materials Review Carbon Nanomaterials as Antibacterial Colloids MichaelMaas FacultyofProductionEngineering,AdvancedCeramics,MAPEX—CentreforMaterialsandProcesses, UniversityofBremen,Bremen28359,Germany;[email protected];Tel.:+49-421-218-64939 AcademicEditor:ShahinHomaeigohar Received:16June2016;Accepted:15July2016;Published:25July2016 Abstract: Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterialsprovidesfundamentalinformationonthepossibletoxicityandenvironmentalimpact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviewscurrentresearcheffortsoncharacterizingtheantibacterialactivityofcarbonnanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recentfunctionalizationstrategiesforenhancingtheantibacterialeffectofcarbonnanomaterialsare described. Thereviewconcludeswithacomprehensiveoutlookthatsummarizesthemostimportant discoveriesandtrendsregardingantibacterialcarbonnanomaterials. Keywords: carbon;nanotubes;graphene;fullerene;diamond;nanomaterial;environment;bacteria; toxicity;antibacterial 1. Introduction Carbon is able to form different allotropes based on the formation of either sp2 or sp3 bonds betweentheindividualcarbonatoms. Theseconfigurationsareespeciallysignificantatthenanoscale whereeachallotropeexhibitsuniqueproperties. Applicationsofcarbonnanomaterialsincludetheir utilizationincompositematerials,asbiomaterials,asdrugcarriersorasmaterialsforenergystorage. Mostnotably,carbonnanotubes(CNT)andgraphenearestudiedfortheirvastpotentialinelectrical engineering.Concurrently,albeittoalesserextent,investigationsontheotherallotropesofnanocarbon likefullerenesandnanodiamondaresteadilygainingmomentum. Withtheincreasingprevalence ofcarbonnanomaterials(CNMs)innanotechnology,theinteractionwithlivingtissueandtheirfate in organisms as well as consequences for the environment have come into focus. Most allotropic formsofcarbon,grapheneoxides,carbonnanotubesandfullerenesweresoonidentifiedasmoderately toxictomostlivingcells,bothforeukaryoticandespeciallyforprokaryoticcells[1,2]. Onereasonfor theirtoxicitymightbetheirhydrophobiccharacter,whichenablespenetrationofcellmembranes[3]. Severalstudiesreportedthegenerationofreactiveoxygenspecies(ROS)causingcellulartoxicity[4–6]. Becausecarbonnanomaterialsareoftensynthesizedinthepresenceofmetalliccatalysts,heavymetal residuescanadditionallyaffectcellularprocessesashasbeenshownforcarbonnanotubes[7,8]. Studiesregardingthetoxicologyandsafetyofnanomaterialsareoftencomplicatedbyalackof comparabilitypartlyduetoanunnecessaryneglectofstandardizationaswellasshortcomingsinthe physico-chemical characterization of the investigated materials [9]. Additionally, well-established biologicaltestingmethodsaresometimescompromisedbyinteractionswithnanomaterials[10].Thisis especiallytrueformoreinvolvedtestsetupsbasedoneukaryoticcells,tissuesandanimalmodels wheregreatcontroversyexistsregardingtheinherenttoxicityofnanomaterials. Hence,investigating toxicityforbacteriaoffersawelcomesimplificationofexistingmodelsystems,whichallowsabetter Materials2016,9,617;doi:10.3390/ma9080617 www.mdpi.com/journal/materials Materials2016,9,617 2of19 Materials 2016, 9, 617 2 of 18 ccoonnttrrooll aanndd mmoorree ffaacciillee iinnvveessttiiggaattiioonn ooff bbiioo––nnaannoo iinntteerraaccttiioonnss.. HHoowweevveerr,, ssiimmpplliififieedd bbaacctteerriiaa ssyysstteemmss aarree nnootta lawlwayasysp rporpoepreinr dinicdaitcoartsoorfs tooxf ictoitxyicinitym oinre mcoomrep lceoxmsypslteexm ssy[s1t1e]m.Ms o[1n1it]o. rMinognbiatocrteinriga vbiaacbtielritiya ivsiaobfislipteyc iias loimf sppoerctiaanl ciemfoproratsasnecsesi nfogrt haseseenssviinrogn tmhee