MNRAS000,1–??(2016) Preprint2February2017 CompiledusingMNRASLATEXstylefilev3.0 Catching a Grown-Up Starfish Planetary Nebula: I. Morpho-Kinematical study of PC22 L. Sabin1(cid:63), M.A. Gómez-Muñoz1, M.A. Guerrero2, S. Zavala3,4, G. Ramos-Larios5, R. Vázquez1, L. Corral5, M.W. Blanco Cárdenas1, P.F. Guillén1, L. Olguín6, C. Morisset7, S. Navarro5 1InstitutodeAstronomía,UniversidadNacionalAutónomadeMéxico,Apdo.Postal877,22800Ensenada,B.C.,Mexico 7 2InstitutodeAstrofísicadeAndalucía,IAA-CSIC,C/GlorietadelaAstronomías/n,18008Granada,Spain 1 3InstitutoTecnológicodeEnsenada,BlvdTecnológicoNo.150,22780Ensenada,B.C.,Mexico 0 4InstitutodeEstudiosAvanzadosdeBajaCalifornia,A.C.,BlvdTte.Azueta147,Edif.MatematikéPlantaBaja,22800Ensenada,B.C.,Mexico 2 5InstitutodeAstronomíayMeteorología,Av.VallartaNo.2602,Col.ArcosVallarta,C.P.44130Guadalajara,Jalisco,Mexico 6Dpto.deInvestigaciónenFísica,UniversidaddeSonora,Blvd.Rosales-Colosio,Ed.3H,83190,Hermosillo,Sonora,Mexico n 7InstitutodeAstronomía,UniversidadNacionalAutónomadeMéxico,Apdo.Postal70264,MexicoD.F.04510,Mexico a J 1 Lastupdated2016xxxx;inoriginalform2016xxxx 3 ] R ABSTRACT S . We present the first part of an investigation on the planetary nebula (PN) PC22 which h focuses on the use of deep imaging and high resolution echelle spectroscopy to perform a p detailedmorpho-kinematicalanalysis.PC22isrevealedtobeamultipolarPNemittingpre- - o dominantly in [OIII] and displaying multiple non-symmetric outflows. Its central region is r foundtobealsoparticularlyinhomogeneouswithaseriesoflowionizationstructures(knots) t s locatedonthepathoftheoutflows.Themorpho-kinematicalmodelobtainedwithSHAPEin- a dicatesthati)thede-projectedvelocitiesoftheoutflowsareratherlarge,(cid:62)100kms−1,while [ the central region has expansion velocities in the range ∼25 to ∼45 kms−1 following the 1 “Wilsoneffect”,ii)themajorityofthemeasuredstructuressharesimilarinclination,(cid:39)100◦, v i.e. they are coplanar, and iii) all outflows and lobes are coeval (within the uncertainties). 9 All these results make us to suggest that PC22 is an evolved starfish PN. We propose that 2 themechanismresponsibleforthemorphologyofPC22consistsofawind-shellinteraction, 0 wherethefastpost-AGBwindflowsthroughafilamentaryAGBshellwithsomelargevoids. 0 0 Keywords: (ISM:)planetarynebulae:individual:PC22—ISM:jetsandoutflows—ISM: . kinematicsanddynamics 2 0 7 1 : v 1 INTRODUCTION 2011), and NGC6309 (Vázquez et al. 2008). With this aim in i mind, we present in this article a detailed investigation of a pe- X Planetary Nebulae (PNe) are well known for displaying different degreesofmorphologicalcomplexityprobingtheir,oftenintense, culiarPN,PC22(PNG051.0−04.5)locatedatα2000=19:42:03.50, ar internaldynamicalactivity(seetheimagingcataloguesby,Parker δ2000=+13:50:37.33. DiscoveredbyApriamashvili(1959)andlatercataloguedby etal.2006,2016;Sahaietal.2011andSabinetal.2014).Hence, Peimbert&Costero(1961),thisobject,hasnotbeensubjectofany thepresenceofoutflows,jets,ringsorknotseachindicateparticular extensive targeted study so far. Manchado et al. (1996) classified physicalprocesseswhoseoriginsarenotalwayswellconstrained. PC22 as an elliptical planetary nebula with “internal structures” By establishing with accuracy the morpho-kinematics and chem- (no description of these were made). Although no binary system ical characteristics of PNe, one can expect to better understand has been detected, Soker (1997) predicted a high probability for their formation history. Such multi-approach analyses have been the progenitor to have gone through a common envelope with a performedtostudyingreatdetailvariousPNesuchasNGC3132 sub-stellarcompanionbasedonthismorphology.Exceptforpho- (Monteiroetal.2000),IPHASXJ194359.5+170901(Corradietal. tometric measurements realized at various wavelengths we found 2011),K4-55andKn26(Guerreroetal.1996,2013,respectively), nootherrelevantpieceofinformationaboutthePN. M2-48 (López-Martín et al. 2002), ETHOS1 (Miszalski et al. ThedistancetoPC22seemstoberelativelywellconstrained. Tajitsu & Tamura (1998) obtained a distance of 5.5 kpc for this (cid:63) E-mail:[email protected](LS) object by fitting a blackbody to the flux of the four IRAS bands, (cid:13)c 2016TheAuthors 2 L.Sabinetal. whereasGiammancoetal.