusedtorecovertheclassicalsystemsofthetheory. Theorem3(Decoheredsystems). LetC beanR-probabilistictheory,andletDecoh[C]bethefullsubcategoryofSplit [C]spannedby thedecoheredsystems. ThenDecoh[C]isasub-SMC,anditisequivalenttothesub-SMCC ofclassical K systemsinC. Theequivalencesendsadecoheredsystem(H ,dec )totheclassicalsystemK ,anda p,m p,m process f :(H ,dec )→(G,dec )tothefollowingclassicalprocess: p,m q,n Kp,m p f n Kq,n (3.20) Inthecaseofquantumtheory,thedecoherencemapsassociatedwith(possiblydegenerate)observables arisefromthenormalisedSPOpairgivenbyconsideringthedemolitionmeasurementintheobservable together with its adjoint. However, there are more decoherence maps in quantum theory than those associatedwithobservables. Indeed,wehaveimposednorequirementfortheobservationtobeadjoint tothepreparation: hencedecoherencemapsarealwaysnormalisedandidempotent,butnotnecessarily self-adjoint. As such, our notion of decoherence maps in quantum theory is more general than the self-adjointnormalisedidempotentnotionusedinRef.[52]andrelatedworks. 10 CategoricalProbabilisticTheories 4 Quantum Theory InCQM,daggercompactcategoriesaretakentobeabstractmodelsofpure-statequantumtheory,and thecorrespondingmodelsofmixed-statequantumtheoryareobtainedviatheCPMconstruction[51]. The CPM category CPM[fdHilb] contains all positive states and completely positive maps of finite- dimensional quantum theory, it comes with an environment structure given by the trace, and it can be enrichedincommutativemonoids,withR+ assemiringofscalars(theusualR+-linearstructureofCP maps). Unfortunately, CPM[fdHilb]doesnotcomewithawayoftalkingaboutclassicalsystems, and inordertodosooneusuallyappealstotheCP*construction[29,35], whichisrelatedtoC*algebras andquantumlogic. Inthiswork,wewillnotappealtotheCP*construction: instead,wewillrelyonthe normalisedKaroubienvelopetogetaprobabilistictheoryoutofCPM[fdHilb],followingthestepsof[52]. Aswehaveseenbefore,thenormalisedKaroubienvelopeSplit [CPM[fdHilb]]containsCPM[fdHilb] asafullsub-SMC,andwewillrefertotheobjectsinthatsub-SMCasquantumsystems. Italsocon- tains objects in the form (H ,dec ), where is a special commutative †-Frobenius algebra on the finite-dimensional Hilbert space H : we will refer to objects in this form as classical systems. The decoherencemapdec for isthenormalisedidempotentprocessdefinedasfollows: dec := = ∑ x x (4.1) x∈K( ) where(|x(cid:105)) istheorthonormalbasisformedbytheclassicalstatesof (seeRef.[34]). x∈K( ) Theorem4(Classicalsystems[52]). LetD bethefullsubcategoryofSplit [CPM[fdHilb]]spannedbytheclassicalsystems. ThenD isafull sub-SMCequivalenttoR+-Mat. Theequivalencesendsaclassicalsystem(H ,dec )tothesetK( )of classicalstatesfor ,andaprocess f :(H ,dec )→(G,dec )tothefollowingclassicalprocess: (cid:16) (cid:17) (cid:104)y|f|x(cid:105) :K( )→K( ) (4.2) (y,x)∈K( )×K( ) When talking about quantum theory in the context of probabilistic theories, we will refer to the full sub-SMCofSplit [CPM[fdHilb]]jointlyspannedbythequantumsystemsandtheclassicalsystems. 5 Causality and no-signalling 5.1 Causality CausalityisperhapsthetrickiestpointofcontactbetweentheOPTframeworkandprobabilistictheories aswehavedefinedthem. Ontheonehand,causalityispartoftheverydefinitionofprobabilistictheories: adistinguishedfamilyofdiscardingmapsissingledoutbythebasicoperationalrequirementthatstates belocalisable. ThisishowcausalityisusuallyunderstoodintheCQMcommunity[25,32]. Ontheother hand,however,provingcausalityinapurelycompositionalwayisimpossiblewithoutreferencetothat very environment structure. Indeed, one encounters the following issue when trying to formulate the causality axiom as understood by the OPT community: the observation tests in OPTs have additional requirementsthatmakethem“normalised”inasuitablesense,whiletheonesdefinedinthisworkhave nosuchrequirementplaceduponthem. Inordertosingleoutasetofobservationtestswhichwouldbe suitabletoformulatethecausalityaxiom(asunderstoodinOPTs),wewouldhavetosomehowreferto theenvironmentstructuretoimposeanappropriatenormalisationcondition14. 14Forexample,notethatCPM[fdHilb]admitsenvironmentstructuresdifferentfromthecanonicalone.