ebook img

Categorical entropy for Fourier-Mukai transforms on generic abelian surfaces PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Categorical entropy for Fourier-Mukai transforms on generic abelian surfaces

CATEGORICAL ENTROPY FOR FOURIER-MUKAI TRANSFORMS ON GENERIC ABELIAN SURFACES. KO¯TAYOSHIOKA Abstract. Inthisnote,weshallcomputethecategoricalentropyofanautoequivalenceonagenericabelian surface. 7 1 0 2 n 0. Introduction a J In [1], Dimitrov, Haiden, Katzarkov, and Kontsevich introduced a categorical entropy ht(Φ) (t R) for ∈ 5 anendofunctorΦofatriangulatedcategorywithasplitgenerator. Forendofunctorsofthederivedcategory 1 D(X) of coherent sheaves on a smooth projective variety X, Kikuta and Takahashi [3], [4] studied the entropy. In particular they proved that h0 coincides with the topological entropy for an endofunctor Lf∗ ] G induced by a surjective endomorphism f of smooth projective variety [4, Thm. 5.4] and an autoequivalence ofD(X)ifdimX =1[3]or K isample[4,Thm. 5.6]. TheyalsoconjecturedthataGromov-Yomdintype A ± X resultholds,thatis,h (Φ)=logρ(Φ)([4,Conjecture5.3])whereρ(Φ)isthespectralradiusoftheactionofΦ 0 . h onthe algebraiccohomologygroupH∗(X,Q) . Itseems that there areonly afew example ofcomputation alg t ofcategoricalentropy,anditmaybe interestingto addmoreexamples. Inthis note,weshallgiveanalmost a m trivial example of the computation. Thus we shall compute the entropy for special autoequivalences on abelian surfaces. For an abelian variety, Orlov [9] proved that the kernel of an equivalence is a sheaf up to [ shift. So we can expect that the entropy which measures the complexity of an equivalence is simple. For a 1 special equivalence on an abelian surface, we shall check that our expectation is true. v To be more precise, let X be an abelian surface and H an ample divisor. We set L := Z ZH Z̺ , 9 ⊕ ⊕ X where̺ is thefundamentalclassofX. LetΦ:D(X) D(X)be aFourier-Mukaifunctorwhichpreserves 0 X → 0 L. In Theorem 2.2, we shall compute ht(Φ). Combining a recent paper of Ikeda [2], we also check that the 4 conjecture of Kikuta and Takahashi holds for equivalences on abelian surfaces (Proposition 2.10). 0 We also remark that there is a symplectic manifold of generalized Kummer type which has an automor- . 1 phism of infinite order. This is an analogue of a recent result of Ouchi [11]. By the absence of spherical 0 objects, our example is almost trivial. 7 1 : v i X 1. Fourier-Mukai transforms on an abelian surface r 1.1. Notation. We denote the category of coherent sheaves on X by Coh(X) and the bounded derived a category of Coh(X) by D(X). A Mukai lattice of X consists of H2∗(X,Z) := 2 H2i(X,Z) and an i=0 integral bilinear form , on H2∗(X,Z): h i L x +x +x ̺ ,y +y +y ̺ :=(x ,y ) x y x y Z, 0 1 2 X 0 1 2 X 1 1 0 2 2 0 h i − − ∈ where x ,y H2(X,Z), x ,x ,y ,y Z and ̺ H4(X,Z) is the fundamental class of X. We also 1 1 0 2 0 2 X ∈ ∈ ∈ introducethealgebraicMukailatticeasthepairofH∗(X,Z) :=Z NS(X) Zand , onH∗(X,Z) . alg alg ⊕ ⊕ h i For x=x +x +x ̺ with x ,x Z and x H2(X,Z), we also write x=(x ,x ,x ). For E D(X), 0 1 2 X 0 2 1 0 1 2 ∈ ∈ ∈ v(E):=ch(E) denotes the Mukai vector of E. For E D(X Y), we set ∈ × ΦE (x):=Rp (E p∗ (x)), x D(X), X→Y Y∗ ⊗ X ∈ 2010 Mathematics Subject Classification. Primary14D20. Keywords and phrases. Categoricalentropy, abeliansurfaces. Theauthor issupportedbytheGrant-in-aidforScientificResearch(No.26287007, 24224001), JSPS. 1 where p ,p are projections from X Y to X and Y respectively. Let Eq(D(X),D(Y)) be the set of X Y × equivalences between D(X) and D(Y). We set Eq (D(Y),D(Z)) 0 := ΦE[2k] Eq(D(Y),D(Z)) E Coh(Y Z), k Z , Y→Z ∈ ∈ × ∈ n (cid:12) o (Z):= Eq (D(Y),D(Z)(cid:12)), E 0 (cid:12) Y [ := (Z)= Eq (D(Y),D(Z)). E E 0 Z Y,Z [ [ Note that is a groupoid with respect to the composition of the equivalences. E For an object E D(X) with rkE =0, we set µ(E):=c (E)/rkE. 1 ∈ 6 1.2. Semi-homogeneoussheaves. Wecollectsomepropertiesofsemi-homogeneoussheavesonanabelian surface [6]. Proposition 1.1. For a coherent sheaf E on X, the following conditions are equivalent. (i) E is a semi-homogeneous sheaf. (ii) E is a semi-stable sheaf with v(E)2 =0 with respect to an ample divisor H. h i Proposition 1.2 (cf. [9]). Let Φ : D(X) D(Y) be an equivalence. For a semi-homogeneous sheaf E on → X, there is an integer n such that Φ(E)[n] is a semi-homogeneous sheaf. Proposition 1.3 ([14, Prop. 4]). Let E and F be semi-homogeneous sheaves. (i) Assume that E and F are locally free sheaves. (a) If v(E),v(F) >0, then Hom(E,F)=Ext2(E,F)=0. h i (b) If v(E),v(F) <0, then (µ(E),H)=(µ(F),H), Ext1(E,F)=0 and h i 6 Hom(E,F)=0, (µ(E),H)>(µ(F),H) (1.1) (Ext2(E,F)=0, (µ(F),H)>(µ(E),H). (ii) Assume that E is locally free and F is a torsion sheaf. (a) If v(E),v(F) >0, then Hom(E,F)=Ext2(E,F)=0. h i (b) If v(E),v(F) <0, then Ext1(E,F)=Ext2(E,F)=0. h i (iii) Assume that E and F are torsion sheaves. Then v(E),v(F) 0. If v(E),v(F) > 0, then h i ≥ h i Hom(E,F)=Ext2(E,F)=0. Remark 1.4. If (D2) > 0, then D is ample if and only if (D,H ) > 0 for an ample divisor H . Since 0 0 v(E),v(F) =rkErkF((µ(E) µ(F))2)/2, v(E),v(F) <0impliesµ(E) µ(F)isampleorµ(F) µ(E) −h i − h i − − is ample. 1.3. Cohomological Fourier-Mukai transforms. We collect some results on the Fourier-Mukai trans- forms on abelian surfaces X with rkNS(X) = 1. Let H be the ample generator of NS(X). We shall X describe the action of Fourier-Mukai transforms on the cohomology lattices in [12]. For Y FM(X), we ∈ have (H2)=(H2). We set D :=(H2)/2. In [12, sect. 6.4], we constructed an isomorphism of lattices Y X X ι : (H∗(X,Z) , , ) ∼ (Sym (Z,D),B), X alg h i −−→ 2 r d√D (r,dH ,a) , X 7→ d√D a (cid:18) (cid:19) where Sym (Z,D) is given by 2 x y√D Sym (Z,D):= x,y,z Z , 2 ((cid:18)y√D z (cid:19) (cid:12)(cid:12) ∈ ) (cid:12) and the bilinear form B on Sym2(Z,D) is given by (cid:12) (cid:12) B(X ,X ):=2Dy y (x z +z x ) 1 2 1 2 1 2 1 2 − x y √D for X = i i Sym (Z,D) (i=1,2). i y √D z ∈ 2 (cid:18) i i (cid:19) Each Φ Eq (D(X),D(Y)) gives an isometry X→Y ∈ 0 (1.2) ι ΦH ι−1 O(Sym (Z,D)), Y ◦ X→Y ◦ X ∈ 2 where O(Sym (Z,D)) is the isometry group of the lattice (Sym (Z,D),B). Thus we have a map 2 2 η : O(Sym (Z,D)) E → 2 2 which preserves the structures of multiplications. Definition 1.5. We set a√r b√s a,b,c,d,r,s Z, r,s>0 G:= ∈ , c√s d√r rs=D, adr bcs= 1 ((cid:18) (cid:19)(cid:12)(cid:12) − ± ) Gb :=G SL(2,R). (cid:12)(cid:12) ∩ (cid:12) We have an action of G on the lattice (Sym (Z,D),B): · b 2 b r d√D r d√D (1.3) g :=g tg, g G. · d√D a d√D a ∈ (cid:18) (cid:19) (cid:18) (cid:19) Thus we have a homomorphism: b α:G/ 1 O(Sym (Z,D)). {± }→ 2 Theorem 1.6 ([12, Thm. 6.16, Prop. 6.19]). Let Φ Eq (D(Y),D(X)) be an equivalence. b ∈ 0 (1) v := v(Φ( )) and v := Φ(̺ ) are positive isotropic Mukai vectors with v ,v = 1 and we 1 Y 2 Y 1 2 O h i − can write v =(p2r ,p q H ,q2r ), v =(p2r ,p q H ,q2r ), 1 1 1 1 1 X 1 2 2 2 2 2 2 X 2 1 p ,q ,p ,q ,r ,r Z, p ,r ,r >0, 1 1 2 2 1 2 1 1 2 ∈ r r =D, p q r p q r =1. 1 2 1 2 1 2 1 2 − (2) We set p √r p √r tθ(Φ):= 1 1 2 2 G/ 1 . ± q1√r2 q2√r1 ∈ {± } (cid:18) (cid:19) Then tθ(Φ) is uniquely determined by Φ and we have a map tθ : G/ 1 . E → {± } (3) The action of tθ(Φ) on Sym (Z,D) is the action of Φ on the algebraic Mukai lattice: 2 ι Φ(v)=tθ(Φ) ι (v). X Y ◦ · Thus we have the following commutative diagram: (1.4) tθE(cid:15)(cid:15) ❖❖❖❖❖❖❖❖η❖❖❖❖❖❖'' G/ 1 // O(Sym (Z,D)) {± } α 2 For Φ:Eq (D(X),D(X)) preservingthe sublattice L:=Z ZH Z̺ , it is easy to see that the same 0 b ⊕ X⊕ X proof of Theorem 1.6 works. Thus replacing H∗(X,Z) by L, we have a similar claims to Theorem 1.6. alg From now on, we identify the Mukai lattice L with Sym (Z,D) via ι . Then for g G and v L, g v 2 X ∈ ∈ · means ι (g v)=g ι (v). We also set H :=H . By [15, Lem. 2.5], we have the following. X X X · · b Lemma 1.7. For a b√D (1.5) A= , a,b,c,d Z,ad bcD=1, c√D d ∈ − (cid:18) (cid:19) there is a Fourier-Mukai transform ΦEA :D(X) D(X) such that ΦEA (L)=L with tθ(ΦEA )=A. X→X → X→X X→X Replacing A by A if necessary, we assume that trA 0. − ≥ E Definition 1.8. For a matrix A in (1.5) such that trA 0, let Φ A : D(X) D(X) such that E Coh(X X) and ΦEA (L)=L with tθ(ΦEA )=A.≥ X→X → A ∈ × X→X X→X We note that (1.6) v((E ) )=(b2D,bdH,d2), v((E∨) )=(b2D, baH,a2). A |{x}×X A |X×{x} − Remark 1.9. IfE′ alsoinducesthe samecohomologicaltransformΦ,then thereis anisomorphismf :X A → X and a line bundle P Pic0(X) such that E′ =(1 f)∗(E ) p∗(P). ∈ A X × A ⊗ 2 Let T be a subgroupof Eq (D(X),D(X)) induced by Aut (X) Pic0(X), where Aut (X) is the group 0 E H × H of isomorphisms preserving H. Then T preserves L and Φ A mod T is determined by A. X→X Remark 1.10. If X is an abelian surface with End(X)=Z, then NS(X)=ZH with (H2)=2D and for all ∼ autoequivalences Φ, tθ(Φ) is of the form (1.5). 