ebook img

Cartesian composition of Γ− reset single valued neutrosophic automata PDF

2020·1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cartesian composition of Γ− reset single valued neutrosophic automata

MalayaJournalofMatematik,Vol. 08,No. 04,2263-2266,2020 https://doi.org/10.26637/MJM0804/0160 Cartesian composition of Γ− reset single valued neutrosophic automata N. Mohanarao1 and V. Karthikeyan2* Abstract Cartesian composition of Γ− reset single valued neutrosophic automata(SVNA) are introduce, prove that cartesiancompositionofΓ−resetSVNAisΓ−resetSVNA. Keywords SingleValuedneutrosophicset,SingleValuedneutrosophicautomaton,Γ−reset,CartesianComposition. AMSSubjectClassification 03D05,20M35,18B20,68Q45,68Q70,94A45. 1DepartmentofMathematics,GovernmentCollegeofEngineering,Bodinayakkanur,Tamilnadu,India. 2DepartmentofMathematics,GovernmentCollegeofEngineering,Dharmapuri,Tamilnadu,India. *Correspondingauthor:[email protected]; [email protected] ArticleHistory:Received13October2020;Accepted21December2020 (cid:13)c2020MJM. Contents cartesiancompositionofΓ−resetSVNAisΓ−resetSVNA. 1 Introduction......................................2263 2. Preliminaries 2 Preliminaries.....................................2263 Definition2.1. [1]AfuzzyautomataistripleF =(S,A,α) 3 SingleValuedNeutrosophicAutomata ..........2264 whereS,Aarefinitenonemptysetscalledsetofstatesand 4 Γ−ResetSingleValuedNeutrosophicAutomata2264 set of input alphabets and α is fuzzy transition function in 5 CartesianCompositionofΓ−ResetSingleValuedNeu- S×A×S→[0,1]. trosophicAutomata .............................2264 Definition2.2. [1]AfuzzyautomataistripleF =(S,A,α) 5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 2264 whereS,Aarefinitenonemptysetscalledsetofstatesand 5.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 2264 set of input alphabets and α is fuzzy transition function in 6 Conclusion.......................................2266 S×A×S→[0,1]. References.......................................2266 Definition 2.3. Neutrosophic Set [2] LetU be the universe of discourse. A neutrosophic set (NS) N in U is 1. Introduction characterized by a truth membership function ηN, an inde- terminacymembershipfunctionζ andafalsitymembership N Thetheoryofneutrosophyandneutrosophicsetwas functionρ ,whereη ,ζ ,andρ arerealstandardornon- N N N N introducedbyFlorentinSmarandachein1999[2]. Thefuzzy standardsubsetsof]0−,1+[.Thatis setswasintroducedbyZadehin1965[5]. Aneutrosophicset N={(cid:104)x,(η (x),ζ (x),ρ (x))(cid:105),x∈U, N N N N is a set where each element of the universe has a degree η ,ζ ,ρ ∈]0−,1+[}andwiththecondition N N N of truth, indeterminacy and falsity respectively and which 0−≤supη (x)+supζ (x)+supρ (x)≤3+. liesinthenonstandardunitinterval]0−,1+[.Wangetal.