netnavliirmopnmacetnotfacl airmbopnacnta onfo mcaarbteornia lnsa[n1o2m].aIntetrhiaelisr r[1e2v]i.e Iwn pthaepier rr,eMviaeuwte praapnedr,E Mlimauetleerc handdi sEcluimssetlheechim dpislcicuastsi othnes oimfspelviceartaiolnens voifr osenvmereanlt eanlavpirpolnicmateinotnasl faoprpcliacrabtoionnsn afonro cmarabteorni anlasn[o13m].atIenritahlse [s1a3m]. eInv tehien ,sacmareb ovneinn,a cnaormboante nraianlosmcaantebriealpso ctaenn tbiea lplyotuentitliiazleldy fuotrilidziesdin ffeocrt iodnisiannfdecmtioicnr oabnidal cmoinctrroobli[a1l4 ]c,ofnotrrothl e[1d4e]v, efloorp mtheen tdoefvneloovpemlaenntti boafc tneorivaellm aantteirbiaaclstelriikael amnattiebraicatlesr ilaikleg raanpthibeancet-ebraiasle dgrpaappheerne[1-b5]a,seadn tipbaapcteerr i[a1l5f]a, barnictisb[a1c6te,1r7ia],l afnabtirbiacsc te[1ri6a,1l7w],o uanntdibhaectaelriniagl mwoatuenrdia lhse[a1l8in]go rmoathteerriamlsu [l1ti8f]u onrc toiothnearl mmualtteirfiuanlsct[i1o9n]a.l materials [19]. 22.. IInnhheerreennt tAAnntitbibaaccteterriaiall PPrrooppeerrttiieess ooff CCaarrbboonn NNaannoommaatteerriiaallss AA qquuiicckk lliitteerraattuurree ssuurrvveeyy rreevveeaallss tthhaatt vviirrttuuaallllyy aallll ccaarrbboonn nnaannoommaatteerriiaallss aarree aabbllee ttoo sshhooww aannttiibbaacctteerriiaall pprrooppeerrttiieess ((FFiigguurree 11)). .HHowoweveevre, ra,sa swwilli lbleb deedtaeitlaeidle dbebloewlo,w th,eth aenatinbtaicbtaecrtiearl iaacltaivcittiyv iotyf oCfNCMNsM iss isstrsotnrognlyg lydedpeepnednednet notno nsusrufarfcaec echcehmemisitsrtyr,y ,wwhhicihch ddeetetermrmininees sccrritiitcicaal lffaaccttoorrss ssuucchh aass hhyyddrroopphhoobbiicciittyy oorr ooxxiiddaattiioonn ppoowweerr. .TThihsi ssescetciotino ndedaelas lws withit hthteh ienhinehreenret natnatinbtaibctaecrtiearl iaplropproerpteiersti eosf oCfNCMNsM. Hs.eHree,r we,ew iencinlucdlued perporpoepretiretsie tshtahta otroirgiigniantaet efrformom stsatnanddaardrd pprreetrtreeaattmmeenntt mmeetthhooddss,, ee..gg..,, tthhee uussee ooff ooxxyyggeennaattiinngg aacciiddss tthhaatt aarree ssoommeettiimmeess uusseedd ffoorr ppuurriifificcaattiioonn aanndd,, aatt tthhee ssaammee ttiimmee,, aalltteerr tthhee ssuurrffaaccee cchheemmiissttrryy ooff tthhee rreessppeeccttiivvee mmaatteerriiaallss.. IInntteennttiioonnaall ffuunnccttiioonnaalliizzaattiioonn bbyy mmoorree ssoopphhiissttiiccaatteedd mmeetthhooddss,, wwhhiicchh ccaann bbee uusseedd ttoo ttaaiilloorr aannttiibbaacctteerriiaall pprrooppeerrttiieess ooff CCNNMMss,, wwiillll bbee aaddddrreesssseedd iinn tthhee ssuubbsseeqquueenntt sseeccttiioonn.. TThhee ddiissppeerrssiioonn ssttaattee ooff tthhee ccoollllooiiddaall mmaatteerriiaallss iiss aannootthheerr ccrriittiiccaall ffaaccttoorr aass iitt ddiirreeccttllyy iimmppaaccttss ssuurrffaaccee ccoonnttaacctt aanndd bbiiooaavvaaiillaabbiilliittyy ffoorr bbaacctteerriiaa.. TThhee ddiissppeerrssiioonn ssttaattee iiss aallssoo ssttrroonnggllyy ddeeppeennddeenntt oonn pprreettrreeaattmmeenntt,, aassw weelllla sast htehep rperseesnecnecoef oafd additdiviteisveths atthmati gmhitgbhet ibnetr iondturocdeducteods ttaob isltiazbeitlhizeeu tshuea ullysuvaelrlyy hveyrdyr ohpyhdorboipchCoNbiMc CsNinMans ianq aune oauqsudeoisupse drsiisopnerosrioinn boiro ilno gbiicoallomgiceadli ummed. ium. Figure 1. The different allotropes of nanocarbon and their antibacterial action (adapted from [13], with Figure1.Thedifferentallotropesofnanocarbonandtheirantibacterialaction(adaptedfrom[13],with permission from the American Chemical Society 2008). permissionfromtheAmericanChemicalSociety2008). For the described studies, bacterial viability was assessed via the expression