(2011)estimatedadistanceof4.0±0.5 Thewavelength-calibrationwasperformedwithaThArarclamp kpc based on the distance-extinction method built with the first toanaccuracyof±1kms−1.TheFWHMofthearclampemission IPHAS data release1 . More recently Frew et al. (2016), us- lines,(cid:39)12±1kms−1,providesanestimateofthespectralresolu- ing a new Hα surface brightness-radius relation, derived a mean tion. distance of 5.27±1.52 kpc adopting log(S(Hα))= –2.77±0.10 ergcm−2s−1sr−1. In this paper we present new deep morpho-kinematical ob- 2.3 ESPRESSOmulti-orderopticalechellespectroscopy servationswhichrevealawealthofinformationonPC22andas- Multi-orderechellespectroscopicobservationswereperformedon sert its physical structure. The article is organized as the follow- 2014May29usingESPRESSO,anEchellespectrographmounted ing:theobservationsaredescribedin§2;theresultsobtainedfrom onthe2.12mtelescopeattheOAN-SPM(Mexico).TheE2VCCD eachobservingtechniquearedescribedin§3andthisincludesour detectordescribedabovewasused.Thewavelengthrangecovered proposed kinematical model. Finally we conclude our investiga- was 3900–7290 Å distributed through 27 orders with a spectral tionpresentingthemainfindingsin§4followedbythediscussion scale∼0.1Åpixel−1 at5000Å.Theslitwaspositionedatanan- and concluding remarks in §5. This is the first paper on a series gleof47◦passingthroughthecentralstar.Nobinningwasapplied which focuses on the morpho-kinematical analysis of PC22. We andtheexposuretimewassetto1800s.Thedatareduction,which will present a comprehensive chemical analysis in a forthcoming includes bias removal and flat fielding correction, was performed paper(Sabinetal.inpreparation). withMIDAS(Grosbol1989).Two-dimensionalspectraofeachor- derwasthenextractedandwavelengthcalibratedwithaThArarc lampusingIRAFroutines.Wenotetheabsolutewavelengthcali- 2 OBSERVATIONS brationofthespectralorderscoveringthe[OIII]λ5007and[ArV] λ7006emissionlineswasnotoptimal.Nofluxcalibrationwasper- 2.1 ALFOSCopticalimaging formed.Eachorderwasthenanalyzedseparatelyandnoattemptto Direct narrow-band images of PC22 were obtained on 2009 bringthemtogetherwasmade. September 4 using the Alhambra Faint Object Spectrograph and Camera (ALFOSC) at the 2.5m Nordic Optical Telescope (NOT) at the Roque de los Muchachos Observatory (ORM, La Palma, 3 RESULTS Spain). The detector was a 2048×2048 EEV CCD (13.5µm pixel size) with a plate scale of 0.(cid:48)(cid:48)184 pix−1 providing a field 3.1 Morphology of view of 6.(cid:48)3×6.(cid:48)3. The Hα (λc=6567Å, FWHM=8Å), [NII] (λc=6588Å, FWHM=9Å), and [OIII] (λc=5007Å, OurdeepandhighresolutionHα,[NII]and[OIII]imagesofPC22 FWHM=30Å) filters were used to acquire two 900s images in unveiladetailedpictureofacomplexmultipolarmorphology.The eachfilter.TheimageswereprocessedusingstandardIRAFrou- “elliptical”structureoncebelievedtoformthewholenebulaisac- tines.Ameanspatialresolutionof0.(cid:48)(cid:48)6wasachieved,asdetermined tuallythecentralpartofaPNwithmultipleoutflows(Fig.1).We fromtheFWHMofstarsinthefield. identifiedsixlargelobesoroutflows(numbered1-6inFig.1)and threesecondarylobesoroutflowsclosertothecentralellipticalre- gion(numbered7-9inFig.1).The[OIII]5007Ånebularemission 2.2 MESlong-slithighresolutionopticalspectroscopy issignificantlybrightandshowsanextensionof∼1.(cid:48)5×0.(cid:48)9includ- ingthetipofthefaintestcomponentspresentedinFig.2andFig.3. Long-slit high dispersion optical spectra of PC22 were acquired Thehighlevelof[OIII]5007Åemissionissomewhatpeculiarasit with the Manchester Echelle Spectrograph (MES, Meaburn et al. extendsuptotheoutermostregionsofthePNandisnotconfined 2003) mounted on the 2.12m telescope at the Observatorio As- to the inner parts of the nebula as one would expect (i.e. there is tronómico Nacional, San Pedro Mártir (OAN-SPM, Mexico). A nostratificationintheemissionlinesdistribution).Suchbehavior, firstsetofdatawasobtainedon2015August14-16.Atthistime,a 2048×2048pixelsE2VCCDwithapixelsizeof13.5µmpixel−1 however,isnotuniqueandithasbeennotedinotherPNesuchas was used as detector. The fixed slit length is 6.(cid:48)5 and we set the NGC6309(Rubioetal.2015)andNGC6905(Cuestaetal.1993). slitwidthto150µm(1.