[3] N N N weneedtotaketheinterval[0,1]fortechnicalapplications introducedthenotionofsinglevaluedneutrosophicsets. insteadof]0−,1+[. The fuzzy automaton was introduced Wee [4]. Theconceptofsinglevaluedneutrosophicfinitestatemachine Definition2.4. SingleValuedNeutrosophicSet[2] wasintroducedbyTahirMahmood[1].Cartesiancomposition LetU betheuniverseofdiscourse. Asinglevaluedneutro- ofΓ−resetsinglevaluedneutrosophicautomata(SVNA)are sophicset(NS)NinU ischaracterizedbyatruthmembership introduce and studied their properties. Finally, prove that functionη ,anindeterminacymembershipfunctionζ anda N N CartesiancompositionofΓ−resetsinglevaluedneutrosophicautomata—2264/2266 falsitymembershipfunctionρ . Definition4.4. LetΘ=p ,p ,...,p beapartitionof N 1 2 z N={(cid:104)x,(ηN(x),ζN(x),ρN(x))(cid:105),x∈U, ηN,ζN,ρN∈ [0,1].} thestatessetSsuchthatifηN∗(qi,x,qj)>0.ζN∗(qi,x,qj)< 1,ρN∗(qi,x,qj)<1.forsomex∈Athenqi∈psandqj∈ps+1. Then Θ will be called periodic partition of order z ≥ 2. 3. Single Valued Neutrosophic Automata An SVNA F is periodic of period z≥2 if and only if z= Maxcard(Θ)wherethismaximumistakenoverallperiodic Definition3.1. [1] partitionsΘofF. IfF hasnoperiodicpartition, thenF is F=(S,A,N)iscalledsinglevaluedneutrosophic calledaperiodic. Throughoutthispaperweconsideraperi- automaton(SVNAforshort),whereSandAarenon-emptyfi- odicSVNA. nitesetscalledthesetofstatesandinputsymbolsrespectively, and N ={(cid:104)ηN(x),ζN(x),ρN(x)(cid:105)} is an SVNS in S×A×S. Definition4.5. LetF=(S,A,N)beanSVNA.Wesay ThesetofallwordsoffinitelengthofAisdenotedbyA∗.The thatFissaidtobeΓ−resetifthereexistsawordw∈A∗, q ∈ j emptywordisdenotedbyε,andthelengthofeachx∈A∗is SandarealnumberΓwithΓ∈(0,1]suchthatηN∗(qi,w,qj)≥ denotedby|x|. Γ>0,ζN∗(qi,w,qj)≤Γ<1,ρN∗(qi,w,qj)≤Γ<1 ∀qi∈S. Definition3.2. [1] F=(S,A,N)beanSVNA.DefineanSVNSN∗= 5. Cartesian Composition of Γ− Reset {(cid:104)ηN∗(x),ζN∗(x),ρN∗(x)(cid:105)}inS×A∗×Sby Single Valued Neutrosophic Automata (cid:40) 5.1 Definition 1 ifq =q ηN∗(qi, ε, qj)= i j Let Fi =(Si,Ai,Ni) be SVNA, i=1,2 and let A1∩ 0 ifq (cid:54)=q i j A =φ.LetF ◦F =(S ×S ,A ∪A ,N ◦N ),where 2 1 2 1 2 1 2 1 2 (cid:40)  ζN∗(qi, ε, qj)= 01 iiffqqii=(cid:54)=qqjj ηηifNx1((∈qqi,,Axx,1,q,qkq))j=ql (η ◦η )((q,q ),x,(q ,q))= N2 j l ρN∗(qi, ε, qj)=(cid:40)01 iiffqqi(cid:54)==qqj N1 N2 i j k l 0oifthxer∈wiAse2,qi=qk i j