3 Remark 1.11. For an equivalence ΦE :D(X) D(X) suchthat E Coh(X X) and ΦE preserves X→X → ∈ × X→X L. We set (1.7) B :=tθ(ΦE )= p1√r1 p2√r2 X→X q1√r2 q2√r1 (cid:18) (cid:19) as in Theorem 1.6 (2). Then B2 is of the form (1.5). If (p +q )p >0 or p =0, then (ΦEB )2 ΦEB2 mod T. If (p +q )p < 0 or p +q = 0, then (ΦEB )21 Φ2EB22[−2] mod2T. Hence forXth→eXcom≡putXat→ioXn E 1 2 2 1 2 X→EX ≡ X→X of h (Φ B ) is reduced to the computation of h (Φ A ). In particular, if NS(X) = ZH, then we can t X→X t X→X compute h for all equivalences. t Since the eigen equation of A in (1.5) is x2 (a+d)x+1 = 0, A has two real eigen value α > β = 1/α − unless trA=0,1,2. If trA=0,1, then A4 =E,A6 =E. If trA=2, then (A E)2 =0, and hence − (1.8) An =E+n(A E). − Assume that trA>2. Then (1.9) α,β Q, 6∈ since Z is integrally closed and 0<β <1. We set 1 1 (1.10) P := (A βE), Q:= (A αE). α β − β α − − − Then (1.11) An =αnP +βnQ. Let E be a semi-homogeneous sheaf on X with v(E)=(p2,pqH,q2D), p2,pq,q2D Z. Then ∈ p (1.12) ι (v(L))=utu, u= . X q√D (cid:18) (cid:19) We set p (1.13) n =Anu=αnPu+βnQu. q √D n (cid:18) (cid:19) Then p (1.14) ι (v(Φn(E)))= n p q √D . X q √D n n n (cid:18) (cid:19) (cid:0) (cid:1) Let 1 (1.15) u = α s√D (cid:18) (cid:19) be an eigen vector with respect to α. Thus s= α−a. By (1.9), (A βE)u=0, and hence bD − 6 q n (1.16) lim =s. n→∞pn The following is obvious. Lemma 1.12. Assume that x2 trAx+detA=(x α)(x β), α,β C. Then the eigen equation of the − − − ∈ representation matrix of the action of A on Sym (R,D) is 2 (1.17) (x α2)(x αβ)(x β2)=(x2 ((trA)2 2detA)x+(detA)2)(x detA). − − − − − − In particular, if α β , then α2 is the spectral radius of this representation. | |≥| | | | 2. Computation of entropy For an endofunctor Φ : D(X) D(X), let h (Φ) : R R be the entropy defined in [1, Defn. t → → {−∞}∪ E 2.5]. In this section, we shall compute the entropy for the equivalence Φ := Φ A by using the following X→X result. Proposition 2.1 ([1, Thm. 2.7] and [4, Prop. 3.8]). Let G,G′ be split generators of D(X) and F an endofunctor of D(X) of Fourier-Mukai type such that FnG,FnG′ =0 for all n>0. Then 6∼ 1 (2.1) h (F)= lim logδ′(G,FnG′) t n→∞n t where (2.2) δ′(M,N):= dimHom(M,N[m])e−mt, M,N D(X). t ∈ m∈Z X 4 E Theorem 2.2. Let Φ:=Φ A be an equivalence associated to A (see Definition 1.8). X→X (1) Assume b=0. Then h (Φ)=logρ(Φ)=0. t (2) Assume that b>0. Then logρ(Φ), trA 2 ≥ (2.3) h (Φ)= logρ(Φ) 2t, trA=1 t  − 3 logρ(Φ) t, trA=0. − (3) Assume that b<0. Then  logρ(Φ) 2t, trA 2 − ≥ (2.4) h (Φ)= logρ(Φ) 4t, trA=1 t  − 3 logρ(Φ) t, trA=0. − Remark 2.3. If trA 2, then ρ(Φ)=1.  ≤ Proof. Let N be a line bundle with c (N)=mH, m>0. We take 1 (2.5) G= N⊗i, G′ = N⊗i −3≤i≤−1 1≤i≤3 M M as split generators of D(X) ([10]). E (1) Assume that b = 0. Then Φ A is an equivalence defined by Aut(X) Pic(X). Then it is easy to X→X × see that E E (2.6) h (Φ A )=0=logρ(Φ A ). t X→X X→X We next prove (2) and (3). So we assume that b=0. 