of stress-related For the described studies, bacterial viability was assessed via the expression of stress-related genes [20] or via the minimum inhibitory concentration based on colony forming units [21–24]. A genes[20]orviatheminimuminhibitoryconcentrationbasedoncolonyformingunits[21–24].Adirect direct inter-study comparison of the effect of the nanomaterial on bacteria viability is usually not inter-studycomparisonoftheeffectofthenanomaterialonbacteriaviabilityisusuallynotpossible, possible, since biological test systems differed significantly, including nanomaterial dosages and since biological test systems differed significantly, including nanomaterial dosages and exposure exposure times [10]. times[10]. 2.1. Graphene 2.1. Graphene Graphene is a monomolecular layer of carbon that is linked via sp2 bonds. Despite its many Graphene is a monomolecular layer of carbon that is linked via sp2 bonds. Despite its many interesting properties, individual graphene sheets were first prepared as late as 2003 [25], triggering interestingproperties,individualgraphenesheetswerefirstpreparedaslateas2003[25],triggering a vibrant and rapidly developing research field. However, dispersing the extremely hydrophobic a vibrant and rapidly developing research field. However, dispersing the extremely hydrophobic material proved to be a challenge. In the last years, several dispersing methods for graphene were materialprovedtobeachallenge. Inthelastyears,severaldispersingmethodsforgraphenewere developed, e.g., the preparation of aqueous dispersions of graphene oxide sheets from graphite using oxidizing acids [26,27]. The resulting graphene oxide nanosheets exhibit lateral dimensions of up to Materials2016,9,617 3of19 developed, e.g., the preparation of aqueous dispersions of graphene oxide sheets from graphite usingoxidizingacids[26,27]. Theresultinggrapheneoxidenanosheetsexhibitlateraldimensions ofuptoseveralmicrometerswhilejustbeingoneatomiclayerthick. Thesheetscarryamixtureof oxygencontainingsurfacegroups,mainlycarboxylicacid. Dependingonpretreatmentandprocessing route,includingthechoiceofacidsandotheroxidizingagents,grapheneoxidecanshowdiverging toxicological behavior as was shown by Chng and Pumera for adherent lung epithelial cells [28]. Grapheneoxidecanbeconvertedbacktographenebyreducingagents,forexampleusinghydrazine, orevenmetal-reducingbacteriafromthegenusShewanella[29]. However,unlessdispersionconditions arenotcarefullycontrolled,thechemicallyconvertedgraphene(alsocalledreducedgrapheneoxide) is usually no longer stable in aqueous dispersion leading to aggregation and sedimentation [26]. Properdispersionisofcourseacriticalrequirementforsystematicbacteriastudies. Theantibacterialactivityofgrapheneandgrapheneoxideiswidelydocumentedandhasalready been utilized to create antibacterial materials for specific applications [15,16,19,30–33]. Liu et al. comparedtheantibacterialactivityofgraphite, graphiteoxide, grapheneoxide(GO)andreduced grapheneoxide(rGO),showingthatGOandrGOarebothstronglyantibacterial(Figure2)[34].Inthese experiments,GOshowedstrongerantibacterialactivitythanrGO.Conversely,rGOshowedthehighest oxidationcapacitytowardsglutathione,whichisanindicatorforoxidativestress. Thisdiscrepancyhas beenexplainedbythemainantibacterialmechanismofdispersedgrapheneorgrapheneoxidewhich isgovernedbymembranedamagecausedbystrongdispersioninteractionsbetweenphospholipids andgraphenesheets,whichdirectlyrelatestothesuperiordispersionstabilityofthemorehydrophilic GO.Intheirdetailedstudy,Tuetal.,combiningbothbacteriaexperimentsandsimulations,identified