(cid:48)(cid:48)9).Weused2×2and4×4binningslead- Thefaintaforementionedstructuresareundertheformoffila- ingtospatialscalesof0.(cid:48)(cid:48)351pixel−1 and0.(cid:48)(cid:48)702 pixel−1,respec- ments(inthesouthforexample)andweakoutflowswhicharebest seeninthecontrast-enhancedimageshowninFig.3.Threearc-like tively. The different spectra were taken with exposures of 1200 s patterns,labelled“A,BandC”canbeassociatedtothetipsofthree and1800sthroughtwofilters:anHα filterwith∆λ =90Åtoiso- late the 87th order (0.05 and 0.1 Åpixel−1 spectral scale for the differentoutflowsdetailedbelow. TheHα and[OIII]imagesindicateabrightandslightlycol- 2×2binningand4×4binning,respectively)andan[OIII]5007Å limatedgroupofejectaalongtheSE-NWdirection(hereafterAxis filterwith∆λ =50Åtoisolatethe114thorder(0.043and0.086 Åpixel−1spectralscaleforthe2×2binningand4×4binning,re- 1), with the NW outflow appearing to be “broken” by the emer- genceofanewonewhosemuchdimerrimismostlyseenin[OIII] spectively).Wemostlyusedthelatterfilterbasedonthedominant (Fig. 3– label “C”). This effect is not symmetric, i.e. the struc- [OIII]emissioninthePN(asseenintheimages,seebelow).Ad- ture “C” does not have a clear counterpart in the SE outflow. In ditional spectra were taken on 2016 February 25 using the same the N-S direction (hereafter Axis 2), the presence of a bright in- settings. nersectionimmediatelyfollowedbyamuchfainteroneatlarger All the spectra were bias and flat corrected, and wavelength distances(seenin[OIII])couldindicatetheoccurrenceoftwodif- calibratedusingstandardIRAFroutinesforlong-slitspectroscopy. ferent outflows running approximately along the same direction. Thepresenceofthesenewstructuresissupportedbythearc-like 1 SincethenanewphotometriccalibrationhasbeenperformedbyBar- patterns“A”and“B”observedinFig.3.Onceagain,thereisnot entsenetal.(2014). aclear,symmetriccounterparttothenorthernoutflows.Fig.3also MNRAS000,1–??(2016) PropertiesofPC22 3 N E 2 3 4 9 8 5 7 1 6 10", 0.25 pc Figure1. NordicOpticalTelescopeRGBpictureofPC22(R=Hα,G=[NII],B=[OIII]).Theimagerevealsanon-homogeneouscentralellipticalstructure andseveralejectionsreachingdistancesupto∼50(cid:48)(cid:48)fromthecentralstar.Thenumbersindicatethedifferentoutflowsidentifiedinthisnebula. Ha [NII] [OIII] 10" 10" 10" Figure2. Detailedgray-scalerenderingoftheHα,[NII],and[OIII]NOTimages.Inthelargestimages(FoV(cid:39)1.7(cid:48)×2.2(cid:48))thegray-scalelevelsarechosento unveilthefaintestandmostdiffusedstructuresofthePN,whilesaturatingthecentralregions.Anumberofoutflowsandfilamentsareseenmostlyin[OIII]. Theinsetoneachfigureshowsazoomoftheellipticalcentralregionthatunderlinesitsinhomogeneitywithvarioushighdensityclumpsbestseenin[NII] distributedaroundthecentralstar. showsthattheejectaintheAxis2arewider,lesscollimated,less The“clumpy”/knottynatureofthisregionisbetterseenin[NII], definedandgenerallyfainterthanthoseinAxis1.Thereisalsoa whichisaknowntraceroflowionizationstructurescomparedto slightdifferenceinthedominatingemissionlines(andhenceinthe thehigherionization[OIII]emissionline(Corradietal.1996).We ionization factor). Whereas [OIII] emission prevails in Axis 2, a produced different line ratio images, namely (Hα+[NII])/[OIII] combination of Hα and [NII] emissions are prevalent in Axis 1. and[NII]/[OIII],tocheckforthepresenceofsuchpatterns(Fig.4). Amoreexhaustiveanalysisofthesetworegions,fromachemical No new structures were revealed besides those already seen. In pointofview,willbepresentedinthesecondpartofthisinvestiga- termsofspatialdistribution,theclumpsdescribedaboveareseen tion(Sabinetal.inpreparation). insideand(mostly)attheedgesoftheellipticalring,i.e.,theinho- mogeneitiesareconcentratedinthecentralregion.Moreprecisely The central region of PC22 has a size of 13.(cid:48)(cid:48)5×23.(cid:48)(cid:48)9 and a themainover-densitypositionsarecoincidentwiththebaseofthe position angle (P.A.) on the plane of the sky of 49◦. It shows a ejectarelatedtotheAxis1,suggestingtheirregularbrighteningor notableinhomogeneousmorphologyinallemissionlines(Fig.2). MNRAS000,1–??(2016) 4 L.Sabinetal. A B 2 C 1 D Figure3. Leftpanel:[OIII]image(FoV(cid:39)1.7(cid:48)×2.2(cid:48))withgrey-scalelevelschosentohighlightthefaintestpatternssuchasthearcsoroutflowstipslabelled A,B,andCandthefilamentarystructureD.Rightpanel:Gaussianfilteredratiomap(Hα+[NII])/[OIII](FoV(cid:39)1(cid:48)×1.2(cid:48))wherethelighterzonesimply dominant[OIII]emissionoverHα+[NII].Thetwodottedlinesindicatethetwomainregionsoraxisshowingdifferentionizationdegrees. 10’’ Table1. DescriptionoftheslitsusedfortheMESobservations.”Offset CSPN”correspondstotheslitoffsetfromthecentralstar. Slit P.A. Filter OffsetCSPN Texp (◦) ((cid:48)(cid:48)) (s) A 5 [OIII] 0 1800 B 28 [OIII] 0 1800 C 49 [OIII],Hα 0 1200 D 49 [OIII] 13.3 1200 E 49 [OIII] 13.0 1200 F 75 [OIII] 0 1200 G 100 [OIII] 0 1200 H 137 [OIII],Hα 0 1200 I 137 [OIII] 10.0 1200 J 137 [OIII] 8.0 1200 Figure4.0[NI0.I00]9/9[O0I.0I3I]ra0.0t6i9om0.1a5pun0.3d1erly0.6i2ngt1h.2ebri2.g5htk5nots1a0ndclumpy K 166 [OIII] 0 1200 mediuminthecentralpartofPC22. L 128 [OIII] 2.1 1800 M 114 [OIII] 3.4 1800 ionization of material following the passage of a collimated out- flows. Such interaction is not unusual and has been described by Table2. Kinematicalcharacteristics(i.e.velocitiesandage)foreightdif- Vázquezetal.(2000)inM2-48. ferent structural components obtained from our best fitting model con- The morphological analysis of PC22 unveils a much more structed with SHAPE (see Fig.7). Velocities are relative to the calculated complex object than initially described by an elliptical morphol- systemicof36.4kms−1 andθ istheangularradiusmeasuredfromthe ogy.ThePNshowsmultiplenonsymmetricejectawithtwomain centralstar.Wenotethatthede-projectedvelocity(Vdep)forstructure7is likelytobe“affected“bythepresenceofothervelocityfieldcomponents differingdegreesofionizationwhose“waist”seemstobeshaped fromitssurrounding. bytheinteractionwiththedifferentoutflows. Structures Vrad θdep i Vdep tkin 3.2 Kinematics number (kms−1) ((cid:48)(cid:48)) (◦) (kms−1) (yrs) 3.2.1 Morpho-kinematicalmodellingofMESdatawithSHAPE 1 –9±3 12.1 83 131 2300±700 2 –40±7 13.2 74 140 2400±800 The large set of slit positions (see Fig. 5 and Tab. 1) provides a 3 –9±4 8.6 100 56 3800±1400 uniquecoverageofPC22tocarryoutacomprehensivekinemati- 4 21±4 8.3 100 59 3500±1300 calanalysis.Theobservationsusedinthefollowingwillbethose 5 23±3 15.1 103 101 3700±1200 takeninthe[OIII]line.Usingthesevenpositionspassingthrough 6 26±5 23.0 100 155 3700±1100 thecentralstar,wederivedameanobservedsystemicvelocityV¯ 7 12±3 5.4 100 33: 4100±2000 of28.1kms−1,whichcorrespondstoanLSRmeanvalueof36o.b4s 8 –7±3 6.5 100 48 3400±1400 kms−1. AlthoughwewereabletosecureagoodmappingofthePN, the overall higher brightness of the central region and the lobes MNRAS000,1–??(2016) PropertiesofPC22 5 N B A K N E E C E D F G M I H L J 10" 10" Figure5. SlitpositionsusedfortheMESobservationssuperimposedontheopticalRGBpictureofPC22.Ontheleftpanelwepresentallthosepassing throughthecentralstar(redsquare)andtheremainingareshownontherightpanel.ThethirteenpositionsaremeanttoprovidethebestcoverageofthePN forthekinematicanalysis. correspondingtotheAxis1weretheonlystructurestoactuallyap- pearclearlyinthespectra,withtheothercomponentsbeingmuch fainter. The upper panels of Fig. 6 show the resulting spectra or position-velocity (PV) maps, passing through the short and long axisofthemaininternalstructure(PA=49◦:slitCandPA=137◦: slitH,respectively)andthebrightlobesinAxis1atPA=100◦cor- responding to the slit G. In all three cases we note the irregular shape of the inner regions which corresponds to the presence of compactknots.TheremainingobservedPVmapsarepresentedin theappendixA,Fig.A1andA2. We subsequently used the morpho-kinematical tool SHAPE (Steffen et al. 2011) to model all the PV diagrams and obtain a completeviewofthe(kinematicalandmorphological)structureof PC22. Due to the inhomogeneous nature of the central part, we concentrated only on the representation and modelling of the ba- sic velocity patterns corresponding to an equatorial ring and sev- eralbipolaroutflows.Therefore,onewillobserveadifferencebe- tweentheactual(thicker)observedspectraandthenarrowersyn- theticones(seethelowerpanelsofFig.6).Thenon-inclusionof theknots/clumpsdoesnothampertheoverallkinematicalanalysis. We should keep in mind that the spectra are not treated indepen- dentlyi.e.achangeintheposition/morphologyorthevelocityof one spectrum will affect the position/morphology