ηN∗(qi,xy,qj)=∨qr∈Q[ηN∗(qi,x,qr)∧ηN∗(qr,y,qj)],  ζρ∀NNq∗i∗,((qqqjii,,∈xxyyS,,q,qjj))==∧∧qqrr∈∈QQ[[ζρNN∗∗((qqii,,xx,,qqrr))∨∨ζρNN∗∗((qqrr,,yy,,qqjj))]],, ζζifNx1((qq∈i,,xAx,,1qq,kq))j=ql x∈A∗andy∈A. (ζN1◦ζN2)((qi,qj),x,(qk,ql))=0oifNthx2er∈wjiAse2,lqi=qk 4. Γ− Reset Single Valued Neutrosophic Automata  ADsaeitfidhnetroiteiboeenxdi4se.t1tse.rumniiqnuiseticstLaSetVteNFqA=jtsh(ueScn,hAfo,thNra)etabηcehNa∗qn(iqS∈iV,xNQ,Aqa.jn)Idf>Fx0∈is. ρρifNx1((∈qqi,,Axx,1,qq,kq))j=ql ζsDaNei∗dfi(nqtoiit,bixoe,nqcoj4)n.2<n.ec1t,eρdNS∗V(NqLiA,exit,fFqfoj=)r<a(lSl1q,.A,,qN)∈bSetahnerSeVeNxiAst.sIfxF∈iAs (ρN1◦ρN2)((qi,qj),x,(qk,ql))=0oiftNhx2er∈wjiAse2,lqi=qk i j suchthatηN(qi,x,qj)>0.ζN∗(qi,u,qj)<1,ρN∗(qi,u,qj)< 1.(or)ηN(qj,x,qi)>0.ζN∗(qj,x,qi)<1,ρN∗(qj,x,qi)<1. ∀(qi,qj),(qk,ql)∈S1×S2, x∈A1∪A2.ThenF1◦F2is calledtheCartesiancompositionofF ◦F . 1 2 Definition4.3. LetF=(S,A,N)beanSVNA.IfF is saidtobestronglyconnectedSVNAifforallq,q ∈Sthere 5.2 Definition i j existsu∈A∗ suchthatηN∗(qi,u,qj)>0.ζN∗(qi,u,qj)<1, Let Fi =(Si,Ai,Ni) be SVNA, i=1,2 and let A1∩ ρN∗(qi,u,qj)<1.Equivalently,F isstronglyconnectedifit A2=φ.LetF1◦F2=(S1×S2,A1∪A2,N1◦N2),bethecarte- hasnopropersubautomaton. siancompositionofF andF .Then∀w∈A∗∪A∗,w(cid:54)=ε. 1 2 1 2 2264 CartesiancompositionofΓ−resetsinglevaluedneutrosophicautomata—2265/2266 ηN∗(qi,w1,qk) ∧ ηN∗(qj,w2,ql)=0, 1 2  ζN∗(qi,w1,qk) ∨ ζN∗(qj,w2,ql)=1and (ηN1∗◦ηN2∗)((qi,qj),w,(qk,ql))=ηi0oηifftNNhww21∗∗e((rqq∈∈wij,i,swAAwe,∗2∗1,q,,qklqq))ij==qqkl INρfNox11∗w(=,qi(ε,ηwaN1n1∗,dq◦kyη)(cid:54)=N∨2∗ε)(ρo(Nqr22∗ix,(qq(cid:54)=jj),ε,wwa21,nwqdl2)y,=(=qk1ε,.qthl)e)n=theresultisholds. ∨(qr,qs)∈S1×S2{(ηN1∗◦ηN2∗)((qi,qj),w1,(qr,qs))∧ (ηN∗◦ηN∗)((qr,qs),w2,(qk,ql))}  1 2 (ζN1∗◦ζN2∗)((qi,qj),w,(qk,ql))=iζ0oiζffNNthww21∗∗e((rqq∈∈wij,,iwswAAe,,∗2∗1qq,,klqq))ij==qqkl (=ηN∨1∗q◦rη∈NS2∗1){(((ηqNr,1=∗q◦lη)η,NNw1∗2∗(2)q,((i(,qqwki,,1qq,qlj))k),)}w∧1wη2,N(2∗q(rq,jq,lw))2∧,ql). (ζN∗◦ζN∗)((qi,qj),w1w2,(qk,ql))= 1 2  (ρN1∗◦ρN2∗)((qi,qj),w,(qk,ql))=ρi0oρifftNNhww21∗∗e((rqq∈∈wij,,iwsAAwe,,∗2∗1qq,,klqq))ij==qqkl ((∧=ζζ(NNq∧11∗∗r,q◦◦qrsζζ)∈∈NNSS22∗∗11))×{((S(((2qqζ{rrN,,(1∗qqζ=◦slN))ζ1∗ζ,,NwNw◦2∗1∗2ζ2)(,,N(q(((2∗iqqq,)kkwi(,,,(qq1qq,llji)q)),)),qk}}w)j)1∨,ww2ζ1,,N((2∗qq(rrq,,qjq,ls)w)))2∨∨,ql). ∀(q,q ),(q ,q)∈S ×S , w∈A∗∪A∗.ThenF ◦F is i j k l 1 2 1 2 1 2 calledtheCartesiancompositionofF ◦F . 