ebook img

Catching a Grown-Up Starfish Planetary Nebula: I. Morpho-Kinematical study of PC 22 PDF

6.7 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Catching a Grown-Up Starfish Planetary Nebula: I. Morpho-Kinematical study of PC 22

MNRAS000,1–??(2016) Preprint2February2017 CompiledusingMNRASLATEXstylefilev3.0 Catching a Grown-Up Starfish Planetary Nebula: I. Morpho-Kinematical study of PC22 L. Sabin1(cid:63), M.A. Gómez-Muñoz1, M.A. Guerrero2, S. Zavala3,4, G. Ramos-Larios5, R. Vázquez1, L. Corral5, M.W. Blanco Cárdenas1, P.F. Guillén1, L. Olguín6, C. Morisset7, S. Navarro5 1InstitutodeAstronomía,UniversidadNacionalAutónomadeMéxico,Apdo.Postal877,22800Ensenada,B.C.,Mexico 7 2InstitutodeAstrofísicadeAndalucía,IAA-CSIC,C/GlorietadelaAstronomías/n,18008Granada,Spain 1 3InstitutoTecnológicodeEnsenada,BlvdTecnológicoNo.150,22780Ensenada,B.C.,Mexico 0 4InstitutodeEstudiosAvanzadosdeBajaCalifornia,A.C.,BlvdTte.Azueta147,Edif.MatematikéPlantaBaja,22800Ensenada,B.C.,Mexico 2 5InstitutodeAstronomíayMeteorología,Av.VallartaNo.2602,Col.ArcosVallarta,C.P.44130Guadalajara,Jalisco,Mexico 6Dpto.deInvestigaciónenFísica,UniversidaddeSonora,Blvd.Rosales-Colosio,Ed.3H,83190,Hermosillo,Sonora,Mexico n 7InstitutodeAstronomía,UniversidadNacionalAutónomadeMéxico,Apdo.Postal70264,MexicoD.F.04510,Mexico a J 1 Lastupdated2016xxxx;inoriginalform2016xxxx 3 ] R ABSTRACT S . We present the first part of an investigation on the planetary nebula (PN) PC22 which h focuses on the use of deep imaging and high resolution echelle spectroscopy to perform a p detailedmorpho-kinematicalanalysis.PC22isrevealedtobeamultipolarPNemittingpre- - o dominantly in [OIII] and displaying multiple non-symmetric outflows. Its central region is r foundtobealsoparticularlyinhomogeneouswithaseriesoflowionizationstructures(knots) t s locatedonthepathoftheoutflows.Themorpho-kinematicalmodelobtainedwithSHAPEin- a dicatesthati)thede-projectedvelocitiesoftheoutflowsareratherlarge,(cid:62)100kms−1,while [ the central region has expansion velocities in the range ∼25 to ∼45 kms−1 following the 1 “Wilsoneffect”,ii)themajorityofthemeasuredstructuressharesimilarinclination,(cid:39)100◦, v i.e. they are coplanar, and iii) all outflows and lobes are coeval (within the uncertainties). 9 All these results make us to suggest that PC22 is an evolved starfish PN. We propose that 2 themechanismresponsibleforthemorphologyofPC22consistsofawind-shellinteraction, 0 wherethefastpost-AGBwindflowsthroughafilamentaryAGBshellwithsomelargevoids. 0 0 Keywords: (ISM:)planetarynebulae:individual:PC22—ISM:jetsandoutflows—ISM: . kinematicsanddynamics 2 0 7 1 : v 1 INTRODUCTION 2011), and NGC6309 (Vázquez et al. 2008). With this aim in i mind, we present in this article a detailed investigation of a pe- X Planetary Nebulae (PNe) are well known for displaying different degreesofmorphologicalcomplexityprobingtheir,oftenintense, culiarPN,PC22(PNG051.0−04.5)locatedatα2000=19:42:03.50, ar internaldynamicalactivity(seetheimagingcataloguesby,Parker δ2000=+13:50:37.33. DiscoveredbyApriamashvili(1959)andlatercataloguedby etal.2006,2016;Sahaietal.2011andSabinetal.2014).Hence, Peimbert&Costero(1961),thisobject,hasnotbeensubjectofany thepresenceofoutflows,jets,ringsorknotseachindicateparticular extensive targeted study so far. Manchado et al. (1996) classified physicalprocesseswhoseoriginsarenotalwayswellconstrained. PC22 as an elliptical planetary nebula with “internal structures” By establishing with accuracy the morpho-kinematics and chem- (no description of these were made). Although no binary system ical characteristics of PNe, one can expect to better understand has been detected, Soker (1997) predicted a high probability for their formation history. Such multi-approach analyses have been the progenitor to have gone through a common envelope with a performedtostudyingreatdetailvariousPNesuchasNGC3132 sub-stellarcompanionbasedonthismorphology.Exceptforpho- (Monteiroetal.2000),IPHASXJ194359.5+170901(Corradietal. tometric measurements realized at various wavelengths we found 2011),K4-55andKn26(Guerreroetal.1996,2013,respectively), nootherrelevantpieceofinformationaboutthePN. M2-48 (López-Martín et al. 2002), ETHOS1 (Miszalski et al. ThedistancetoPC22seemstoberelativelywellconstrained. Tajitsu & Tamura (1998) obtained a distance of 5.5 kpc for this (cid:63) E-mail:[email protected](LS) object by fitting a blackbody to the flux of the four IRAS bands, (cid:13)c 2016TheAuthors 2 L.Sabinetal. whereasGiammancoetal.