or the velocity of the adjacent one(s). The full set of PV diagrams are shown in Fig.6andtheappendicesA1andA2.ThesubsequentSHAPEre- constructionofthePNisshowninFig.7.Table2summarizesthe data for the brightest (and best defined) components. In this case Figure 6. Top: MES [OIII] position-velocity (PV) plots of three of the wederivedinformationforthetwonorthern“bumps”(#1,#2),the mainslitpositionswithhighersignal-to-noiselevel,namelyslitpositions southernsmalloutflow(#5),thefourextensionsoftheinternalel- C,G,andH(seeTab.1andFig.5,wheretheCandHslitsgoacrossthe lipsoid(#3,4,7and8)andfinallyoneofthewesternoutflows(#6). nebulacenteralongP.A.49◦and137◦,respectively,andslitHisoffsetform In all cases the velocities were measured at the tip of the struc- thecentralstarandgoesalongP.A.100◦.Thebinningfactoris2×2inall tures.Foreachwecalculatedtheradialvelocities(Vrad)andtheir images.Bottom:SHAPEkinematicalmodellingoftheselinesforthemodel respectiveerrors,thede-projectedangularradii(θdep),theinclina- assumedinthetext. tions(i),de-projectedvelocities(V )andkinematicalages(t ). dep kin The errors on i and V were derived empirically solely based dep onourmodelandweestimatedameanerrorontheinclinationof ∼5◦ andameanerroronV of∼3kms−1.Thosearethetypi- dep calvaluesabovewhichweobservedanotablevariationinthePV maps. The inclinations found indicate that most of the structures formervalueisverylikelyaffectedbynearbystructures),whichare arenearlylyingintheplaneofthesky.Thededucedde-projected relatedtothecentralregion,andthehighvelocities(jets-like)ones, velocitiesallowustodistinguishtwogroups:themediumveloci- above∼100kms−1relatedtothe“bumps”andlargeroutflows. tiesstructures,from∼33to59kms−1 (althoughwenotethatthe Thekinematicalageofthesecomponentscanbederivedusing MNRAS000,1–??(2016) 6 L.Sabinetal. Table3. Kinematicalanalysisbasedonthedifferentlinesplitsobserved in the ESPRESSO Echelle spectra at PA=47◦. The values were derived throughaGaussianfitofthelines.Forboththeblue-andredshiftedlines wepresent:theobservedvelocities(Vobs),theobserveddatacorrectedfrom LSR(VLSR)andthevelocitiesrelativetothesystemic(Vrel).Notethat,due todifficultiesintheabsolutewavelengthcalibrationofthespectralorders coveringthe[OIII]and[ArV]emissionlines,onlytheobservedvelocities arequotedfortheselines. 2 n 1 nn n 6 LineID Blueshiftedlines(km/s) Redshiftedlines(km/s) 3 n 8 Vobs VLSR Vrel Vobs VLSR Vrel 7 n [OIII]5007 -21.9 – – 55.2 – – n 4 n 5 HeII5411 -30.7 6.6 -29.8 37.7 74.9 38.6 HeI5876 -43.8 -6.5 -42.9 31.4 68.7 32.3 [SIII]6312 -33.2 4.1 -32.3 38.9 76.2 39.8 [NII]6548 -37.2 0.1 -36.3 40.9 78.3 41.8 HeII6560 -34.0 3.3 -33.1 29.3 66.6 30.2 Hα6563 -39.4 -2.1 -38.5 30.2 67.5 31.1 [NII]6583 -44.8 -7.5 -43.9 33.9 71.3 34.9 [SII]6716 -42.1 -4.8 -41.2 42.9 80.3 43.9 [SII]6731 -39.3 -1.9 -38.4 41.6 78.9 42.5 [ArV]7005 -41.9 – – 12.0 – – [ArIII]7135 -37.5 -0.2 -36.6 42.8 80.2 43.8 Figure7. SHAPEreconstructionofPC22basedonallPVdiagrams.The numbersindicatethestructuresofreferenceforthedifferentkinematical calculations(seetable2). Table4.Ionizationpotentialvsexpansionvelocityforthelinewithclear splittingseeninPC22 therelationship: 4744∗d(kpc)∗θ((cid:48)(cid:48)) Ion Line Ionizationpotential Vexp tkin= V (km/s) . (1) (Å) (eV) (kms−1) dep We can clearly see two groups: components #1 and #2, related [SII] 6716 10.36 42.5 to the northern “bumps” or small outflows, have a mean age of [SII] 6731 10.36 40.4 Hα 6563 13.59 34.8 2300±800yr,whereastheothercomponentshaveameanageof 3600±1300yr2.Theellipticalregion,ifinterpretedasaring,hasa [NII] 6548 14.53 39.1 [NII] 6583 14.53 39.4 kinematicalageof∼4500yrs.Withintheerrors,thedifferentcom- [SIII] 6312 23.34 36.1 ponents are coeval, but we notice that the interaction of the out- HeI 5876 24.59 37.6 flowswiththecircumstellarmediumwouldreducetheirexpansion [ArIII] 7135 27.63 40.2 velocity (thus increasing their kinematical age). The kinematical [OIII] 5007 35.12 38.5 analysiscompletesthemorphologicalone,pointingtowardsaPN HeII 5411 54.42 34.2 mostly shaped by the interaction of high-velocity non-symmetric HeII 6560 54.42 31.6 winds,thezoneoftheinteractionbeingthecentralregionwhichas [ArV] 7006 59.81 26.9 aconsequenceishighlyinhomogeneous.Mostoftheevents(e.g. outflowslaunching)alsoappeartohaveoccurredatapproximately