Catalytic Asymmetric Reactions between Alkenes and Aldehydes Inaugural-Dissertation zur Erlangung der Doktorwürde der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Luping Liu aus Hebei (VR China) Köln 2017 Berichterstatter: Prof. Dr. Benjamin List Prof. Dr. Hans‐Günther Schmalz Tag der mündlichen Prüfung: 11.10.2017 TABLE OF CONTENTS TABLE OF CONTENTS ABSTRACT ......................................................................................................................................... III LIST OF ABBREVIATIONS ..................................................................................................................... V 1 INTRODUCTION ................................................................................................................................ 1 2 BACKGROUND .................................................................................................................................. 3 2.1 ASYMMETRIC ORGANOCATALYSIS ............................................................................................................ 3 2.1.1 Introduction ............................................................................................................................ 3 2.1.2 Asymmetric Brønsted Acid Catalysis ........................................................................................ 7 2.2 ASYMMETRIC REACTIONS BETWEEN ALDEHYDES AND OLEFINS ..................................................................... 16 2.2.1 Asymmetric Carbonyl−Ene Cyclization ................................................................................... 16 2.2.2 Asymmetric Hetero-Diels–Alder Reaction of Dienes and Aldehydes ........................................ 21 3 OBJECTIVES OF THIS THESIS ............................................................................................................ 26 3.1 CATALYTIC ASYMMETRIC REACTIONS OF SIMPLE ALKENES WITH ALDEHYDES ................................................... 26 3.2 HIGHLY ACIDIC AND CONFINED BRØNSTED ACIDS ..................................................................................... 29 4 RESULTS AND DISCUSSION .............................................................................................................. 31 4.1 ORGANOCATALYTIC ASYMMTRIC CARBONYL−ENE CYCLIZATION ................................................................... 31 4.1.1 Reaction Design and Initial Study .......................................................................................... 31 4.1.2 Substrate Scope ..................................................................................................................... 33 4.1.3 Mechanistic Studies and Discussion ....................................................................................... 36 4.2 ORGANOLCATALYTIC ASYMMETRIC TRANSFORMATIONS VIA OXOCARBENIUM IONS ........................................... 44 4.2.1 Catalytic Asymmetric Prins Cyclization .................................................................................. 44 4.2.2 Catalytic Asymmetric Oxa-Pictet−Spengler Reac.on .............................................................. 53 4.3 ASYMMETRIC [4+2]-CYCLOADDITION REACTION OF DIENES WITH ALDEHYDES ................................................ 60 4.3.1 Reaction Design and Initial Study .......................................................................................... 60 4.3.2 Catalyst Design and Synthesis ............................................................................................... 63 4.3.3 Utilization of New Catalysts .................................................................................................. 65 4.3.4 Substrate Scope of Aromatic Aldehydes ................................................................................. 67 4.3.5 Substrate Scope of Aliphatic Aldehydes ................................................................................. 69 4.3.6 Diene Scope ........................................................................................................................... 71 4.3.7 Gram-Scale Synthesis and Derivatization ............................................................................... 73 4.3.8 Discussion ............................................................................................................................. 74 5 SUMMARY ...................................................................................................................................... 78 5.1 ORGANOLCATALYTIC ASYMMTRIC CARBONYL−ENE CYCLIZATION .................................................................. 78 5.2 ORGANOLCATALYTIC ASYMMETRIC TRANSFORMATIONS VIA OXOCARBENIUM IONS ........................................... 79 I TABLE OF CONTENTS 5.2.1 A General Organolcatalytic Asymmetric Prins Cyclization ...................................................... 