twodifferentmechanismsformembranedamagecausedbygrapheneoxide[35]: Thefirstmechanism is based on severe insertion and cutting away of large areas of the cell membrane. The second mechanism is described as a destructive extraction of lipid molecules. Here, phospholipids from the cell membrane spread on partially inserted graphene sheets. An additional mechanical effect wasreportedbyLiuetal.,whosuggestedasize-dependentwrappingofbacteriabygrapheneoxide sheetsthatresultedinhigherantibacterialactivityforlargersheets[36,37]. Usingdissipativeparticle dynamicssimulations,Dallavalleandco-authorsstudiedthevariouspotentialinteractionsofgraphene withlipidbilayersandemphasizedtheresultingadverseeffectsforcellmembranes[38]. However,reactiveoxygenspecieswerealsostronglyincreasedinbacteriaaffectedbygraphene andgrapheneoxide[34,39–41]. IncreaseinROSwasattributedtosuper-oxideanion-independent oxidativestressonbacterialcells[34]. Oxidativestressisparticularlyincreasedwhenbacterialcells areincontactwithconductivereducedgrapheneoxideandgraphite(thelattershowingonlymarginal antibacterialactivity)ascomparedtoinsulatinggrapheneoxideorgraphiteoxide. However,since grapheneoxideexhibitshigherdispersionstability,cellcontactismorelikelycomparedtotheless stablegraphene. Consequently,bacterialdeathviathemembranedamagemechanism,whichmore stronglydependsonwell-dispersednanosheets,dominatestheoverallantibacterialactivity. ThefindingsfordispersedgraphenesheetsareconfirmedbyastudybyAkhavanandGhaderi, who investigated the antibacterial activity of deposited graphene nanowalls, i.e., graphene sheets thatwereperpendicularlydepositedonasubstrate[42]. Inthisrespect,Phametal. foundthatthe antibacterialactivityofsurface-depositedgraphenestronglydependsonthedensityofgrapheneedges onthesurface[43]. InAkhavan’sandGhaderi’swork,contrarytodispersedgraphenenanosheets, rGOshowshigherantibacterialactivitythanGO,sincethedifferencesindispersabilityarenolonger anissueforthesurface-depositednanosheets. Thus,sincerGOcauseshigheroxidativestressthan GO,andthemechanicalinteractionsarecomparable,rGOshowsthestrongereffect. Thesamestudy demonstratesthatgram-positivebacteriaarelesssusceptibletomembranedamagethangram-negative bacterialackingathickprotectivepeptidoglycan-layer[42]. Materials2016,9,617 4of19 Materials 2016, 9, 617 4 of 18 Figure 2. Left: (a) Viability of E.coli after incubation with Gt (graphite), GtO, GO, and rGO dispersions; Figure2.Left:(a)ViabilityofE.coliafterincubationwithGt(graphite),GtO,GO,andrGOdispersions; (b) time-dependent antibacterial activities of GO and rGO with E. coli; and (c) concentration-dependent (b)time-dependentantibacterialactivitiesofGOandrGOwithE.coli;and(c)concentration-dependent antibacterial activities of GO and rGO, E. coli was incubated for 2 h. Right: Oxidation of glutathione antibacterialactivitiesofGOandrGO,E.coliwasincubatedfor2h.Right:Oxidationofglutathione by graphene-based materials: (a) loss of GSH (0.4 mM) after in vitro incubation with Gt, GtO, GO, bygraphene-basedmaterials: (a)lossofGSH(0.4mM)afterinvitroincubationwithGt,GtO,GO, and rGO dispersions for 2 h; (b) time dependent GSH (0.4 mM) oxidation by GO and rGO dispersions andrGOdispersionsfor2h;(b)timedependentGSH(0.4mM)oxidationbyGOandrGOdispersions (40 μg/mL) after incubation from 0 to 4 h; and (c) concentration dependent GSH (0.4 mM) oxidation (40µg/mL)afterincubationfrom0to4h;and(c)concentrationdependentGSH(0.4mM)oxidation by GO and rGO after incubation for 2 h. Obtained from [34], with permission from the American byGOandrGOafterincubationfor2h. Obtainedfrom[34],withpermissionfromtheAmerican Chemical Society 2011. ChemicalSociety2011. The findings for dispersed graphene sheets are confirmed by a study by Akhavan and Ghaderi, who iHnvoewsteivgeart,edno thtea lalnsttiubdacietesroianl aincttievriatyct oiof ndsepoofsgitreadp hgreanpehweniteh nbaancotweraiallss,h i.oew., garnapihnehnibei stohreyetes ftfheactt . wFoerree xpaemrppelen,dinicaunlaortlhye rdsetupdosyi,tAedk hoanv aan saunbdsGtrhaated e[r4i2[]4. 