6 (I). We first treat the case where trA>2. We set p 1 (2.7) i,n =An . q √D im√D i,n (cid:18) (cid:19) (cid:18) (cid:19) Then v(Φn(N⊗i)) = (p2 ,p q H,q2 D). For a sufficiently large n, q /p is sufficiently close to s by i,n i,n i,n i,n i,n i,n (1.16). Hence we can take an integer m such that q i,n (2.8) > m p − i,n for all sufficiently large n (depending on m). We note that µ((E∨) )= a H and A |X×{x} −bD a α a a α (2.9) s+ = − + = . bD bD bD bD Let E be a semi-homogeneous sheaf with µ(E)=xH. We set µ(Φn(E))=x H. Then n c+dx n (2.10) x = . n+1 a+bDx n Assume that b>0. Then (2.9) implies s> a . If s x < α−1, then −bD | − | |b|D c+dx x s (2.11) s | − |. a+bDx − ≤ α (cid:12) (cid:12) ΦHnen(Ece)xnCaolsho(Xsa)tifsofiresnthe0sabmyePcroopndosititioionn(cid:12)(cid:12)(cid:12). 1If.3E. also sat(cid:12)(cid:12)(cid:12)isfies x>−baD, then xn >−baD for all n≥0. Hence We s∈et Φn(N⊗i)=E≥i[φ (n)], Ei Coh(X) (cf. Proposition 1.2). For E :=Ei , µ(E)= pi,n0H. Hence n i n ∈ n0 qi,n0 by (1.16), we get Φn′(Ei ) Coh(X) for n′ 0 and n 0. Therefore φ (n) 2Z is constant for a n0 ∈ ≥ 0 ≫ i ∈ sufficiently large n. Hence there are l such that Hom(G,Φn(N⊗i)[k])=0 for k =l and i i 6 δ′(G,Φn(G′))= χ(N⊗i,Φn(N⊗j))e−ljt t −3≤i≤−11≤j≤3 (2.12) X X = (αna +βnb )2e−ljt i,j i,j −3≤i≤−11≤j≤3 X X where 1 1 αna +βnb =det ,(αnP +βnQ) i,j i,j im√D jm√D (2.13) (cid:18)(cid:18) (cid:19) (cid:18) (cid:19)(cid:19) 1 1 =det ,An im√D jm√D (cid:18)(cid:18) (cid:19) (cid:18) (cid:19)(cid:19) (see (1.11)). By (2.8), a =0 for all sufficiently large n. Hence logδ′(G,Φn(G′)) 2nlog α and i,j 6 t ∼ | | 5 1 (2.14) h (Φ)= lim logδ′(G,Φn(G′))=2log α =logρ(Φ). t n→∞n t | | Assume that b<0. Then (2.9) implies s< a . If s x < α−1, then −bD | − | |b|D c+dx x s (2.15) s | − |. a+bDx − ≤ α (cid:12) (cid:12) Hence xn also satisfies the same condition(cid:12)(cid:12)(cid:12). If E also sa(cid:12)(cid:12)(cid:12)tisfies x < −baD, then xn < −baD. Hence Φ(E)[2] ∈ Coh(X). We set (Φ[2])n(N⊗i) = Ei[ψ (n)], Ei Coh(X). In this case, ψ (n) is constant for a sufficiently n i n ∈ i large n. Hence there are l such that Hom(G,Φn(N⊗i)[k]) = 0 for k = l +2n and logχ(G,Φn(G′)) i i 6 ∼ 2nlog α. Hence | | 1 (2.16) h (Φ)= lim logδ′(G,Φn(G′))=2log α 2t=logρ(Φ) 2t. t n→∞n t | |− − (II). Assume that trA= 2. Then An = E+n(A E). We set s := 1−a. Let E be a semi-homogeneous − bD sheaf with µ(E)=xH and set µ(Φn(E))=x H. Since n nc+(n(d 1)+1)x x = − , n 1+n(a 1)+nbDx (2.17) − bDx+(a 1) x s= − , n − (1+n(a 1+bDx))bD − we have lim x =s. In the same way as in the case trA>2, we see that n→∞ n logρ(Φ), b>0 (2.18) h (Φ)= t (logρ(Φ) 2t, b<0. − (III). Assume that trA=1. Then A3 = E. It is easy to see that − (2.19) (ΦEXA→X)2 ≡(ΦΦEXEXAA→→22XX[−m2]odmTod T bb><00 and (2.20) (ΦEA )3 [−2] mod T b>0 X→X ≡([ 4] mod T b<0 − (see Remark 1.9). Indeed ΦEA ((E ) ) M (u∨) for b > 0 and ΦEA ((E ) )[2] M (u∨) X→X A |{x}×X ∈ H X→X A |{x}×X ∈ H for b<0, where u:=v((E ) )=(b2D,baH,a2). Hence A |X×{x}×X (2.21) h (ΦEA )= −32t b>0 t X→X ( 4t b<0. −3 Assume that trA=0. Then (ΦEA )2 [ 2] mod T implies X→X ≡ − E (2.22) h (Φ A )= t. t X→X − (cid:3) Remark 2.4. OurassumptionofΦ(L)=Lisverystrongingeneral. IndeedH isnotpreservedbytheaction of Aut(X) in general, and there is an abelian surface with an automorphism of positive entropy. Remark 2.5. In [2], Ikeda introduced a mass growth h of a stability condition σ and studied several σ,t properties. In our example, (2.23) h (Φ)=h (Φ), σ,t t where σ be a stability condition such that Z (E):= ezH,v(E) (z H) and φ (k )=1: σ σ x h i ∈ WeonlyexplainthecasewheretrA>2. WefirstnotethatΦpreservesσ-stabilityforsemi-homogeneous sheaves. We set 1 1 (2.24) αna (z)+βnb (z)=det ,(αnP +βnQ) . j j z√D jm√D (cid:18)(cid:18) (cid:19) (cid:18) (cid:19)(cid:19) Then by (1.11), we get Z (Φn(N⊗j))=(αna (z)+βnb (z))2. Assume that b<0. Then φ ((Φ[2])n(N⊗j)) σ j j σ is bounded. Hence by using [2, Thm. 1.1], we get h (Φ)=log α2 2t=h (Φ). σ,t t | | − 6 2.1. Gromov-Yomdin type conjecture by Kikuta and Takahashi. Let X be an arbitrary abelian surface. We shall compute h (Φ) and check the Kikuta and Takahashi’s conjecture [4, Conjecture 5.3] for 0 some endofunctors of D(X). Lemma 2.6. Let D be a divisor with (D2) > 0 and η NS(X). There is no isotropic vector v = 0 in ∈ 6 (Qeη+Qeη+D+Qeη+2D)⊥. Proof. Replacing v by ve−η, we may assume that η =0. We set v =(r,ξ,a)=0. Then (ξ2)=2ra. By the 6 conditions, we get (D2) (2.25) a=0, (D,ξ) r =0, 2(D,ξ) 2r(D2)=0. − 2 − Hence (D,ξ) = r(D2) = 0. Since (D2) > 0, we get r = a = (ξ2) = 0. Since D⊥ is negative definite, we get ξ =0. Therefore our claim holds. (cid:3) Lemma 2.7. For a semi-homogeneous sheaf E and a line bundle L, (2.26) dimHom(L,E[k]) max 4χ(L(pH),E) p=0, 1, 2 , ≤ { | || ± ± } k∈Z X where H is an ample divisor on X. Proof. We first note that E is a semi-stable sheaf with respect to H by Proposition 1.1. Then E is S- equivalent to E such that E are stable with v(E )=v(E ). Hence it is sufficient to prove the claim for i i i i j ⊕ a stable semi-homogeneous sheaf E. We first assume that χ(L,E) = 0. Then E is not 0-dimensional. We can easily show the following claim. (i) If (c (E L∨),H)>0, then dimHom(L,E)=dimHom(L,E[1]) and Hom(L,E[2])=0. 1 ⊗ (ii) If (c (E L∨),H)<0, then dimHom(L,E)=0 and dimHom(L,E[1])=dimHom(L,E[2]). 1 ⊗ (iii) If (c (E L∨),H) = 0, then dimHom(L,E) = dimHom(L,E[2]) 1, dimHom(L,E[1]) 2 and 1 ⊗ ≤ ≤ v(L)=v(E). For the case of (iii), obviously the claim holds by Lemma 2.6. So we shall treat the case of (i) and (ii). In these cases, E is not 0-dimensional. Replacing H by its translate, we can take an injective homomorphism E E(H). Then we get → dimHom(L,E) dimHom(L(pH),E) ≤ for p 0. We also see that ≤ dimHom(E,L) dimHom(E,L(pH)) ≤ for p 0. By Lemma 2.6, χ(L(pH),E)= 0 for an integer p 0,1,2 and χ(L(pH),E) =0 for an integer ≥ 6 ∈{ } 6 p 0, 1, 2 . Hence by using Proposition 1.3, we get ∈{ − − } dimHom(L,E) max 0,χ(L(pH),E) p= 1, 2 (2.27) ≤ { | − − } dimExt2(L,E) max 0,χ(L(pH),E) p=1,2 . ≤ { | } Thus (2.28) dimHom(L,E[k]) max 2 χ(L(pH),E) p=0, 1, 2 . ≤ { | || ± ± } k∈Z X By Proposition 1.3, the same claim also holds if χ(L,E)=0. (cid:3) 6 Proposition 2.8. Let Φ : D(X) D(X) be an endofunctor which is a composite of equivalences, f∗ and → f , where f :X X is a finite morphism. Then h (Φ) logρ(Φ). ∗ 0 → ≤ Proof. We use split generators G,G′ in (2.5). For a finite morphism f : X X, f∗ and f send semi- ∗ → homogeneous sheaves to semi-homogeneous sheaves. By Proposition 1.2, autoequivaences also send semi- homogeneoussheavestosemi-homogeneoussheavesuptoshift. HenceΦn(N⊗j)isasemi-homogeneoussheaf up to shift. By Lemma 2.7, we have (2.29) dimHom(N⊗i,Φn(N⊗j)[k]) max 4χ((N(pH))⊗i,Φn(N⊗j)) p=0, 1, 2 . ≤ { | || ± ± } k∈Z X For any real number λ>ρ(Φ), we have 1 (2.30) lim Φn(N⊗j)=0, n→∞λn and hence 1 (2.31) lim χ((N(pH))⊗i,Φn(N⊗j) =0. n→∞λn| | 7 Then we have χ((N(pH))⊗i,Φn(N⊗j) λn for sufficiently large n. Combining (2.29) with this estimate, | | ≤ we see that 1 (2.32) h (Φ)= lim logδ′(G,Φn(G′)) logλ. 0 n→∞n 0 ≤ Since λ is arbitrary, we get h (Φ) logρ(Φ). (cid:3) 0 ≤ Remark 2.9. Let X be a simple abelian variety of dimX = d, that is, there is no subabelian variety Y of X with 0 < dimY < d. Then for any line bundle L, K(L) := x X T∗(L) = L is a finite set, { ∈ | x ∼ } unless L Pic0(X). Hence if c (L)=0, then (Ld)=0. Then for a semi-homogeneous sheaf E, we see that 1 ∈ 6 6 χ(E)=0 or ch(E) Z ch( ). Hence we also get h (Φ) logρ(Φ). >0 X 0 6 ∈ O ≤ By [2, Thm. 1.2], h (Φ) logρ(Φ). Therefore we get the following result which support a Gromov- 0 ≥ Yomdin type conjecture in [4, Conjecture 5.3]. Proposition 2.10. Let X be an abelian surface and Φ:D(X) D(X) an endofunctor in Proposition 2.8. → Then h (Φ)=logρ(Φ). 0 3. An example of automorphism on the moduli of stable sheaves Let M (v) be the moduli space of stable sheaves E on X with v(E) = v and K (v) be a fiber of the H H albanesemapa:M (v) Alb(M (v))=X Pic0(X). K (v)isanirreduciblesymplectic manifoldwhich H H H → × is derormation equivalent to a generalized Kummer manifold [13]. In [15, Prop. 3.50], we constructed an example of moduli space M (v) which have an automorphism of infinite order. Thus there is a Fourier- H Mukai transformΦ which induces an isomorphismg :M (v) M (v) such that g is infinite order. In this H H → example, it is easy to see that a similar claim to [11] holds. Thus by using [8], we get dimK (v) (3.1) H h (Φ)=h(g′) 0 2 whereg′ :K (v) K (v)isanautomorphisminducedg byaFourier-MukaitransformΦ:D(X) D(X) H H → → in [15, Prop. 3.50]: Let be a quasi-universal family on M (v) X. By T∗( ) P (x X,P Pic0(X)), we have an E H × x E ⊗ y ∈ y ∈ isomorphismψ :MH(v)→MH(v) suchthat(ψ×1X)∗(E)⊗L∼=Tx∗(E)⊗Py⊗L′,whereL,L′ arepull-backs of locally free sheaves on M (v). Then H c (p (ch((ψ 1 )∗( ))α∨))=c (p (ch(T∗( ) P )α∨)) 1 MH(v)! × X