(2011)estimatedadistanceof4.0±0.5 Thewavelength-calibrationwasperformedwithaThArarclamp kpc based on the distance-extinction method built with the first toanaccuracyof±1kms−1.TheFWHMofthearclampemission IPHAS data release1 . More recently Frew et al. (2016), us- lines,(cid:39)12±1kms−1,providesanestimateofthespectralresolu- ing a new Hα surface brightness-radius relation, derived a mean tion. distance of 5.27±1.52 kpc adopting log(S(Hα))= –2.77±0.10 ergcm−2s−1sr−1. In this paper we present new deep morpho-kinematical ob- 2.3 ESPRESSOmulti-orderopticalechellespectroscopy servationswhichrevealawealthofinformationonPC22andas- Multi-orderechellespectroscopicobservationswereperformedon sert its physical structure. The article is organized as the follow- 2014May29usingESPRESSO,anEchellespectrographmounted ing:theobservationsaredescribedin§2;theresultsobtainedfrom onthe2.12mtelescopeattheOAN-SPM(Mexico).TheE2VCCD eachobservingtechniquearedescribedin§3andthisincludesour detectordescribedabovewasused.Thewavelengthrangecovered proposed kinematical model. Finally we conclude our investiga- was 3900–7290 Å distributed through 27 orders with a spectral tionpresentingthemainfindingsin§4followedbythediscussion scale∼0.1Åpixel−1 at5000Å.Theslitwaspositionedatanan- and concluding remarks in §5. This is the first paper on a series gleof47◦passingthroughthecentralstar.Nobinningwasapplied which focuses on the morpho-kinematical analysis of PC22. We andtheexposuretimewassetto1800s.Thedatareduction,which will present a comprehensive chemical analysis in a forthcoming includes bias removal and flat fielding correction, was performed paper(Sabinetal.inpreparation). withMIDAS(Grosbol1989).Two-dimensionalspectraofeachor- derwasthenextractedandwavelengthcalibratedwithaThArarc lampusingIRAFroutines.Wenotetheabsolutewavelengthcali- 2 OBSERVATIONS brationofthespectralorderscoveringthe[OIII]λ5007and[ArV] λ7006emissionlineswasnotoptimal.Nofluxcalibrationwasper- 2.1 ALFOSCopticalimaging formed.Eachorderwasthenanalyzedseparatelyandnoattemptto Direct narrow-band images of PC22 were obtained on 2009 bringthemtogetherwasmade. September 4 using the Alhambra Faint Object Spectrograph and Camera (ALFOSC) at the 2.5m Nordic Optical Telescope (NOT) at the Roque de los Muchachos Observatory (ORM, La Palma, 3 RESULTS Spain). The detector was a 2048×2048 EEV CCD (13.5µm pixel size) with a plate scale of 0.(cid:48)(cid:48)184 pix−1 providing a field 3.1 Morphology of view of 6.(cid:48)3×6.(cid:48)3. The Hα (λc=6567Å, FWHM=8Å), [NII] (λc=6588Å, FWHM=9Å), and [OIII] (λc=5007Å, OurdeepandhighresolutionHα,[NII]and[OIII]imagesofPC22 FWHM=30Å) filters were used to acquire two 900s images in unveiladetailedpictureofacomplexmultipolarmorphology.The eachfilter.TheimageswereprocessedusingstandardIRAFrou- “elliptical”structureoncebelievedtoformthewholenebulaisac- tines.Ameanspatialresolutionof0.(cid:48)(cid:48)6wasachieved,asdetermined tuallythecentralpartofaPNwithmultipleoutflows(Fig.1).We fromtheFWHMofstarsinthefield. identifiedsixlargelobesoroutflows(numbered1-6inFig.1)and threesecondarylobesoroutflowsclosertothecentralellipticalre- gion(numbered7-9inFig.1).The[OIII]5007Ånebularemission 2.2 MESlong-slithighresolutionopticalspectroscopy issignificantlybrightandshowsanextensionof∼1.(cid:48)5×0.(cid:48)9includ- ingthetipofthefaintestcomponentspresentedinFig.2andFig.3. Long-slit high dispersion optical spectra of PC22 were acquired Thehighlevelof[OIII]5007Åemissionissomewhatpeculiarasit with the Manchester Echelle Spectrograph (MES, Meaburn et al. extendsuptotheoutermostregionsofthePNandisnotconfined 2003) mounted on the 2.12m telescope at the Observatorio As- to the inner parts of the nebula as one would expect (i.e. there is tronómico Nacional, San Pedro Mártir (OAN-SPM, Mexico). A nostratificationintheemissionlinesdistribution).Suchbehavior, firstsetofdatawasobtainedon2015August14-16.Atthistime,a 2048×2048pixelsE2VCCDwithapixelsizeof13.5µmpixel−1 however,isnotuniqueandithasbeennotedinotherPNesuchas was used as detector. The fixed slit length is 6.