thesametimeinthelifeofthenotsooldPC22.Thiswillgiveus animportantconstraintontheevolutionaryhistoryofthisPN(see section5). fitting Gaussian curves to each component to derive their wave- lengths.Weestimatedthatthemaximumerroronthelinemeasure- mentis∼6kms−1.Table3reportstheobserved(V ),LSRcor- obs 3.2.2 ESPRESSO rected(V ),andrelative(fromsystemicvelocity,V )velocities LSR rel forbothblueshiftedandredshiftedcomponents.Thesystemicve- TheinspectionoftheESPRESSOechellespectrumofthecentral locity,asderivedfromtheESPRESSOdata,is36.4kms−1,which region of PC22 reveals a notable number of emission lines that isconsistentwiththatderivedfromtheMESdata. presentblueandredcomponents(Fig.8).Thesecanbeinterpreted Theexpansionvelocitiesaredifferentfordifferentlines.We astheapproachingandrecedingwallsofthecentralstructuralcom- notethatthereisatrendfortheexpansionvelocitytoincreaseas ponent,respectively,andthereforetheyprovideinformationonits theionizationpotentialofthespeciesincreases,asrevealedbythe internalkinematics.AlistoftheselinesisreportedinTable3.The linearfittothedata(Table4andFig.9).Sincespecieswithhigher radialvelocitiesassociatedwitheachlinehasbeendeterminedby ionizationpotentialareclosertotheCSPN,itmeansthereisaneg- ativevelocitygradientasmaterialislocatedfurtherawayfromthe 2 Component#7,whichsuffersfromthepresenceofadjacentknotsthat CSPN.Thisistheso-called“Wilsoneffect”(Wilson1950),which addvelocitycomponentsnotnecessarilyrelatedtothispartoftheshell,has describesthedecreaseofthelineseparation(orexpansionvelocity) notbeentakenintoaccountinthisaverage. withanincreaseoftheionizationpotentialinPNe. MNRAS000,1–??(2016) PropertiesofPC22 7 [S II]λ(6716 + 6730)Å Hα λ6563Å [N II]λ(6548 + 6583)Å [S III]λ6312Å He I λ5874Å 2 1 0 ec) -1 arcs -2 Position ( V[Aexpr= II4I]1λ.741 k3m5Å/s V[eOxp =II3I]4λ.580 k0m7Å/s VHexep= I3I 9λ5.24 1k1mÅ/s VHexep= I3I 6λ6.15 6k0mÅ/s V[eAxpr= V3]7λ.760 k0m5Å/s e 2 v ati Rel 1 0 -1 -2 Vexp=40.2 km/s Vexp=38.5 km/s Vexp=34.2 km/s Vexp=31.6 km/s Vexp=26.9 km/s -50 0 50 -50 0 50 -50 0 50 -50 0 50 -50 0 50 Relative Velocity (km/s) Figure8. Position-Velocity(PV)diagramsresultingoftheanalysisoftwelvewelldefinedemissionlinesfromtheESPRESSOechellespectraofPC22.All linesshowasplitandthecorrespondingexpansionvelocitiesarequoted.ThePVsarearrangedintermsofincreasingpotentialionizationlevelsoastovisually followthechangeinVexp.Wenoticethatthe[SII]and[NII]emissionlineshavebeenaddedtoincreasethesignal-to-noiseratio.AsfortheHeII(6560Å) line,thedarkareaontherighthand-sidecorrespondstothemuchbrightercontiguousHαline. the [N II] bright) are concentrated in the elliptical central part of 45 thenebulaandarespatiallyrelatedtothepassageoftheaforemen- tionedoutflows. • Themorpho-kinematicalmodelobtainedwithSHAPErevealsin- formationonthedifferentstructuralcomponentsofPC22.Hence: 40 -Thede-projectedvelocitiesoftheoutflowsandbumpsarerather large((cid:62)100kms−1)comparedtothatofthecentralellipticalre- -1s) gion(∼30–60kms−1). p (km 35 -Allthestructuressharesimilarinclinationaround100◦ (slightly x lessforthestructures#1and#2inFig.7),i.e.,nearlyalltheejec- e V tions can be considered as coplanar and close to the plane of the sky. 30 -Thekinematicalagecalculationsarealsowellconsistentforall theanalysedoutflowswithameanof3600±1300yrs,butforstruc- tures#1and#2,whichseemtobeslightly“younger"(2300±800 yrs).Thismayindicateeitherthatstructuralfeaturesattheelliptical 25 0 10 20 30 40 50 60 70 centralregionhavebeenaccelerated,orthattheoutflowsarebeen Ionization potential (eV) slowed down (see, for instance, the ejecta in the born-again PNe A30andA78,Fangetal.2014).Thisisatantalizingpossibility, Figure9.GraphrenderofTable4withthereddottedlinerepresentingthe butatthismomentweconcludethatallejectionsinPC22should linearfit. beconsideredtobecoeval,owingtotheuncertaintiesontheage calculation. • TheESPRESSOechelledataobtainedfortwelveemissionlines 4 MAINFINDINGS presentingblue-andred-shiftedcomponentsallowedustoderive theirexpansionvelocities.Thisvariesfrom26.9to42.5kms−1and The main results of the morpho-kinematical study of PC22 tendstoabidebythe“Wilsoneffect”aswenotedadecreaseofthe presentedherearethefollowing: expansionvelocitywithanincreaseoftheionizationpotential. • The PN, principally emitting in [O III], is not elliptical as pre- viously stated, but multipolar with several sets of non-symmetric 5 DISCUSSIONANDCONCLUSION outflowsshowingdifferentdegreesofbrightness,collimationand ionization. Thecombinationofthemorphologicalandkinematicalanalysisin- • Most(ifnotall)over-densityandlow-ionizationstructures(e.g., dicatesthatPC22belongstothecategoryofso-calledstarfishPNe MNRAS000,1–??(2016) 8 L.Sabinetal. atalateevolutionarystage.StarfishnebulaewereintroducedbySa- edgessupportfromCONACYT,CGCI,PRODEPandSEP(Mex- hai(2000)todescribeHen2-47andM1-37,twoyoungPNeinves- ico).MAGacknowledgessupportofthegrantAYA2014-57280-P, tigatedduringanHα imagingsurveywiththeHubbleSpaceTele- co-fundedwithFEDERfunds.SZacknowledgessupportfromthe scope.Later,theproto-PNIRAS19024+0044(Sahaietal.2005) UNAM-ITEcollaborationagreement1500-479-3-V-04.Wethank was added to this group. All three objects present the same mor- thedaytimeandnightsupportstaffattheOAN-SPMforfacilitat- phologicalcharacteristics:theyshowmultiplewelldefinedandfast ingandhelpingobtainourobservationsespeciallytoMrGustavo (∼100–200kms−1)collimatedlobeswithapproximatelythesame Melgoza-Kennedy, our telescope operator, for his assistance dur- sizeswhichwouldindicatethattheyhaveemergedatthesametime ing observations, as well as the CATT for time allocation. This andanequatorialwaistorring.OurclaimthatPC22isverylikely article is based upon observations carried out at the Observato- anevolvedversionoftheaforementionednebulaeholdsinthefact rioAstronómicoNacionalontheSierraSanPedroMártir(OAN- that: SPM),BajaCalifornia,México.Thedatapresentedherewereob- tainedinpartwithALFOSC,whichisprovidedbytheInstitutode (i) Thecontemporarylobeshavealargerextent(∼20–40(cid:48)(cid:48)),theyare Astrofisica de Andalucia (IAA) under a joint agreement with the fainterandshowlesscollimationinsomecases(seeAxis2).There- University of Copenhagen and NOTSA. We acknowledge the In- fore,thecompactnessoftheyoungstarfishnebulae(withoutflow stitutodeAstrofisicadeCanariasfortheuseofthefilters.Thisre- extentslessthan∼5(cid:48)(cid:48) inallcases)andtheirsharpnessoftheirlobes searchhasmadeuseoftheNASA/IPACInfraredScienceArchive, arelost. whichisoperatedbytheJetPropulsionLaboratory,CaliforniaIn- (ii) PC22 is a high-excitation PN, with dominant [O III] emission, stituteofTechnology,undercontractwiththeNationalAeronautics indicatingthatthecentralstarishotandthephotoionizationvery andSpaceAdministration.Wehavealsousedarchivalobservations efficient.Thisiscontrarytotheproto-PNeandyoungPNestarfish, madewiththeNASA/ESAHubbleSpaceTelescope,andobtained which were selected for the HST observing program HST-P6353 fromtheHubbleLegacyArchive,whichisacollaborationbetween basedonthe(very)low[OIII]5007ÅtoHαlineratio,probingtheir the Space Telescope Science Institute (STScI/NASA), the Space “early”evolutionarystage.PC22wouldthereforejoinNGC6058 TelescopeEuropeanCoordinatingFacility(ST-ECF/ESA)andthe (Guillén et al. 2013) in the very small group of evolved starfish Canadian Astronomy Data Centre (CADC/NRC/CSA). IRAF is PNe. distributedbytheNationalOpticalAstronomyObservatory,which This investigation opens a new door in the understanding of isoperatedbytheAssociationofUniversitiesforResearchinAs- thehistoryformationandevolutionofsuchobjects.Themorphol- tronomy(AURA)underacooperativeagreementwiththeNational ogyofPC22canbeexplainedbyafastandprobablyprimarilyuni- ScienceFoundation. formwindfromtheAsymptoticGiantBranch(AGB)phasegoing through irregular and inhomogeneous cavities from the previous denser AGB shell. Steffen et al. (2013) studied this phenomenon REFERENCES numericallyusing SHAPE andanadjustableturbulentnoisestruc- ture (Perlin noise) to simulate, via hydrodynamical modelling, a ApriamashviliS.P.,1959,AstronomicheskijTsirkulyar,202,13 filamentary AGB shell (their Figure 3) within which a fast wind BarentsenG.,FarnhillH.J.,DrewJ.E.,González-SolaresE.A.,Greimel evolves.Bychangingthesizeofthecellsorvoidsofthefilamen- R.,IrwinM.J.,MiszalskiB.,RuhlandC.,GrootP.,etal.,2014,MN- RAS,444,3230 tarysheet,theycouldreproducedifferenttypesofstarfishnebulae, CorradiR.L.M.,MansoR.,MampasoA.,SchwarzH.E.,1996,A&A,313, indeedshowingnonsymmetricpatterns.Itresulted,thatthesmaller 913 thecells,thesmallertheresultingoutflowsandreverselywithaloss Corradi R. L. M., Sabin L., Miszalski B., Rodríguez-Gil P., Santander- ofcollimation(theirFigure4).Steffenetal.