1 2 Theorem5.1. LetF =(S,A,N)beSVNA,i=1,2 i i i i (ρN∗◦ρN∗)((qi,qj),w1w2,(qk,ql))= andletA1∩A2=φ. 1 2 LetF1◦F2=(S1×S2,A1∪A2,N1◦N2),bethecartesiancom- ∧(qr,qs)∈S1×S2{(ρN1∗◦ρN2∗)((qi,qj),w1,(qr,qs))∨ positionofF1andF2. (ρN∗◦ρN∗)((qr,qs),w2,(qk,ql))} Then∀w ∈A∗,w ∈A∗ 1 2 (ηN∗◦ηN1∗)((q1i,q2j),w12w2,(qk,ql))=ηN∗(qi,w1,qk)∧ =∧qr ∈S1{(ρN1∗◦ρN2∗)((qi,qj),w1w2,(qr,ql))∨ 1 2 1 ηN∗(qj,w2,ql) (ρN∗◦ρN∗)((qr,ql),w2,(qk,ql))} 2 1 2 (ζN1∗◦ζN2∗)((qi,qj),w1w2,(qk,ql))=ζN1∗(qi,w1,qk)∨ =ρN∗(qi,w1,qk) ∨ρN∗(qj,w2,ql). ζN∗(qj,w2,ql) 1 2 2 (ρN∗◦ρN∗)((qi,qj),w1w2,(qk,ql))=ρN∗(qi,w1,qk)∨ 1 2 1 ρN∗(qj,w2,ql) 2 Proof. Letw ∈A∗, w ∈ A∗, 1 1 2 2 (qi,qj),(qk,ql) ∈ S1 × S2. Theorem5.2. LetFi=(Si,Ai,Ni)beSVNA,i=1,2 Ifw1=ε =w2,thenw1w2=ε.Suppose(qi,qj)=(qk,ql). and let A1∩A2 =φ. If F1 and F2 are Γ− reset SVNA then Thenqi=qk andqj=ql.Hence, cartesiancompositionofF1◦F2isΓ−resetSVNA. (ηN∗◦ηN∗)((qi,qj),w1w2,(qk,ql))=1=ηN∗(qi,w1,qk)∧ 1 2 1 ηN2∗(qj,w2,ql) Proof. LetFi=(Si,Ai,Ni),i=1,2beΓ−resetSVNA. (ζN1∗◦ζN2∗)((qi,qj),w1w2,(qk,ql))=0=ζN1∗(qi,w1,qk) ∨ Thenthereexistsawordw1∈A∗, qj∈S1andw2∈A∗, ql ∈ ζN∗(qj,w2,ql) S2arealnumberΓwithΓ∈(0,1]suchthat 2 (ζN1∗◦ζN2∗)((qi,qj),w1w2,(qk,ql))=0=ζN1∗(qi,w1,qk)∨ ηN1∗(qi,w1,qk)≥Γ>0,ζN1∗(qi,w1,qk)≤Γ<1, ζN2∗(qj,w2,ql) ρN1∗(qi,w,qk)≤Γ<1 ∀qi∈S1. Suppose (qi,qj)(cid:54)=(qk,ql). Then either qi (cid:54)=qk or qj (cid:54)=ql. ηN∗(qj,w2,ql)≥Γ>0,ζN∗(qj,w2,ql)≤Γ<1, 2 2 Then ρN∗(qj,w2,ql)≤Γ<1 ∀qj∈S2. 2 2265 CartesiancompositionofΓ−resetsinglevaluedneutrosophicautomata—2266/2266 Now, (ηN∗◦ηN∗)((qi,qj),w,(qk,ql))= 1 2 (ηN∗◦ηN∗)((qi,qj),w1w2,(qk,ql)),w=w1w2 1 2 =∨(qr,qs)∈S1×S2{(ηN1∗◦ηN2∗)((qi,qj),w1,(qr,qs))∧ (ηN∗◦ηN∗)((qr,qs),w2,(qk,ql))} 1 2 =∨qr ∈S1{(ηN1∗◦ηN2∗)((qi,qj),w1,(qr,qj))∧ (ηN∗◦ηN∗)((qr,qj),w2,(qk,ql))} 1 2 =ηN∗(qi,w1,qk) ∧ ηN∗(qj,w2,ql). 1 2 Hence,thecartesiancompositionofF ◦F isΓ−resetSVNA. 1 2 6. Conclusion CartesiancompositionofΓ−resetsinglevaluedneu- trosophicautomata(SVNA)areintroduce,provethatcartesian compositionofΓ−resetSVNAisΓ−resetSVNA. References [1] T.Mahmood,andQ.Khan,Intervalneutrosophicfinite switchboard state machine, Afr. Mat. 20(2)(2016),191- 210. [2] F.Smarandache,AUnifyingFieldinLogics,Neutroso- phy: NeutrosophicProbability,setandLogic,Rehoboth: AmericanResearchPress,(1999). [3] H.Wang,F.Smarandache,Y.Q.Zhang,andR.Sunder- ramanSingleValuedNeutrosophicSets,Multispaceand Multistructure,4(2010),410–413. [4] W. G. Wee, On generalizations of adaptive algorithms andapplicationofthefuzzysetsconceptstopatternclas- sificationPh.D.Thesis,PurdueUniversity,(1967). [5] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3)(1965),338–353. (cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63) ISSN(P):2319−3786 MalayaJournalofMatematik ISSN(O):2321−5666 (cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63)(cid:63) 2266

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.