(cid:48)5 and we set the NGC6309(Rubioetal.2015)andNGC6905(Cuestaetal.1993). slitwidthto150µm(1.(cid:48)(cid:48)9).Weused2×2and4×4binningslead- Thefaintaforementionedstructuresareundertheformoffila- ingtospatialscalesof0.(cid:48)(cid:48)351pixel−1 and0.(cid:48)(cid:48)702 pixel−1,respec- ments(inthesouthforexample)andweakoutflowswhicharebest seeninthecontrast-enhancedimageshowninFig.3.Threearc-like tively. The different spectra were taken with exposures of 1200 s patterns,labelled“A,BandC”canbeassociatedtothetipsofthree and1800sthroughtwofilters:anHα filterwith∆λ =90Åtoiso- late the 87th order (0.05 and 0.1 Åpixel−1 spectral scale for the differentoutflowsdetailedbelow. TheHα and[OIII]imagesindicateabrightandslightlycol- 2×2binningand4×4binning,respectively)andan[OIII]5007Å limatedgroupofejectaalongtheSE-NWdirection(hereafterAxis filterwith∆λ =50Åtoisolatethe114thorder(0.043and0.086 Åpixel−1spectralscaleforthe2×2binningand4×4binning,re- 1), with the NW outflow appearing to be “broken” by the emer- genceofanewonewhosemuchdimerrimismostlyseenin[OIII] spectively).Wemostlyusedthelatterfilterbasedonthedominant (Fig. 3– label “C”). This effect is not symmetric, i.e. the struc- [OIII]emissioninthePN(asseenintheimages,seebelow).Ad- ture “C” does not have a clear counterpart in the SE outflow. In ditional spectra were taken on 2016 February 25 using the same the N-S direction (hereafter Axis 2), the presence of a bright in- settings. nersectionimmediatelyfollowedbyamuchfainteroneatlarger All the spectra were bias and flat corrected, and wavelength distances(seenin[OIII])couldindicatetheoccurrenceoftwodif- calibratedusingstandardIRAFroutinesforlong-slitspectroscopy. ferent outflows running approximately along the same direction. Thepresenceofthesenewstructuresissupportedbythearc-like 1 SincethenanewphotometriccalibrationhasbeenperformedbyBar- patterns“A”and“B”observedinFig.3.Onceagain,thereisnot entsenetal.(2014). aclear,symmetriccounterparttothenorthernoutflows.Fig.3also MNRAS000,1–??(2016) PropertiesofPC22 3 N E 2 3 4 9 8 5 7 1 6 10", 0.25 pc Figure1. NordicOpticalTelescopeRGBpictureofPC22(R=Hα,G=[NII],B=[OIII]).Theimagerevealsanon-homogeneouscentralellipticalstructure andseveralejectionsreachingdistancesupto∼50(cid:48)(cid:48)fromthecentralstar.Thenumbersindicatethedifferentoutflowsidentifiedinthisnebula. Ha [NII] [OIII] 10" 10" 10" Figure2. Detailedgray-scalerenderingoftheHα,[NII],and[OIII]NOTimages.Inthelargestimages(FoV(cid:39)1.7(cid:48)×2.2(cid:48))thegray-scalelevelsarechosento unveilthefaintestandmostdiffusedstructuresofthePN,whilesaturatingthecentralregions.Anumberofoutflowsandfilamentsareseenmostlyin[OIII]. Theinsetoneachfigureshowsazoomoftheellipticalcentralregionthatunderlinesitsinhomogeneitywithvarioushighdensityclumpsbestseenin[NII] distributedaroundthecentralstar. showsthattheejectaintheAxis2arewider,lesscollimated,less The“clumpy”/knottynatureofthisregionisbetterseenin[NII], definedandgenerallyfainterthanthoseinAxis1.Thereisalsoa whichisaknowntraceroflowionizationstructurescomparedto slightdifferenceinthedominatingemissionlines(andhenceinthe thehigherionization[OIII]emissionline(Corradietal.1996).We ionization factor). Whereas [OIII] emission prevails in Axis 2, a produced different line ratio images, namely (Hα+[NII])/[OIII] combination of Hα and [NII] emissions are prevalent in Axis 1. and[NII]/[OIII],tocheckforthepresenceofsuchpatterns(Fig.4). Amoreexhaustiveanalysisofthesetworegions,fromachemical No new structures were revealed besides those already seen. In pointofview,willbepresentedinthesecondpartofthisinvestiga- termsofspatialdistribution,theclumpsdescribedaboveareseen tion(Sabinetal.inpreparation). insideand(mostly)attheedgesoftheellipticalring,i.e.,theinho- mogeneitiesareconcentratedinthecentralregion.Moreprecisely The central region of PC22 has a size of 13.(cid:48)(cid:48)5×23.(cid:48)(cid:48)9 and a themainover-densitypositionsarecoincidentwiththebaseofthe position angle (P.A.) on the plane of the sky of 49◦. It shows a ejectarelatedtotheAxis1,suggestingtheirregularbrighteningor notableinhomogeneousmorphologyinallemissionlines(Fig.2). MNRAS000,1–??(2016) 4 L.Sabinetal. A B 2 C 1 D Figure3. Leftpanel:[OIII]image(FoV(cid:39)1.7(cid:48)×2.2(cid:48))withgrey-scalelevelschosentohighlightthefaintestpatternssuchasthearcsoroutflowstipslabelled A,B,andCandthefilamentarystructureD.Rightpanel:Gaussianfilteredratiomap(Hα+[NII])/[OIII](FoV(cid:39)1(cid:48)×1.2(cid:48))wherethelighterzonesimply dominant[OIII]emissionoverHα+[NII].Thetwodottedlinesindicatethetwomainregionsoraxisshowingdifferentionizationdegrees. 10’’ Table1. DescriptionoftheslitsusedfortheMESobservations.”Offset CSPN”correspondstotheslitoffsetfromthecentralstar. Slit P.A. Filter OffsetCSPN Texp (◦) ((cid:48)(cid:48)) (s) A 5 [OIII] 0 1800 B 28 [OIII] 0 1800 C 49 [OIII],Hα 0 1200 D 49 [OIII] 13.3 1200 E 49 [OIII] 13.0 1200 F 75 [OIII] 0 1200 G 100 [OIII] 0 1200 H 137 [OIII],Hα 0 1200 I 137 [OIII] 10.0 1200 J 137 [OIII] 8.0 1200 Figure4.0[NI0.I00]9/9[O0I.0I3I]ra0.0t6i9om0.1a5pun0.3d1erly0.6i2ngt1h.2ebri2.g5htk5nots1a0ndclumpy K 166 [OIII] 0 1200 mediuminthecentralpartofPC22. L 128 [OIII] 2.1 1800 M 114 [OIII] 3.4 1800 ionization of material following the passage of a collimated out- flows. Such interaction is not unusual and has been described by Table2. Kinematicalcharacteristics(i.e.velocitiesandage)foreightdif- Vázquezetal.(2000)inM2-48. ferent structural components obtained from our best fitting model con- The morphological analysis of PC22 unveils a much more structed with SHAPE (see Fig.7). Velocities are relative to the calculated complex object than initially described by an elliptical morphol- systemicof36.4kms−1 andθ istheangularradiusmeasuredfromthe ogy.ThePNshowsmultiplenonsymmetricejectawithtwomain centralstar.Wenotethatthede-projectedvelocity(Vdep)forstructure7is likelytobe“affected“bythepresenceofothervelocityfieldcomponents differingdegreesofionizationwhose“waist”seemstobeshaped fromitssurrounding. bytheinteractionwiththedifferentoutflows. Structures Vrad θdep i Vdep tkin 3.2 Kinematics number (kms−1) ((cid:48)(cid:48)) (◦) (kms−1) (yrs) 3.2.1 Morpho-kinematicalmodellingofMESdatawithSHAPE 1 –9±3 12.1 83 131 2300±700 2 –40±7 13.2 74 140 2400±800 The large set of slit positions (see Fig. 5 and Tab. 1) provides a 3 –9±4 8.6 100 56 3800±1400 uniquecoverageofPC22tocarryoutacomprehensivekinemati- 4 21±4 8.3 100 59 3500±1300 calanalysis.Theobservationsusedinthefollowingwillbethose 5 23±3 15.1 103 101 3700±1200 takeninthe[OIII]line.Usingthesevenpositionspassingthrough 6 26±5 23.0 100 155 3700±1100 thecentralstar,wederivedameanobservedsystemicvelocityV¯ 7 12±3 5.4 100 33: 4100±2000 of28.1kms−1,whichcorrespondstoanLSRmeanvalueof36o.b4s 8 –7±3 6.5 100 48 3400±1400 kms−1. AlthoughwewereabletosecureagoodmappingofthePN, the overall higher brightness of the central region and the lobes MNRAS000,1–??(2016) PropertiesofPC22 5 N B A K N E E C E D F G M I H L J 10" 10" Figure5. SlitpositionsusedfortheMESobservationssuperimposedontheopticalRGBpictureofPC22.Ontheleftpanelwepresentallthosepassing throughthecentralstar(redsquare)andtheremainingareshownontherightpanel.ThethirteenpositionsaremeanttoprovidethebestcoverageofthePN forthekinematicanalysis. correspondingtotheAxis1weretheonlystructurestoactuallyap- pearclearlyinthespectra,withtheothercomponentsbeingmuch fainter. The upper panels of Fig. 6 show the resulting spectra or position-velocity (PV) maps, passing through the short and long axisofthemaininternalstructure(PA=49◦:slitCandPA=137◦: slitH,respectively)andthebrightlobesinAxis1atPA=100◦cor- responding to the slit G. In all three cases we note the irregular shape of the inner regions which corresponds to the presence of compactknots.TheremainingobservedPVmapsarepresentedin theappendixA,Fig.A1andA2. We subsequently used the morpho-kinematical tool SHAPE (Steffen et al. 2011) to model all the PV diagrams and obtain a completeviewofthe(kinematicalandmorphological)structureof PC22. Due to the inhomogeneous nature of the central part, we concentrated only on the representation and modelling of the ba- sic velocity patterns corresponding to an equatorial ring and sev- eralbipolaroutflows.Therefore,onewillobserveadifferencebe- tweentheactual(thicker)observedspectraandthenarrowersyn- theticones(seethelowerpanelsofFig.6).Thenon-inclusionof theknots/clumpsdoesnothampertheoverallkinematicalanalysis. We should keep in mind that the spectra are not treated indepen- dentlyi.e.achangeintheposition/morphologyorthevelocityof one spectrum will affect the position/morphology or the velocity of the adjacent one(s). The full set of PV diagrams are shown in Fig.6andtheappendicesA1andA2.ThesubsequentSHAPEre- constructionofthePNisshowninFig.7.Table2summarizesthe data for the brightest (and best defined) components. In this case Figure 6. Top: MES [OIII] position-velocity (PV) plots of three of the wederivedinformationforthetwonorthern“bumps”(#1,#2),the mainslitpositionswithhighersignal-to-noiselevel,namelyslitpositions southernsmalloutflow(#5),thefourextensionsoftheinternalel- C,G,andH(seeTab.1andFig.5,wheretheCandHslitsgoacrossthe lipsoid(#3,4,7and8)andfinallyoneofthewesternoutflows(#6). nebulacenteralongP.A.49◦and137◦,respectively,andslitHisoffsetform In all cases the velocities were measured at the tip of the struc- thecentralstarandgoesalongP.A.100◦.Thebinningfactoris2×2inall tures.Foreachwecalculatedtheradialvelocities(Vrad)andtheir images.Bottom:SHAPEkinematicalmodellingoftheselinesforthemodel respectiveerrors,thede-projectedangularradii(θdep),theinclina- assumedinthetext. tions(i),de-projectedvelocities(V )andkinematicalages(t ). dep kin The errors on i and V were derived empirically solely based dep onourmodelandweestimatedameanerrorontheinclinationof ∼5◦ andameanerroronV of∼3kms−1.Thosearethetypi- dep calvaluesabovewhichweobservedanotablevariationinthePV maps. The inclinations found indicate that most of the structures formervalueisverylikelyaffectedbynearbystructures),whichare arenearlylyingintheplaneofthesky.Thededucedde-projected relatedtothecentralregion,andthehighvelocities(jets-like)ones, velocitiesallowustodistinguishtwogroups:themediumveloci- above∼100kms−1relatedtothe“bumps”andlargeroutflows. tiesstructures,from∼33to59kms−1 (althoughwenotethatthe Thekinematicalageofthesecomponentscanbederivedusing MNRAS000,1–??(2016) 6 L.Sabinetal. Table3. Kinematicalanalysisbasedonthedifferentlinesplitsobserved in the ESPRESSO Echelle spectra at PA=47◦. The values were derived throughaGaussianfitofthelines.Forboththeblue-andredshiftedlines wepresent:theobservedvelocities(Vobs),theobserveddatacorrectedfrom LSR(VLSR)andthevelocitiesrelativetothesystemic(Vrel).Notethat,due todifficultiesintheabsolutewavelengthcalibrationofthespectralorders coveringthe[OIII]and[ArV]emissionlines,onlytheobservedvelocities arequotedfortheselines. 2 n 1 nn n 6 LineID Blueshiftedlines(km/s) Redshiftedlines(km/s) 3 n 8 Vobs VLSR Vrel Vobs VLSR Vrel 7 n [OIII]5007 -21.9 – – 55.2 – – n 4 n 5 HeII5411 -30.7 6.6 -29.8 37.7 74.9 38.6 HeI5876 -43.8 -6.5 -42.9 31.4 68.7 32.3 [SIII]6312 -33.2 4.1 -32.3 38.9 76.2 39.8 [NII]6548 -37.2 0.1 -36.3 40.9 78.3 41.8 HeII6560 -34.0 3.3 -33.1 29.3 66.6 30.2 Hα6563 -39.4 -2.1 -38.5 30.2 67.5 31.1 [NII]6583 -44.8 -7.5 -43.9 33.9 71.3 34.9 [SII]6716 -42.1 -4.8 -41.2 42.9 80.3 43.9 [SII]6731 -39.3 -1.9 -38.4 41.6 78.9 42.5 [ArV]7005 -41.9 – – 12.0 – – [ArIII]7135 -37.5 -0.2 -36.6 42.8 80.2 43.8 Figure7. SHAPEreconstructionofPC22basedonallPVdiagrams.The numbersindicatethestructuresofreferenceforthedifferentkinematical calculations(seetable2). Table4.Ionizationpotentialvsexpansionvelocityforthelinewithclear splittingseeninPC22 therelationship: 4744∗d(kpc)∗θ((cid:48)(cid:48)) Ion Line Ionizationpotential Vexp tkin= V (km/s) . (1) (Å) (eV) (kms−1) dep We can clearly see two groups: components #1 and #2, related [SII] 6716 10.36 42.5 to the northern “bumps” or small outflows, have a mean age of [SII] 6731 10.36 40.4 Hα 6563 13.59 34.8 2300±800yr,whereastheothercomponentshaveameanageof 3600±1300yr2.Theellipticalregion,ifinterpretedasaring,hasa [NII] 6548 14.53 39.1 [NII] 6583 14.53 39.4 kinematicalageof∼4500yrs.Withintheerrors,thedifferentcom- [SIII] 6312 23.34 36.1 ponents are coeval, but we notice that the interaction of the out- HeI 5876 24.59 37.6 flowswiththecircumstellarmediumwouldreducetheirexpansion [ArIII] 7135 27.63 40.2 velocity (thus increasing their kinematical age). The kinematical [OIII] 5007 35.12 38.5 analysiscompletesthemorphologicalone,pointingtowardsaPN HeII 5411 54.42 34.2 mostly shaped by the interaction of high-velocity non-symmetric HeII 6560 54.42 31.6 winds,thezoneoftheinteractionbeingthecentralregionwhichas [ArV] 7006 59.81 26.9 