79 5.2.2 Organolcatalytic Asymmetric Oxa-Pictet−Spengler Reaction ................................................. 80 5.3 CATALYTIC ASYMMETRIC [4+2]-CYCLOADDITION OF DIENES WITH ALDEHYDES ................................................ 81 5.4 HIGHLY ACIDIC AND CONFINED BRØNSTED ACIDS ..................................................................................... 82 6 OUTLOOK ....................................................................................................................................... 84 6.1 A HIGHLY ENANTIOSELECTIVE SYNTHESIS OF MENTHOL .............................................................................. 84 6.2 AN ORGANOLCATALYTIC ASYMMETRIC ALLYLATION OF ALDEHYDES ............................................................... 85 7 EXPERIMENTAL PART ...................................................................................................................... 86 7.1 GENERAL EXPERIMENTAL CONDITIONS ................................................................................................... 86 7.2 ORGANOLCATALYTIC ASYMMTRIC CARBONYL−ENE CYCLIZATION .................................................................. 89 7.2.1 Substrates Synthesis .............................................................................................................. 89 7.2.2 Products ................................................................................................................................ 94 7.2.3 Mechainsitic Studies ............................................................................................................. 102 7.2.4 X-Ray Data ........................................................................................................................... 125 7.3 ORGANOLCATALYTIC ASYMMETRIC TRANSFORMATIONS VIA OXOCARBENIUM IONS .......................................... 131 7.3.1 Prins Cyclization ................................................................................................................... 131 7.3.2 Oxa-Pictet−Spengler Reaction .............................................................................................. 149 7.4 CATALYTIC ASYMMTRIC [4+2]-CYCLOADDITION REACTION OF DIENES WITH ALDEHYDES .................................. 168 7.4.1 Products ............................................................................................................................... 168 7.4.2 Catalyst Synthesis ................................................................................................................ 185 7.4.3 X-Ray Data ........................................................................................................................... 192 7.4.4 Mechanistic Studies .............................................................................................................. 218 8 BIBLIOGRAPHY ............................................................................................................................. 221 9 ACKNOWLEDGEMENTS.................................................................................................................. 228 10 APPENDIX ................................................................................................................................... 229 10.1 ERKLÄRUNG .................................................................................................................................. 229 10.2 TEILPUBLIKATIONEN ........................................................................................................................ 230 II ABSTRACT ABSTRACT This doctoral work describes catalytic asymmetric reactions between alkenes and aldehydes, enabled by the development of chiral Brønsted acids. Valuable and functionalized enantiomerically enriched cyclic compounds were efficiently furnished from inexpensive and commercially available reagents with high degrees of atom economy. In the first part of this thesis, the first highly enantioselective organocatalytic intramolecular carbonyl−ene cyclization of olefinic aldehydes is presented. In the second part, asymmetric cyclizations via oxocarbenium ions are described. One is a general asymmetric catalytic Prins cyclization of aldehydes with homoallylic alcohols, in which the oxocarbenium ion is attacked intramolecularly by a pendent alkene. The other one is an asymmetric oxa-Pictet−Spengler reaction between aldehydes and homobenzyl alcohols, in which the oxocarbenium ion is trapped by an intramolecular arene. The first general asymmetric [4+2]-cycloaddition of simple and unactivated dienes with aldehydes is developed in the last part of this thesis. This methodology is extremely robust and scalable. Valuable enantiomerically enriched dihydropyran compounds could be readily obtained from inexpensive and abundant dienes and aldehydes. New types of confined Brønsted acids were rationally designed and synthesized, including imino-imidodiphosphates (iIDPs), nitrated imidodiphosphates (nIDPs), and imidodiphosphorimidates (IDPis). Beyond the application of these catalysts in various asymmetric reactions between simple alkenes and aldehydes, mechanistic investigations are also disclosed in this doctoral work. III ABSTRACT Diese Doktorarbeit beschreibt hochenantioselektive Reaktionen zwischen einfachen Alkenen und Aldehyden, welche durch chirale Brønsted-Säuren als Katalysatoren ermöglicht wurden. Wertvolle, hochfunktionalisierte und enantiomerenangereicherte zyklische sowie heterozyklische Verbindungen wurden effizient und hochgradig atomökonomisch, ausgehend von kommerziell erhältlichen und günstigen Startmaterialien, hergestellt. Im ersten Teil der Arbeit wird eine hochenantioselektive und organokatalytische intramolekulare Carbonyl–En-Zyklisierung von olefinischen Aldehyden vorgestellt. Im zweiten Teil werden zwei verschiedene asymmetrische Zyklisierungsreaktionen über Oxocarbenium-Ionen beschrieben. Eine dieser Reaktionen stellt die katalytische Prins- Zyklisierung von gängigen Aldehyden und homoallylischen Alkoholen dar, in welcher das Oxocarbeniumion intramolekular mit einem nukleophilen Alkenrest reagiert. Die andere Transformation beschreibt eine asymmetrische Oxa-Pictet–Spengler-Reaktion von Aldehyden mit homobenzylischen Alkoholen, wobei das Oxocarbeniumion mit dem aromatischen Ringsystem reagiert. Im letzten Teil der Arbeit wird die erste generelle asymmetrische [4+2]-Cycloaddition zwischen einfachen und nichtaktivierten Dienen und Aldehyden entwickelt. Diese Methode ist extrem robust und skalierbar. Wertvolle enantiomerenangereicherte Dihydropyran-Verbindungen konnten ausgehend von kommerziell erwerbbaren Dienen und Aldehyden hergestellt werden. Neue Klassen sterisch anspruchsvoller Brønsted-Säuren wurden konzipiert und synthetisiert. Hierbei standen Imino-Imidophosphate (IDPs), nitrierte Imidodiphosphate (nIDP) und Imidodiphorsphoimidate (IDPi) im Fokus. Neben der Anwendung dieser Katalysatoren in verschiedenen asymmetrischen Reaktionen, werden die erarbeiteten mechanistischen Studien am Ende dieser Doktorarbeit beschrieben und erläutert. IV LIST OF ABBREVIATIONS LIST OF ABBREVIATIONS Ac acyl ACDC asymmetric counteranion-directed catalysis ad adamantyl AIBN 2,2'-azo bisisobutyronitrile Alk alkyl An p-anisyl aq. Aqueous Ar aryl 9-BBN 9-borabicyclo[3.3.1]nonane BHT 2,6-di-t-butyl-p-cresol BINAP 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl BINOL 1,1'-bi-2-naphthol BLA Brønsted acid assisted chiral Lewis acid Bn benzyl Boc tert-butyloxycarbonyl BOM benzyloxymethyl Bz benzoyl Bu butyl cacld calculated cat. catalyst Cbz benzyloxycarbonyl conv. conversion Cy cyclohexyl d day DCE 1,1-dichloroethane DCM dichloromethane DFT density functional theory V LIST OF ABBREVIATIONS DIBAL diisobutylaluminum hydride DIPEA diisopropylethylamine DMAP N,N-4-dimethylaminopyridine DMF dimethylformamide DMP Dess-Martin periodinane DMS dimethylsulfide DMSO dimethylsulfoxide dr diastereomeric ratio DSI disulfonimide EDG electron donating group ee enantiomeric excess EI electron impact er enantiomeric ratio equiv equivalents Et ethyl ESI electronspray ionization EWG electron withdrawing group FMO frontier molecular orbital Fmoc 9-fluorenylmethoxycarbonyl GC gas chromatography h hour HMDS 1,1,1,3,3,3-hexamethyldisilazane HOMO highest occupied molecular orbital HPLC high performance liquid chromatography HRMS high resolution mass spectrometry i iso IDP imidodiphosphate IDPi imidodiphosphorimidate iIDP imino-imidodiphosphate IR infrared spectroscopy VI LIST OF ABBREVIATIONS L ligand LA Lewis acid LAH lithium aluminum hydride LB Lewis base LDA lithium diisopropylamide m meta m multiplet M molar mCPBA meta-chloroperbenzoic acid Me methyl MeCy methylcyclohexane Mes mesityl Ms mesyl (methanesulfonyl) MS mass spectrometry or molecular sieves MTBE methyl t-butyl ether nd not determine nIDP nitrated imidodiphosphate nr no reaction NMR nuclear magnetic resonance spectroscopy Nu nucleophile Ns 2-nitrobenzenesulfonyl o ortho P product p para piv pivaloyl Ph phenyl Pr propyl PTC Phase transfer catalyst Py pyridine quant. quantitative VII LIST OF ABBREVIATIONS quint quintet rac racemic rt room temperature R retention factor in chromatography f S substrate Salen bis(salicylidene)ethylenediamine t tert, tertiary t triplet TADDOL α,α,α´,α´-tetraaryl-1,3-dioxolan-4,5-dimethanol TBAF tetra-n-butylammonium fluoride TBS tert-butyl(dimethyl)silyl TEA triethylamine Tf trifluoromethylsulfonyl TFA trifluoroacetic acid THF tetrahydrofuran THP tetrahydropyran TLC thin layer chromatography TMEDA N,N,N’,N’-tetramethyl ethylenediamine TMS trimethylsilyl TOF turnover frequency Tol p-tolyl TON turnover number TRIP 3,3'-bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-diyl-hydrogen phosphate TsOH para-toluene sulfonic acid k Boltzmann constant: 1.3806488 × 10-23 J/K, B h Planck constant: 6.62606957 × 10-34 J⋅s. VIII
Description: