ebook img

Catalan combinatorics of crystallographic root systems [PhD thesis] PDF

79 Pages·2015·0.735 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Catalan combinatorics of crystallographic root systems [PhD thesis]

DISSERTATION Titel der Dissertation Catalan combinatorics of crystallographic root systems Verfasser Marko Thiel angestrebter akademischer Grad Doktor der Naturwissenschaften (Dr.rer.nat) Wien, im August 2015 Studienkennzahl lt. Studienblatt: A 791 405 Dissertationsgebiet lt. Studienblatt: Mathematik Betreuer: Univ.-Prof. Dr. Christian Krattenthaler 2 CONTENTS 1 introduction 9 1.1 Catalancombinatorics 9 1.1.1 Catalannumbers 9 1.1.2 Coxeter-Catalannumbers 9 1.1.3 Fuß-Catalannumbers 10 1.1.4 RationalCatalannumbers 10 1.2 DiagonalHarmonics 11 1.3 Structureofthethesis 11 2 basic notions 13 2.1 Rootsystemsandreflectiongroups 13 2.1.1 Definitionofarootsystem 13 2.1.2 Positiverootsandsimpleroots 14 2.1.3 Dynkindiagramsandtheclassification 14 2.1.4 WeylgroupsasCoxetergroups 15 2.2 Hyperplanearrangements 16 2.2.1 TheCoxeterarrangement 16 2.2.2 TheaffineCoxeterarrangementandtheaffineWeylgroup 16 2.2.3 Polyhedra 18 2.2.4 Affineroots 19 2.2.5 Theheightofroots 20 3 the anderson map 21 3.1 ClassicalrationalCatalancombinatorics 21 3.1.1 RationalCatalannumbersandrationalDyckpaths 21 3.1.2 Rationalparkingfunctions 22 3.1.3 VerticallylabelledDyckpaths 23 3.2 Theaffinesymmetricgroup 24 3.3 Abaci 25 3.4 p-stableaffinepermutations 26 3.5 ThecombinatorialAndersonmap 26 3.6 TheuniformAndersonmap 27 3.6.1 p-stableaffineWeylgroupelements 27 3.6.2 FromtheSommersregiontothedilatedfundamentalalcove 28 3.6.3 Fromthedilatedfundamentalalcovetothefinitetorus 30 3.6.4 Puttingitalltogether 31 3.6.5 Thestabilizerof (w) 31 (cid:101) A 3.7 ThecombinatorialAndersonmapandtheuniformAndersonmap 32 3.7.1 Parkingfunctionsandthefinitetorus 32 3.7.2 TheAndersonmapsareequivalent 33 3.8 RationalCoxeter-Catalannumbers 35 3.8.1 Thepartitionlattice 36 3.8.2 Thenumberoforbitsofthefinitetorus 37 3.8.3 Typesoforbits 37 3.9 Dominant p-stableaffineWeylgroupelements 38 4 the m-shi arrangement 41 4.1 TheShiarrangement 41 4.2 The m-extendedShiarrangement 41 4.3 Minimalalcovesof m-Shiregions 43 4.3.1 Theaddressofadominant m-Shialcove 43 3 4 CONTENTS 4.3.2 Floorsofdominant m-Shiregionsandalcoves 44 4.3.3 m-Shiregionsandalcovesinotherchambers 44 4.3.4 m-Shialcovesand (mh+1)-stableaffineWeylgroupelements 46 4.4 Enumerativeconsequences 47 5 the zeta map 49 5.1 Thespaceofdiagonalharmonics 49 5.1.1 TheHilbertseries 49 5.2 VerticallylabelledDyckpaths 49 5.2.1 Thestatistics 50 5.3 DiagonallylabelledDyckpaths 50 5.3.1 Thestatistics 51 5.4 Thecombinatorialzetamap 51 5.5 Theuniformzetamap 52 5.5.1 Thenonnestingparkingfunctions 52 5.5.2 m-nonnestingparkingfunctionsandthefinitetorus 54 5.5.3 Thetypeofageometricchainof m orderfilters 55 5.5.4 Therankofageometricchainof m orderfilters 55 5.6 Theuniformzetamapandthecombinatorialzetamap 56 5.6.1 NonnestingparkingfunctionsasdiagonallylabelledDyckpaths 56 5.6.2 Thezetamapsareequivalent 58 5.7 Outlook 60 6 floors and ceilings of dominant m-shi regions 61 6.1 Themainresult 61 6.2 Preliminaries 61 6.3 Proofofthemainresult 66 6.4 Corollaries 67 6.5 Outlook 67 7 chapoton triangles 69 7.1 ThreeFuss-CatalanobjectsandtheirChapotontriangles 69 7.1.1 m-nonnestingpartitions 69 7.1.2 m-noncrossingpartitions 69 7.1.3 The m-clustercomplex 70 7.2 TheH=Fcorrespondence 70 