aconsequenceishighlyinhomogeneous.Mostoftheevents(e.g. outflowslaunching)alsoappeartohaveoccurredatapproximately thesametimeinthelifeofthenotsooldPC22.Thiswillgiveus animportantconstraintontheevolutionaryhistoryofthisPN(see section5). fitting Gaussian curves to each component to derive their wave- lengths.Weestimatedthatthemaximumerroronthelinemeasure- mentis∼6kms−1.Table3reportstheobserved(V ),LSRcor- obs 3.2.2 ESPRESSO rected(V ),andrelative(fromsystemicvelocity,V )velocities LSR rel forbothblueshiftedandredshiftedcomponents.Thesystemicve- TheinspectionoftheESPRESSOechellespectrumofthecentral locity,asderivedfromtheESPRESSOdata,is36.4kms−1,which region of PC22 reveals a notable number of emission lines that isconsistentwiththatderivedfromtheMESdata. presentblueandredcomponents(Fig.8).Thesecanbeinterpreted Theexpansionvelocitiesaredifferentfordifferentlines.We astheapproachingandrecedingwallsofthecentralstructuralcom- notethatthereisatrendfortheexpansionvelocitytoincreaseas ponent,respectively,andthereforetheyprovideinformationonits theionizationpotentialofthespeciesincreases,asrevealedbythe internalkinematics.AlistoftheselinesisreportedinTable3.The linearfittothedata(Table4andFig.9).Sincespecieswithhigher radialvelocitiesassociatedwitheachlinehasbeendeterminedby ionizationpotentialareclosertotheCSPN,itmeansthereisaneg- ativevelocitygradientasmaterialislocatedfurtherawayfromthe 2 Component#7,whichsuffersfromthepresenceofadjacentknotsthat CSPN.Thisistheso-called“Wilsoneffect”(Wilson1950),which addvelocitycomponentsnotnecessarilyrelatedtothispartoftheshell,has describesthedecreaseofthelineseparation(orexpansionvelocity) notbeentakenintoaccountinthisaverage. withanincreaseoftheionizationpotentialinPNe. MNRAS000,1–??(2016) PropertiesofPC22 7 [S II]λ(6716 + 6730)Å Hα λ6563Å [N II]λ(6548 + 6583)Å [S III]λ6312Å He I λ5874Å 2 1 0 ec) -1 arcs -2 Position ( V[Aexpr= II4I]1λ.741 k3m5Å/s V[eOxp =II3I]4λ.580 k0m7Å/s VHexep= I3I 9λ5.24 1k1mÅ/s VHexep= I3I 6λ6.15 6k0mÅ/s V[eAxpr= V3]7λ.760 k0m5Å/s e 2 v ati Rel 1 0 -1 -2 Vexp=40.2 km/s Vexp=38.5 km/s Vexp=34.2 km/s Vexp=31.6 km/s Vexp=26.9 km/s -50 0 50 -50 0 50 -50 0 50 -50 0 50 -50 0 50 Relative Velocity (km/s) Figure8. Position-Velocity(PV)diagramsresultingoftheanalysisoftwelvewelldefinedemissionlinesfromtheESPRESSOechellespectraofPC22.All linesshowasplitandthecorrespondingexpansionvelocitiesarequoted.ThePVsarearrangedintermsofincreasingpotentialionizationlevelsoastovisually followthechangeinVexp.Wenoticethatthe[SII]and[NII]emissionlineshavebeenaddedtoincreasethesignal-to-noiseratio.AsfortheHeII(6560Å) line,thedarkareaontherighthand-sidecorrespondstothemuchbrightercontiguousHαline. the [N II] bright) are concentrated in the elliptical central part of 45 thenebulaandarespatiallyrelatedtothepassageoftheaforemen- tionedoutflows. • Themorpho-kinematicalmodelobtainedwithSHAPErevealsin- formationonthedifferentstructuralcomponentsofPC22.Hence: 40 -Thede-projectedvelocitiesoftheoutflowsandbumpsarerather large((cid:62)100kms−1)comparedtothatofthecentralellipticalre- -1s) gion(∼30–60kms−1). p (km 35 -Allthestructuressharesimilarinclinationaround100◦ (slightly x lessforthestructures#1and#2inFig.7),i.e.,nearlyalltheejec- e V tions can be considered as coplanar and close to the plane of the sky. 30 -Thekinematicalagecalculationsarealsowellconsistentforall theanalysedoutflowswithameanof3600±1300yrs,butforstruc- tures#1and#2,whichseemtobeslightly“younger"(2300±800 yrs).Thismayindicateeitherthatstructuralfeaturesattheelliptical 25 0 10 20 30 40 50 60 70 centralregionhavebeenaccelerated,orthattheoutflowsarebeen Ionization potential (eV) slowed down (see, for instance, the ejecta in the born-again PNe A30andA78,Fangetal.2014).Thisisatantalizingpossibility, Figure9.GraphrenderofTable4withthereddottedlinerepresentingthe butatthismomentweconcludethatallejectionsinPC22should linearfit. beconsideredtobecoeval,owingtotheuncertaintiesontheage calculation. • TheESPRESSOechelledataobtainedfortwelveemissionlines 4 MAINFINDINGS presentingblue-andred-shiftedcomponentsallowedustoderive theirexpansionvelocities.Thisvariesfrom26.9to42.5kms−1and The main results of the morpho-kinematical study of PC22 tendstoabidebythe“Wilsoneffect”aswenotedadecreaseofthe presentedherearethefollowing: expansionvelocitywithanincreaseoftheionizationpotential. • The PN, principally emitting in [O III], is not elliptical as pre- viously stated, but multipolar with several sets of non-symmetric 5 DISCUSSIONANDCONCLUSION outflowsshowingdifferentdegreesofbrightness,collimationand ionization. Thecombinationofthemorphologicalandkinematicalanalysisin- • Most(ifnotall)over-densityandlow-ionizationstructures(e.g., dicatesthatPC22belongstothecategoryofso-calledstarfishPNe MNRAS000,1–??(2016) 8 L.Sabinetal. atalateevolutionarystage.StarfishnebulaewereintroducedbySa- edgessupportfromCONACYT,CGCI,PRODEPandSEP(Mex- hai(2000)todescribeHen2-47andM1-37,twoyoungPNeinves- ico).MAGacknowledgessupportofthegrantAYA2014-57280-P, tigatedduringanHα imagingsurveywiththeHubbleSpaceTele- co-fundedwithFEDERfunds.SZacknowledgessupportfromthe scope.Later,theproto-PNIRAS19024+0044(Sahaietal.2005) UNAM-ITEcollaborationagreement1500-479-3-V-04.Wethank was added to this group. All three objects present the same mor- thedaytimeandnightsupportstaffattheOAN-SPMforfacilitat- phologicalcharacteristics:theyshowmultiplewelldefinedandfast ingandhelpingobtainourobservationsespeciallytoMrGustavo (∼100–200kms−1)collimatedlobeswithapproximatelythesame Melgoza-Kennedy, our telescope operator, for his assistance dur- sizeswhichwouldindicatethattheyhaveemergedatthesametime ing observations, as well as the CATT for time allocation. This andanequatorialwaistorring.OurclaimthatPC22isverylikely article is based upon observations carried out at the Observato- anevolvedversionoftheaforementionednebulaeholdsinthefact rioAstronómicoNacionalontheSierraSanPedroMártir(OAN- that: SPM),BajaCalifornia,México.Thedatapresentedherewereob- tainedinpartwithALFOSC,whichisprovidedbytheInstitutode (i) Thecontemporarylobeshavealargerextent(∼20–40(cid:48)(cid:48)),theyare Astrofisica de Andalucia (IAA) under a joint agreement with the fainterandshowlesscollimationinsomecases(seeAxis2).There- University of Copenhagen and NOTSA. We acknowledge the In- fore,thecompactnessoftheyoungstarfishnebulae(withoutflow stitutodeAstrofisicadeCanariasfortheuseofthefilters.Thisre- extentslessthan∼5(cid:48)(cid:48) inallcases)andtheirsharpnessoftheirlobes searchhasmadeuseoftheNASA/IPACInfraredScienceArchive, arelost. whichisoperatedbytheJetPropulsionLaboratory,CaliforniaIn- (ii) PC22 is a high-excitation PN, with dominant [O III] emission, stituteofTechnology,undercontractwiththeNationalAeronautics indicatingthatthecentralstarishotandthephotoionizationvery andSpaceAdministration.Wehavealsousedarchivalobservations efficient.Thisiscontrarytotheproto-PNeandyoungPNestarfish, madewiththeNASA/ESAHubbleSpaceTelescope,andobtained which were selected for the HST observing program HST-P6353 fromtheHubbleLegacyArchive,whichisacollaborationbetween basedonthe(very)low[OIII]5007ÅtoHαlineratio,probingtheir the Space Telescope Science Institute (STScI/NASA), the Space “early”evolutionarystage.PC22wouldthereforejoinNGC6058 TelescopeEuropeanCoordinatingFacility(ST-ECF/ESA)andthe (Guillén et al. 2013) in the very small group of evolved starfish Canadian Astronomy Data Centre (CADC/NRC/CSA). IRAF is PNe. distributedbytheNationalOpticalAstronomyObservatory,which This investigation opens a new door in the understanding of isoperatedbytheAssociationofUniversitiesforResearchinAs- thehistoryformationandevolutionofsuchobjects.Themorphol- tronomy(AURA)underacooperativeagreementwiththeNational ogyofPC22canbeexplainedbyafastandprobablyprimarilyuni- ScienceFoundation. formwindfromtheAsymptoticGiantBranch(AGB)phasegoing through irregular and inhomogeneous cavities from the previous denser AGB shell. Steffen et al. (2013) studied this phenomenon REFERENCES numericallyusing SHAPE andanadjustableturbulentnoisestruc- ture (Perlin noise) to simulate, via hydrodynamical modelling, a ApriamashviliS.P.,1959,AstronomicheskijTsirkulyar,202,13 filamentary AGB shell (their Figure 3) within which a fast wind BarentsenG.,FarnhillH.J.,DrewJ.E.,González-SolaresE.A.,Greimel evolves.Bychangingthesizeofthecellsorvoidsofthefilamen- R.,IrwinM.J.,MiszalskiB.,RuhlandC.,GrootP.,etal.,2014,MN- RAS,444,3230 tarysheet,theycouldreproducedifferenttypesofstarfishnebulae, CorradiR.L.M.,MansoR.,MampasoA.,SchwarzH.E.,1996,A&A,313, indeedshowingnonsymmetricpatterns.Itresulted,thatthesmaller 913 thecells,thesmallertheresultingoutflowsandreverselywithaloss Corradi R. L. M., Sabin L., Miszalski B., Rodríguez-Gil P., Santander- ofcollimation(theirFigure4).Steffenetal.