E 1 MH(v)! x E ⊗ y (3.2) =c (p (ch( )T∗ (α∨))) 1 MH(v)! E −x =c (p (ch( )α∨)) 1 MH(v)! E for α v⊥. Thus ψ∗(θ (α)) = θ (α). Hence for an isomorphism g : M (v) M (v) induced by Φ, we v v H H ∈ → have an isomorphism g′ :K (v) K (v) which induces the isomorphism Φ:v⊥ v⊥. H H → → 4. Appendix Let (X,H) be a principally polarized abelian variety of dimX = d. In [5], cohomological action of the P group G of Fourier-Mukai transforms generated by Φ and (H) is described. In particular the X→X ⊗OX action on the cohomology group generated by H is the action of SL(2,Z) on the d-th symmetric product of Q2. Then we can also compute h (ΦE ) of ΦE G, where E is a coherent sheaf on X X. In particular h (ΦE )=log αd dt tif trXA→<X 2. X→X ∈ × t X→X | | − − Remark 4.1. For a semi-homogeneous sheaf E with rkE > 0, if c (E) is ample, then Hi(E) = 0 for i = 0 1 6 (cf. [6, Prop. 7.3]). Acknowledgement. I would like to thank Atsushi Takahashi for useful comments. References [1] Dimitrov,G.,Haiden,F.,Katzarkov, L.,Kontsevich,M.,Dynamical systemsand categories,arXiv:1307.8418 [2] Ikeda, A.,Mass growth of objectsand categorical entropy,arXiv:1612.00995 [3] Kikuta,K.,On entropy for autoequivalences of the derived category of curves,arXiv:1601.06682 [4] Kikuta,K.,Takahashi, A.,Onthe categorical entropy and the topological entropy,arXiv:1602.03463 [5] Maciocia, A., Piyaratne, D., Fourier-Mukai Transforms and Bridgeland Stability Conditions on Abelian Threefolds II, arXiv:1310.0299 [6] Mukai,S.,Semi-homogeneous vectorbundles on an abelian variety,J.Math.KyotoUniv.18(1978), no.2,239–272. [7] Mukai,S.,Duality between D(X) and D(Xb) with itsapplication to Picard sheaves,NagoyaMath.J.81(1981), 153–175. [8] Oguiso,O.,A remark on dynamical degrees of automorphisms of hyperK¨ahler manifolds, ManuscriptaMath.130(2009) 101-111. 8 [9] Orlov, D., Derived categories of coherent sheaves on abelian varieties and equivalences between them, arXiv:alg-geom/9712017,Izv.RAN,Ser.Mat.,v.66,N3(2002). [10] Orlov,D.,Remarksongeneratorsanddimensionsoftriangulatedcategories,arXiv:0804.1163,MoscowMath.J.9(2009), no.1,153–159. [11] Ouchi,G.,Automorphisms ofpositiveentropyonsomehyperKahlermanifoldsviaderivedautomorphisms ofK3surfaces, arXiv:1608.05627 [12] Yanagida,S.,Yoshioka,K.,Semi-homogeneoussheaves,Fourier-MukaitransformsandmoduliofstablesheavesonAbelian surfaces,J.reineangew.Math.684(2013), 31–86. [13] Yoshioka,K.,Moduli spaces of stable sheaves on abelian surfaces,Math.Ann.321(2001), 817–884, math.AG/0009001 [14] Yoshioka,K.,Fourier-Mukai transform on abelian surfaces,Math.Ann.345(2009), 493–524 [15] Yoshioka, K., Bridgeland’s stability and the positive cone of the moduli spaces of stable objects on an abelian surface, arXiv:1206.4838,Adv.Stud.PureMath.69(2016), 473–537. DepartmentofMathematics,Facultyof Science,Kobe University, Kobe,657,Japan E-mail address: [email protected] 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.