4I]nr etphoisrt rthesapteEc.tc, oPlihaarema belte atol. refoduuncde gtrhaapth tehnee aonxtiidbeacstheereiatls ,afcotrivmitiyn gorf GsOur,fwachei-ldeespigosniitfiedca ngrtaapnhtiebnaec tsetrrioanlgalcyt ivdietpyeoncdcsu rorned thoen ldyeonnsictey thofe ggrraapphheennee esdhgeeetss ohna vteheb eseunrfraecdeu [c4e3d].. IInn tAhkishsatvuadny’s, garnodw tGhhoafdEer.ic’so liwoonrkt,h ecoGnOtracroya tteod dsiuspbsetrrsaetde igsraslpighhentley ninacnroesahseeedtsc, ormGOpa srhedowtos hthigehbear raenStiibOa2ctseuribaslt raactteiv.itTyh tihsarne sGuOlt,s siinncae sthelef -dliimffeitrienngcegsr oinw dthispoefrbsaacbtielirtiya aorne gnroa lpohnegneer aonx iidsesuceo faoter dthseu sbusrtfraactee-sd.eNpootseittehda nt,ainnotshhiesesttsu. Tdhy,uGs,O sinwcaes rGdeOp ocasiutseeds rhaingdhoerm olxyidoantitvhee ssturebssst rtahtaenw GitOho, uantdth tehfeo mrmeachtiaonnicoafls ihnaterpranctainoonws aarlels caosminpathraebalfeo, rreGmOe nshtioownesd thsetu sdtryo.nAgesirm efilfaerctr.e Tsuhelt siasmreep sotruteddy bdyemDoenllsietruaetetsa tlh.awt hgorasmtu-dpioesditCivVe Dbagcrtoerwian agrrea lpehsse nsuesficlemptsibolne gtoo lmdeamndbrcaonpep dearmsuabgset rtahtaens . gHraerme,-ntheegafltaivtley bdaecpteorsiiat eldacgkrianpgh ae ntheicskh opwrostencotiavnet ipbeapcttiedroiagllaycctainv-itlayyoefr i[t4s2o]w. nandevendecreasesthe antibHacotwereiavleer,f fneoctt aolfl csotupdpieers boyn binlotcekrainctgiocnosp opfe grrioapnhfleonwe wtoiwtha brdacttheeriba aschtoerwia a[n4 5in].hibitory effect. For examCpolen, vine rasneloyt,hReur isztuedtyal, .Arekphoarvtatnh aatngdr aGphhaedneer,i b[4o4th] rienpcoorltl othidaat lEf.o cromli aanred adbelep otos irteedduocne sgurbaspthraetnees oexnihdaen scheesebtas,c tfeorrimalignrgo rwGtOh,[ 4w6]h.ilIen stihgensiefiecxapnet raimnteibnatsc,teprrieacl iapcittaivtiiotyn oocfccuorlrleodid oanlGlyO onwciet hthbea cgtrearpiahwenaes sheets have been reduced. In this study, growth of E. coli on the GO coated substrate is slightly increased compared to the bare SiO2 substrate. This results in a self-limiting growth of bacteria on Materials2016,9,617 5of19 observed,whichseeminglyresultedinagrowthareaforbiofilmswithintheprecipitate. However, thesefindingsaremerelyjudgedonthebasisofmeasuringtheopticaldensityofthedispersion(which shouldbestronglydependentontheGOconcentration[47])andmicroscopy. Inthecontextofthis study,itshouldalsobenotedthattestingforbacterialgrowthinhibitionzonesonagarplatesshould onlyproducenegatives(noinhibition)forgraphene,sincetheantibacterialeffectisnotbasedonthe leachingofsolublespeciesliketoxicions. In accordance with the previously described study by Akhavan and Ghaderi [44], a slight enhancementofbacterialgrowthonrandomlydepositedgrapheneoxidewasreported. Theenhanced growthofbacteriaonrough(butnon-perpendicular)GOfilmsisutilizedbyWangetal. toenhance theactivityofanaerobicammoniumoxidationbacteria[48]. Theapparentdiscrepancybetweenbiocompatibilityanddifferingantibacterialactivitieshasbeen explainedbyHuietal.[47]Intheirwork,theauthorsshowedthattheadsorptionofproteinsandother biomoleculesthatarecommonlyfoundinnutrientbrothonbasalplanes(i.e.,aflatsurface)ofgraphene deactivatesitsantibacterialactivity. However,mostantibacterialtestsareperformedinsimplesaline solutionsthatdonotcontainingredientsthatarepronetoadsorbongraphene. Consequently,results oftheantibacterialactivityofgraphene(andothernanomaterials[49])havetobeinterpretedregarding whethernutrientbrothsorsimilarmediacontainingbiomoleculesthatarestronglysurfaceactiveand readilyadsorbon(carbon)nanomaterialswereusedinthebiologicalexperiments.Writtenconcurrently tothisoverview,thesefindingsontheantibacterialactivityhavealsobeenveryrecentlysummarized inseveralextensiveanddetailedreviews[50–52]. 2.2. CarbonNanotubes Carbonnanotubes(CNT)canbedescribedashollowstructureswithanextremelyhighaspect ratio,whichareformedbyrolledgraphenesheets. Dependingontherollingangle,carbonnanotubes canbemetallicorsemi-conductive.Furthermore,nanotubesarecategorizedassingle-wallednanotubes (SWNTs) and multi-walled nanotubes (MWNTs). The latter consist of several single-walled tubes thatarenestedinsideeachother. Carbonnanotubes,especiallySWNTshaveasignificantlyhigher antibacterialeffectthanmostcarbonnanomaterials[12]. TheantibacterialactivityofpurifiedSWNTs wasfirstdemonstratedbyKangetal.[53]. Intheirdetailedfollow-upstudy,Kangetal. showthat purified SWNTs and MWNTs seriously impact bacterial membrane integrity upon direct contact. Accordingly,metabolicactivityandmorphologyarecompromisedaswell[20]. Theyalsoshowthat SWNTsexhibitastrongerantibacterialactivitythanMWNTs,probablycausedbytheirsmallersizethat facilitatesmembraneperturbationandprovidesalargersurfacearea(Figure3). Oxidativestresslikely playsanadditional,albeitminor,roleintheantibacterialmechanism[20].Liuetal.addfurtherdetailto theinvestigationofmechanicaleffectsthatgoverntheantibacterialactivityofCNTs[54]. Inaccordance withtheworkbyChenetal.[55],theyaddweighttothehypothesisthatSWNTcanactas“nano-darts” thatpiercebacterialmembranesbycomparingbacteriawithdifferingmembranerobustnessandruling outothermechanismsbyperformingextensivecontrolexperiments. Furtherstudiesindicatedthat MWNTsshowednomutagenicactivityinbacteriaassayswithE.coliandS.typhimurium[56]. Adistinctfeatureofsp2 carbonnanomaterials,includingnanotubes,istheirspecialelectronic structurecausingsemi-conductivity,or,inthecaseofsomeCNTs,even(pseudo)metallicconductivity. ThisaspectwasinvestigatedbyVecitisetal.[57]whocouldclearlydemonstratethatmetallicnanotubes exhibit a much higher antibacterial activity than semi-conducting CNTs. Consequently, electronic effectscanalsocontributetotheantibacterialactivityofnanotubesandthismightalsoapplyforother carbonnanomaterials. Similartotheeffectdescribedinmoredetailforfullerenes(seebelow),CNTs canbeactivatedviaphotosensitizationcausingtheformationofadditionalROS[58]. Materials2016,9,617 6of19 Materials 2016, 9, 617 6 of 18 Figure 3. Left: Scanning electron microscopy (SEM) images of E.coli cells exposed to CNTs: (a) cells Figure3.Left:Scanningelectronmicroscopy(SEM)imagesofE.colicellsexposedtoCNTs:(a)cells incubated with MWNTs for 60 min; and (b) cells incubated with SWNTs for 60 min. The bars in both incubated with MWNTs for 60 min; and (b) cells incubated with SWNTs for 60 min. The bars in images represent 2 µm. Right: Bacterial cytotoxicity of carbon nanotubes: (a) fluorescence-based bothimagesrepresent2µm.Right:Bacterialcytotoxicityofcarbonnanotubes:(a)fluorescence-based toxicity assay of SWNTs and MWNTs for suspended- and deposited-type experiments with E. coli; toxicityassayofSWNTsandMWNTsforsuspended-anddeposited-typeexperimentswithE.coli; and (b) metabolic activity test of E. coli cells deposited on a CNT-coated filter and a control PVDF and(b)metabolicactivitytestofE.colicellsdepositedonaCNT-coatedfilterandacontrolPVDF membrane. Obtained from [20], with permission from the American Chemical Society 2008. membrane.Obtainedfrom[20],withpermissionfromtheAmericanChemicalSociety2008. A distinct feature of sp2 carbon nanomaterials, including nanotubes, is their special electronic With CNTs, it is especially important to define the dispersion state of the fibrous colloids. structure causing semi-conductivity, or, in the case of some CNTs, even (pseudo) metallic UnfunctionalizedCNTsareamphiphobic,whichmeansthattheyarenearlyinsolubleinmostsolvents. conductivity. This aspect was investigated by Vecitis et al. [57] who could clearly demonstrate that Accordingly, dispersions of CNTs can show a wide range of aggregation states that define the metallic nanotubes exhibit a much higher antibacterial activity than semi-conducting CNTs. accessiblesurfaceareathatmightinteractwithbacteria[59]. SomestudiesdifferentiatebetweenCNTs Consequently, electronic effects can also contribute to the antibacterial activity of nanotubes and this thataredepositedonasubstrateanddispersedCNTs, showingwidelydivergingbacteriatoxicity might also apply for other carbon nanomaterials. Similar to the effect described in more detail for (Figure 3) [57], while other studies completely fail to address these critical aspects. Furthermore, fullerenes (see below), CNTs can be activated via photosensitization causing the formation of toxicologicalassessmentsofcarbonnanotubesexposuresshouldtakeintoconsiderationsignificant additional ROS [58]. presenceofcatalyticallyactiveironembeddedwithinthenanotubes[60],aswellasotherbyproductsof With CNTs, it is especially important to define the dispersion state of the fibrous colloids. productionorprocessing. Possibleinteractionswithtestsystems(e.g.,MTTassay)havebeenreported Unfunctionalized CNTs are amphiphobic, which means that they are nearly insoluble in most aswell[11].Finally,CNTdispersionsseldomcontainunfunctionalizednanotubes.Aswillbediscussed solvents. Accordingly, dispersions of CNTs can show a wide range of aggregation states that define later,surfaceadsorbedmoleculesorcovalentfunctionalgroupssignificantlyalterbacterialreactions. the accessible surface area that might interact with bacteria [59]. Some studies differentiate between CNTs that are deposited on a substrate and dispersed CNTs, showing widely diverging bacteria 2.3. Fullerenes toxicity (Figure 3) [57], while other studies completely fail to address these critical aspects. Furthermore, Fullerenesaresphericalcarbonmolecules. ThemoststudiedfullereneistheBuckminsterfullerene toxicological assessments of carbon nanotubes exposures should take into consideration significant (abbreviated as C ), which consists of exactly 60 carbon atoms that are assembled in a pattern presence of catalyti6c0ally active iron embedded within the nanotubes [60], as well as other byproducts resemblingasoccerball.C isstronglyhydrophobicandisonlymarginallysolubleinwater.However, of production or processi6n0g. Possible interactions with test systems (e.g., MTT assay) have been C canbedispersedinwaterascolloidalaggregates(nano-C ornC )undervariousconditions. re6p0orted as well [11]. Finally, CNT dispersions seldom contain 6u0nfunct6io0nalized nanotubes. As will Consequently,nC shouldnotbeconfusedwithindividualC moleculeswithdiametersof1nm. be discussed later6,0 surface adsorbed molecules or covalent f6u0nctional groups significantly alter Instead,thecolloidalnC suspensionconsistsofcrystallineaggregateswithsizesbetween25and bacterial reactions. 