(2013)alsofoundthat GarcíaM.,JonesD.,DrewJ.E.,MampasoA.,etal.2011,MNRAS, starfishnebulaewouldonlyoccuriftheAGBshellandpost-AGB 410,1349 windkeeparatherconstantdensityandvelocitywithrespecttothe CuestaL.,PhillipsJ.P.,MampasoA.,1993,A&A,267,199 angulardistancefromtheequator. FangX.,GuerreroM.A.,Marquez-LugoR.A.,ToaláJ.A.,ArthurS.J., PC22wouldthereforebeatastage,stillearlyinthe∼104yrs ChuY.-H.,BlairW.P.,GruendlR.A.,HamannW.-R.,OskinovaL.M., PNlife,wherethematerialdraggedbythefastpost-AGBwindis TodtH.,2014,ApJ,797,100 going through a more evolved (and larger) AGB shell populated FrewD.J.,ParkerQ.A.,Bojicˇic´I.S.,2016,MNRAS,455,1459 GiammancoC.,SaleS.E.,CorradiR.L.M.,BarlowM.J.,ViironenK., with predominantly wider, randomly distributed and inhomoge- SabinL.,etal.2011,A&A,525,A58 neousvoids.Thisthereforegenerates(mostly)largeoutflows/lobes, GrosbolP.,1989,inKlareG.,ed.,ReviewsinModernAstronomyVol.2of althoughsmallstructurescanalsobepresent.Thewaistoftende- ReviewsinModernAstronomy,MIDAS..pp242–247 scribedinstarfishnebulaecanthereforebeexplainedasbeingthe GuerreroM.A.,ManchadoA.,Serra-RicartM.,1996,ApJ,456,651 condensationofthenebularmaterialatthebaseofthevoidsinthe GuerreroM.A.,MirandaL.F.,Ramos-LariosG.,VázquezR.,2013,A&A, filamentaryshell.Wenotethatinthisscenario,thereisnoneedto 551,A53 invokeaparticularlaunchingmechanismorprecessionasitwould GuillénP.F.,VázquezR.,MirandaL.F.,ZavalaS.,ContrerasM.E.,Ayala bethecaseinotherbipolarormultipolarPNe:thewind-shellinter- S.,Ortiz-AmbrizA.,2013,MNRAS,432,2676 action,owingtheevolvingfilamentarynatureofthelatter,seemsto López-MartínL.,LópezJ.A.,EstebanC.,VázquezR.,RagaA.,Torrelles workappropriately. J.M.,MirandaL.F.,MeaburnJ.,OlguínL.,2002,A&A,388,652 ManchadoA.,GuerreroM.A.,StanghelliniL.,Serra-RicartM.,1996,The IACmorphologicalcatalogofnorthernGalacticplanetarynebulae MeaburnJ.,LópezJ.A.,GutiérrezL.,QuirózF.,MurilloJ.M.,ValdézJ., ACKNOWLEDGMENTS PedrayezM.,2003,Rev.Mex.Astron.Astrofis.,39,185 Miszalski B., Corradi R. L. M., Boffin H. M. J., Jones D., Sabin L., Wewouldliketothankthereviewerforher/histhoroughreviewand Santander-GarcíaM.,Rodríguez-GilP.,Rubio-DíezM.M.,2011,MN- appreciatethecommentsandsuggestionsmade.LSacknowledges RAS,413,1264 supportfromPAPIITgrantIA-101316(Mexico).GR-Lacknowl- MonteiroH.,MorissetC.,GruenwaldR.,ViegasS.M.,2000,ApJ,537,853 MNRAS000,1–??(2016) PropertiesofPC22 9 ParkerQ.A.,AckerA.,FrewD.J.,HartleyM.,PeyaudA.E.J.,Ochsen- beinF.,PhillippsS.,RusseilD.,BeaulieuS.F.,CohenM.,KöppenJ., MiszalskiB.,MorganD.H.,MorrisR.A.H.,PierceM.J.,Vaughan A.E.,2006,MNRAS,373,79 ParkerQ.A.,Bojicˇic´I.S.,FrewD.J.,2016,inJournalofPhysicsConfer- enceSeriesVol.728ofJournalofPhysicsConferenceSeries,HASH: the Hong Kong/AAO/Strasbourg Hα planetary nebula database. p. 032008 PeimbertM.,CosteroR.,1961,BoletindelosObservatoriosTonantzintlay Tacubaya,3,33 RubioG.,VázquezR.,Ramos-LariosG.,GuerreroM.A.,OlguínL.,Guil- lénP.F.,MataH.,2015,MNRAS,446,1931 Sabin L., Parker Q. A., Corradi R. L. M., Guzman-Ramirez L., Morris R.A.H.,ZijlstraA.A.,Bojicˇic´I.S.,etal.,2014,MNRAS,443,3388 SahaiR.,2000,ApJ,537,L43 SahaiR.,MorrisM.R.,VillarG.G.,2011,ApJ,141,134 SahaiR.,SánchezContrerasC.,MorrisM.,2005,ApJ,620,948 SokerN.,1997,ApJs,112,487 SteffenW.,KoningN.,EsquivelA.,García-SeguraG.,García-DíazM.T., LópezJ.A.,MagnorM.,2013,MNRAS,436,470 SteffenW.,KoningN.,WengerS.,MorissetC.,MagnorM.,2011,IEEE TransactionsonVisualizationandComputerGraphics,Volume17,Is- sue4,p.454-465,17,454 TajitsuA.,TamuraS.,1998,ApJ,115,1989 VázquezR.,López-MartínL.,MirandaL.F.,EstebanC.,TorrellesJ.M., AriasL.,RagaA.C.,2000,A&A,357,1031 VázquezR.,MirandaL.F.,OlguínL.,AyalaS.,TorrellesJ.M.,Contreras M.E.,GuillénP.F.,2008,A&A,481,107 WilsonO.C.,1950,ApJ,111,279 ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbytheauthor. APPENDIXA: OBSERVEDANDSYNTHETICSPECTRA OFPC22 MNRAS000,1–??(2016) 10 L.Sabinetal. FigureA1.Fromlefttoright:MES[OIII],[OIII]+contours,Hαand[OIII]lineSHAPEmodellingfortheslitsC(top)andH(bottom) MNRAS000,1–??(2016)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.