7.2.1 The h-vectorofAssoc(Φm) 71 7.3 TheBijection 71 7.4 ProofoftheH=Fcorrespondence 73 7.5 CorollariesoftheH=Fcorrespondence 74 7.6 Outlook 76 SUMMARY ThepresentthesiscontainsfourmaincontributionstotheCatalancombinatoricsofcrystallo- graphicrootsystems. The first is a uniform bijection that generalises the bijection defined by Gorsky, GMV A A MazinandVaziranifortheaffinesymmetricgroupintheirstudyofarationalgeneralisationof theHilbertseriesofthespaceofdiagonalharmonics. Thesecondisauniformbijection ζ thatgeneralisesthebijection ζ definedbyHaglundand HL Loehr,alsointhecontextofdiagonalharmonics. The third is a proof of a conjecture of Armstrong relating floors and ceilings of the m-Shi arrangement. Inthisproof,abijectionthatprovidesmorerefinedenumerativeinformationis introduced. Thefourth isaproof ofthe H = F correspondence, originallyconjectured by Chapotonand thengeneralisedbyArmstrong. The H = F correspondencedescribesawayoftransforminga refinedenumerationofthefacesofthe m-clustercomplexAssoc(Φm) toarefinedenumeration of the set NN(Φm) of m-generalised nonnesting partitions by means of an invertible change of variables. Theproofusesauniformbijectiontogetherwithacase-by-caseverification. 5 6 CONTENTS ZUSAMMENFASSUNG DievorliegendeDissertationentha¨ltvierhauptsa¨chlicheBeitra¨gezurCatalan-Kombinatorik derkristallographischenWurzelsysteme. Der erste ist eine einheitliche Anderson-Abbildung die die kombinatorische Anderson- A Abbildung verallgemeinert. Die kombinatorische Anderson-Abbildung wurde von GMV A Gorsky,MazinundVaziranifu¨rdieaffinesymmetrischeGruppedefiniertumeinerationale VerallgemeinerungderHilbertreihedesRaumesderdiagonalenharmonischenPolynomezu erhalten. Der zweite ist eine einheitliche Zeta-Abbildung ζ die die kombinatorische Zeta-Abbildung ζ verallgemeinert. Die kombinatorische Zeta-Abbildung wurde von Haglund und Loehr HL definiert,auchimKontextderdiagonalenharmonischenPolynome. Der dritte ist der Beweis einer Vermutung von Armstrong die die Bo¨den und die Decken vondominantenRegionendes m-Shi-Gefu¨gesinVerbindungsetzt. IndemBeweiswirdeine Bijektioneingefu¨hrtdienochfeinereAbza¨hlungenermo¨glicht. Der vierte ist der Beweis der H = F Korrespondenz. Diese wurde zuerst von Chapoton vermutetundspa¨terdurchArmstrongverallgemeinert. SiebeschreibteineinvertierbareVari- ablensubstitutiondieeineverfeinerteAbza¨hlungderSeitendesCluster-KomplexesAssoc(Φm) in eineverfeinerteAbza¨hlungderMengeNN(Φm) derm-nichtschachtelndenPartitionenumwandelt. DerBeweisverwendeteineeinheitlicheBijektionsowieeineFallunterscheidung. 7 8 CONTENTS 1 INTRODUCTION 1.1 catalan combinatorics 1.1.1 Catalannumbers OneofthemostfamousnumbersequencesincombinatoricsisthesequenceofCatalannumbers 1,1,2,5,14,42,132,... givenbytheformula (cid:18) (cid:19) 1 2n+1 Cat := . n 2n+1 n AvastvarietyofcombinatorialobjectsarecountedbytheCatalannumbersandmaythusjustly be called Catalan objects. Many of them have been collected by Stanley [Sta]. Some Catalan objectsare (Assoc)triangulationsofaconvex (n+2)-gon, (NC)noncrossingpartitionsof [n] := 1,2,...,n , { } (NN)nonnestingpartitionsof [n],and (Qˇ)increasingparkingfunctionsoflength [n]. 1.1.2 Coxeter-Catalannumbers Inalgebraiccombinatorics,acommonthemeistotakecombinatorialobjectsandviewthem as emerging from or sitting inside some algebraic structure. Doing this may reveal further structureorsuggestpossiblegeneralisations. Inourcase,thefourCatalanobjectsmentionedinSection1.1.1maybeseenasobjectsassociated withthesymmetricgroup S anditsrootsystem,whichisofDynkintype A . Thismakes n n 1 it possible to generalise each of them to all irreducible crystallographic root s−ystems Φ. For backgroundoncrystallographicrootsystemsrefertoChapter2. Thesegeneralisationsare (Assoc)maximalsetsofpairwisecompatiblealmostpositiveroots, (NC)minimalfactorisationsofaCoxeterelement c intotwoWeylgroupelements, (NN)orderfiltersintherootposetof Φ,and (Qˇ)orbitsoftheactionoftheWeylgroupW onthefinitetorus Qˇ/(h+1)Qˇ. Surprisingly,theCatalannumberssurvivethesegeneralisations: eachoftheseobjectsiscounted bythesamenumberCatΦ,theCoxeter-Catalannumberof Φ. Itisdefinedas 1 ∏r CatΦ := (h+1+ei). W | | i=1 Here r is the rank of Φ, W is its Weyl group, h is its Coxeter number and e ,e ,...,e are its 1 2 r exponents. When Φ is of Dynkin type An 1, the Coxeter-Catalan number CatΦ equals the classicalCatalannumberCat . − n 9 10 introduction 1.1.3 Fuß-Catalannumbers FurthergeneralisationsofCoxeter-Catalanobjectsarefoundbyintroducingapositiveinteger m asaFußparameter. ThisgivesrisetothefollowingFuß-Catalanobjects: (Assoc)maximalsetsofpairwisecompatible m-colouredalmostpositiveroots, (NC)minimalfactorisationsofaCoxeterelement c into (m+1) Weylgroupelements, (NN)geometricchainsof m orderfiltersintherootposetof Φ,and (Qˇ)W-orbitsofthefinitetorus Qˇ/(mh+1)Qˇ. AllofthesearecountedbytheFuß-Catalannumber Cat(Φm) := 1 ∏r (mh+1+ei). W | | i=1 TheyspecialisetothecorrespondingCoxeter-Catalanobjectsinthecasewhere m =1. If Φ is of type An 1, the Fuß-Catalan number Cat(Φm) equals the classical Fuß-Catalan num- − ber (cid:18) (cid:19) Cat(m) := 1 (m+1)n+1 . n (m+1)n+1 n OneunderlyingphilosophyofthefieldofFuß-Catalancombinatoricsisthatuniformtheorems askforuniformproofs. Thatis,whenastatementholdsforallirreduciblecrystallographicroot systems,oneshouldtrytoproveitwithoutappealingtotheirclassification. Giventhisphilosophy,itishelpfultodividetheFuß-Catalanobjectsintotwodifferentworlds: thenoncrossingworldcontaining(Assoc)and(NC)andthenonnestingworldcontaining(NN)and (Qˇ). There are uniform bijections known between the objects within each world, but none betweenobjectsofdifferentworlds. Each world has its own unique flavour: in the noncrossing world, there are Cambrian re- currencesandgeneralisationstononcrystallographicrootsystems[STW15]. Ontheotherhand, in the nonnesting world there is a uniform proof of the fact that the Fuß-Catalan objects are indeed counted by the Fuß-Catalan number Cat(Φm). Our focus in this thesis will be on the nonnestingworld. 1.1.4 RationalCatalannumbers A further generalisation of Fuß-Catalan numbers are rational Catalan numbers. For any irre- duciblecrystallographicrootsystem Φ andapositiveinteger p relativelyprimetotheCoxeter number h of Φ definetherationalCatalannumber 1 ∏r Catp/Φ := W (p+ei). | | i=1 ItreducestotheFuß-CatalannumberCat(Φm) when p = mh+1. TherationalCatalannumbers count (Qˇ)W-orbitsofthefinitetorus Qˇ/pQˇ. For the (Assoc), (NC) and (NN) Fuß-Catalan objects there is no satisfactory generalisation to the rational Catalan level yet. However, (Assoc) and (NC) rational Catalan objects have been proposedfortype A [ARW13]. n 1 − If Φ is of type An 1, the rational Catalan number Catp/Φ equals the rational (p/n)-Catalan − number (cid:18) (cid:19) 1 n+p Cat := . p/n n+p n

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.