ebook img

Categorical homotopy theory PDF

292 Pages·2017·1.401 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Categorical homotopy theory

Categorical homotopy theory Emily Riehl Tomystudents,colleagues,friendswhoinspiredthiswork. ...whatwearedoingisfindingways forpeopletounderstandandthink aboutmathematics. WilliamP.Thurston“Onproofand progressinmathematics”[Thu94] Contents Preface xi Prerequisites xiv NotationalConventions xiv Acknowledgments xv PartI. Derivedfunctorsandhomotopy(co)limits 1 Chapter1. AllconceptsareKanextensions 3 1.1. Kanextensions 3 1.2. Aformula 5 1.3. PointwiseKanextensions 7 1.4. Allconcepts 9 1.5. Adjunctionsinvolvingsimplicialsets 10 Chapter2. Derivedfunctorsviadeformations 13 2.1. Homotopicalcategoriesandderivedfunctors 13 2.2. Derivedfunctorsviadeformations 18 2.3. Classicalderivedfunctorsbetweenabeliancategories 22 2.4. Previewofhomotopylimitsandcolimits 23 Chapter3. Basicconceptsofenrichedcategorytheory 25 3.1. Afirstexample 26 3.2. Thebaseforenrichment 26 3.3. Enrichedcategories 27 3.4. Underlyingcategoriesofenrichedcategories 30 3.5. Enrichedfunctorsandenrichednaturaltransformations 34 3.6. Simplicialcategories 36 3.7. Tensorsandcotensors 37 3.8. Simplicialhomotopyandsimplicialmodelcategories 42 Chapter4. Theunreasonablyeffective(co)barconstruction 45 4.1. Functortensorproducts 45 4.2. Thebarconstruction 47 4.3. Thecobarconstruction 48 4.4. Simplicialreplacementsandcolimits 49 4.5. Augmentedsimplicialobjectsandextradegeneracies 51 Chapter5. Homotopylimitsandcolimits: thetheory 55 5.1. Thehomotopylimitandcolimitfunctors 55 5.2. Homotopicalaspectsofthebarconstruction 57 vii viii CONTENTS Chapter6. Homotopylimitsandcolimits: thepractice 61 6.1. Convenientcategoriesofspaces 61 6.2. Simplicialmodelcategoriesofspaces 65 6.3. Warningsandsimplifications 66 6.4. Samplehomotopycolimits 67 6.5. Samplehomotopylimits 71 6.6. Homotopycolimitsasweightedcolimits 73 PartII. Enrichedhomotopytheory 77 Chapter7. Weightedlimitsandcolimits 79 7.1. Weightedlimitsinunenrichedcategorytheory 79 7.2. Weightedcolimitsinunenrichedcategorytheory 83 7.3. Enrichednaturaltransformationsandenrichedends 85 7.4. Weightedlimitsandcolimits 87 7.5. Conicallimitsandcolimits 88 7.6. Enrichedcompletenessandcocompleteness 90 7.7. Homotopy(co)limitsasweighted(co)limits 92 7.8. Balancingbarandcobarconstructions 93 Chapter8. Categoricaltoolsforhomotopy(co)limitcomputations 97 8.1. Preservationofweightedlimitsandcolimits 97 8.2. Changeofbaseforhomotopylimitsandcolimits 99 8.3. Finalfunctorsinunenrichedcategorytheory 101 8.4. Finalfunctorsinenrichedcategorytheory 103 8.5. Homotopyfinalfunctors 103 Chapter9. Weightedhomotopylimitsandcolimits 109 9.1. Theenrichedbarandcobarconstruction 109 9.2. Weightedhomotopylimitsandcolimits 111 Chapter10. Derivedenrichment 117 10.1. Enrichmentsencodedasmodulestructures 118 10.2. Derivedstructuresforenrichment 120 10.3. Weightedhomotopylimitsandcolimits,revisited 124 10.4. Homotopicalstructureviaenrichment 126 10.5. Homotopyequivalencesvs.weakequivalences 129 PartIII. Modelcategoriesandweakfactorizationsystems 131 Chapter11. Weakfactorizationsystemsinmodelcategories 133 11.1. Liftingproblemsandliftingproperties 133 11.2. Weakfactorizationsystems 137 11.3. ModelcategoriesandQuillenfunctors 138 11.4. Simplicialmodelcategories 143 11.5. WeightedcolimitsasleftQuillenbifunctors 144 Chapter12. Algebraicperspectivesonthesmallobjectargument 151 12.1. Functorialfactorizations 151 12.2. Quillen’ssmallobjectargument 152 CONTENTS ix 12.3. Benefitsofcofibrantgeneration 155 12.4. Algebraicperspectives 156 12.5. Garner’ssmallobjectargument 159 12.6. Algebraicweakfactorizationsystemsanduniversalproperties 164 12.7. Composingalgebrasandcoalgebras 168 12.8. Algebraiccellcomplexes 170 12.9. Epilogueonalgebraicmodelcategories 173 Chapter13. Enrichedfactorizationsandenrichedliftingproperties 175 13.1. Enrichedarrowcategories 176 13.2. Enrichedfunctorialfactorizations 177 13.3. Enrichedliftingproperties 179 13.4. Enrichedweakfactorizationsystems 183 13.5. Enrichedmodelcategories 185 13.6. Enrichmentascoherence 186 Chapter14. AbrieftourofReedycategorytheory 189 14.1. Latchingandmatchingobjects 190 14.2. ReedycategoriesandtheReedymodelstructures 191 14.3. Reedycofibrantobjectsandhomotopy(co)limits 194 14.4. Localizationsandcompletionsofspaces 198 14.5. Homotopycolimitsoftopologicalspaces 202 PartIV. Quasi-categories 205 Chapter15. Preliminariesonquasi-categories 207 15.1. Introducingquasi-categories 208 15.2. Closureproperties 209 15.3. Towardthemodelstructure 211 15.4. Mappingspaces 214 Chapter16. Simplicialcategoriesandhomotopycoherence 221 16.1. Topologicalandsimplicialcategories 221 16.2. Cofibrantsimplicialcategoriesaresimplicialcomputads 223 16.3. Homotopycoherence 224 16.4. UnderstandingthemappingspacesCX(x,y) 227 16.5. Agesturetowardthecomparison 231 Chapter17. Isomorphismsinquasi-categories 233 17.1. Joinandslice 234 17.2. IsomorphismsandKancomplexes 236 17.3. Invertingsimplices 239 17.4. Markedsimplicialsets 240 17.5. Invertingdiagramsofisomorphisms 243 17.6. Acontextforinvertibility 245 17.7. Homotopylimitsofquasi-categories 246 Chapter18. Asamplingof2-categoricalaspectsofquasi-categorytheory 249 18.1. The2-categoryofquasi-categories 249 18.2. Weaklimitsinthe2-categoryofquasi-categories 251 x CONTENTS 18.3. Arrowquasi-categoriesinpractice 253 18.4. Homotopypullbacks 254 18.5. Commaquasi-categories 255 18.6. Adjunctionsbetweenquasi-categories 256 18.7. Essentialgeometryofterminalobjects 260 Bibliography 263 GlossaryofNotation 267 Index 269

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.