(2013)alsofoundthat GarcíaM.,JonesD.,DrewJ.E.,MampasoA.,etal.2011,MNRAS, starfishnebulaewouldonlyoccuriftheAGBshellandpost-AGB 410,1349 windkeeparatherconstantdensityandvelocitywithrespecttothe CuestaL.,PhillipsJ.P.,MampasoA.,1993,A&A,267,199 angulardistancefromtheequator. FangX.,GuerreroM.A.,Marquez-LugoR.A.,ToaláJ.A.,ArthurS.J., PC22wouldthereforebeatastage,stillearlyinthe∼104yrs ChuY.-H.,BlairW.P.,GruendlR.A.,HamannW.-R.,OskinovaL.M., PNlife,wherethematerialdraggedbythefastpost-AGBwindis TodtH.,2014,ApJ,797,100 going through a more evolved (and larger) AGB shell populated FrewD.J.,ParkerQ.A.,Bojicˇic´I.S.,2016,MNRAS,455,1459 GiammancoC.,SaleS.E.,CorradiR.L.M.,BarlowM.J.,ViironenK., with predominantly wider, randomly distributed and inhomoge- SabinL.,etal.2011,A&A,525,A58 neousvoids.Thisthereforegenerates(mostly)largeoutflows/lobes, GrosbolP.,1989,inKlareG.,ed.,ReviewsinModernAstronomyVol.2of althoughsmallstructurescanalsobepresent.Thewaistoftende- ReviewsinModernAstronomy,MIDAS..pp242–247 scribedinstarfishnebulaecanthereforebeexplainedasbeingthe GuerreroM.A.,ManchadoA.,Serra-RicartM.,1996,ApJ,456,651 condensationofthenebularmaterialatthebaseofthevoidsinthe GuerreroM.A.,MirandaL.F.,Ramos-LariosG.,VázquezR.,2013,A&A, filamentaryshell.Wenotethatinthisscenario,thereisnoneedto 551,A53 invokeaparticularlaunchingmechanismorprecessionasitwould GuillénP.F.,VázquezR.,MirandaL.F.,ZavalaS.,ContrerasM.E.,Ayala bethecaseinotherbipolarormultipolarPNe:thewind-shellinter- S.,Ortiz-AmbrizA.,2013,MNRAS,432,2676 action,owingtheevolvingfilamentarynatureofthelatter,seemsto López-MartínL.,LópezJ.A.,EstebanC.,VázquezR.,RagaA.,Torrelles workappropriately. J.M.,MirandaL.F.,MeaburnJ.,OlguínL.,2002,A&A,388,652 ManchadoA.,GuerreroM.A.,StanghelliniL.,Serra-RicartM.,1996,The IACmorphologicalcatalogofnorthernGalacticplanetarynebulae MeaburnJ.,LópezJ.A.,GutiérrezL.,QuirózF.,MurilloJ.M.,ValdézJ., ACKNOWLEDGMENTS PedrayezM.,2003,Rev.Mex.Astron.Astrofis.,39,185 Miszalski B., Corradi R. L. M., Boffin H. M. J., Jones D., Sabin L., Wewouldliketothankthereviewerforher/histhoroughreviewand Santander-GarcíaM.,Rodríguez-GilP.,Rubio-DíezM.M.,2011,MN- appreciatethecommentsandsuggestionsmade.LSacknowledges RAS,413,1264 supportfromPAPIITgrantIA-101316(Mexico).GR-Lacknowl- MonteiroH.,MorissetC.,GruenwaldR.,ViegasS.M.,2000,ApJ,537,853 MNRAS000,1–??(2016) PropertiesofPC22 9 ParkerQ.A.,AckerA.,FrewD.J.,HartleyM.,PeyaudA.E.J.,Ochsen- beinF.,PhillippsS.,RusseilD.,BeaulieuS.F.,CohenM.,KöppenJ., MiszalskiB.,MorganD.H.,MorrisR.A.H.,PierceM.J.,Vaughan A.E.,2006,MNRAS,373,79 ParkerQ.A.,Bojicˇic´I.S.,FrewD.J.,2016,inJournalofPhysicsConfer- enceSeriesVol.728ofJournalofPhysicsConferenceSeries,HASH: the Hong Kong/AAO/Strasbourg Hα planetary nebula database. p. 032008 PeimbertM.,CosteroR.,1961,BoletindelosObservatoriosTonantzintlay Tacubaya,3,33 RubioG.,VázquezR.,Ramos-LariosG.,GuerreroM.A.,OlguínL.,Guil- lénP.F.,MataH.,2015,MNRAS,446,1931 Sabin L., Parker Q. A., Corradi R. L. M., Guzman-Ramirez L., Morris R.A.H.,ZijlstraA.A.,Bojicˇic´I.S.,etal.,2014,MNRAS,443,3388 SahaiR.,2000,ApJ,537,L43 SahaiR.,MorrisM.R.,VillarG.G.,2011,ApJ,141,134 SahaiR.,SánchezContrerasC.,MorrisM.,2005,ApJ,620,948 SokerN.,1997,ApJs,112,487 SteffenW.,KoningN.,EsquivelA.,García-SeguraG.,García-DíazM.T., LópezJ.A.,MagnorM.,2013,MNRAS,436,470 SteffenW.,KoningN.,WengerS.,MorissetC.,MagnorM.,2011,IEEE TransactionsonVisualizationandComputerGraphics,Volume17,Is- sue4,p.454-465,17,454 TajitsuA.,TamuraS.,1998,ApJ,115,1989 VázquezR.,López-MartínL.,MirandaL.F.,EstebanC.,TorrellesJ.M., AriasL.,RagaA.C.,2000,A&A,357,1031 VázquezR.,MirandaL.F.,OlguínL.,AyalaS.,TorrellesJ.M.,Contreras M.E.,GuillénP.F.,2008,A&A,481,107 WilsonO.C.,1950,ApJ,111,279 ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbytheauthor. APPENDIXA: OBSERVEDANDSYNTHETICSPECTRA OFPC22 MNRAS000,1–??(2016) 10 L.Sabinetal. FigureA1.Fromlefttoright:MES[OIII],[OIII]+contours,Hαand[OIII]lineSHAPEmodellingfortheslitsC(top)andH(bottom) MNRAS000,1–??(2016)