60 500nmthatareexpectedtohaveadifferentsetofpropertiesascomparedtobulkC orindividual 60 2C.360. Fmuollleercenueles s[61]. Althoughfullerenesarereportedasnotbeingverytoxictoeukaryoticcellsin comparisontonanotubesandothercarbonmaterials[5], theyarefoundtobepotentantibacterial Fullerenes are spherical carbon molecules. The most studied fullerene is the agents. Fullerenewatersuspensions(nC )weretestedforantibacterialactivityusingB.subtilisby 60 BLuycoknmeitnaslt.er[f2u1l]leTrhenise st(uabdbyresvhioawteedd atsh aCt6f0r)a, cwtiohnicsho fconnCsistsc oonft aeinxaincgtlys m60a llcearrfbuolnle raetnoemasg gthraetg aatrees 60 assembled in a pattern resembling a soccer ball. C60 is strongly hydrophobic and is only marginally soluble in water. However, C60 can be dispersed in water as colloidal aggregates (nano-C60 or nC60) Materials 2016, 9, 617 7 of 18 under various conditions. Consequently, nC60 should not be confused with individual C60 molecules with diameters of 1 nm. Instead, the colloidal nC60 suspension consists of crystalline aggregates with sizes between 25 and 500 nm that are expected to have a different set of properties as compared to bulk C60 or individual C60 molecules [61]. Although fullerenes are reported as not being very toxic to eukaryotic cells in comparison to nanotubes and other carbon materials [5], they are found to be potent antibacterial agents. Fullerene water suspensions (nC60) were tested for antibacterial activity Materials2016,9,617 7of19 using B. subtilis by Lyon et al. [21] This study showed that fractions of nC60 containing smaller fullerene aggregates showed greater antibacterial activities. Furthermore, different pretreatment and sphroowceesdsinggr eaaltseor aafnfetcibtsa cbtaecrtiearliaa cttoixviictiiteys .[2F1u].r Itth herams boeree,n driefpfeorretnedt pthreattr feualtlmereenntesa naddsporrobc oenss binagctearlisaol amffeemctbsrbaancetse r[i6a1t]o. xHicoiwtye[v2e1r],. iInt hcaosnbtreaesnt rteop gorratepdhethnae tofru lnlearneonteusbaeds,s ofurblleornenbeasc tdeori anlomt esmeebmra tnoe sca[u61se]. Halotewraetvioern,si ntoc obnatcrtaesrtiatol mgreamphbernaneeosr [n2a1n,6o1t,u6b2e].s ,Cfuonllterraernielys dtoo Lnyootnse eetm alt.o [6ca3u],s Feaanltge reatt iaoln. sshtoowbaecdt etrhiaalt mnCe6m0 bisr aanbelse [t2o1 ,a6l1t,e6r2 ]b.aCctoenritarla rmilyemtobrLaynoen pehtaasle. [b6e3h],avFiaonrg [6et4]a. l.Aslthhoowugedh tfhualltenreCn6e0s iscaanb laectto aasl taenr boaxcidteirziianlgm aegmenbtr,a Lneyopnh aest eabl.e rheapvoiortr t[h6a4t] .tAhelt hanotuigbhacftuelrliearle ancetsivciatny aisc tnaost acnauosxeiddi zbiyn gROagSe n[6t,2L].y Ionnsteetaadl,. rfeuplloerrtetnheast tahree aanbtlieb atcot ecraiaulsaec tRivOitSy iinsdneoptecanudseendt boyxiRdOatSiv[6e2 s].trIenssst,e awdh,ifcuhll eirse nthees amreaianb lreetaoscoanu sfoerR tOhSe ianndteibpaecntedreinalt oaxctidivaittiyv eofs tfruesllse,rwenheics h[6is3]t.h eAmccaoirndrineagslyo,n tfhoer tahnetiabnatcitbearciatel raiacltiaocnti voift yfuolflefruelnleerse nise sm[6o3s]t. Alikcceolyr dcianugsleyd, tbhye aunntsipbaeccitfeirci arleaaccttiioonnso wffiuthll emreenmebsriasnme opsrtoltiekienlsy acnadu soetdhebry vuitnaslp mecoilfieccureleasc t[i6o2n]s. Nwoitthe mtheamt tbhreasnee epfrfoetcetisn sonalnyd eomtheerrgve itianl smaolilneec umleesd[i6a2 ]o.rN oottheetrh amtitnhiemseale fbfeucftfsero nsylysteemmesr.g Ief imnosarlei nceommepdleiax onruotrtihteiornm mineidmiaa labrue fufesredsy, sthteem asn.tIifbmacoterreiacol macptilveixtyn uoftr nitCio6n0 dmiseadpipaeaarresu, osewdi,ntgh etoa nintiabcaticvteartiianlga rcetiavcittiyonosf noCf meddisiaap bpieoamrso,loewcuilnegs twoiitnha ctthivea ftuinllgerreenacet isounrsfaocfem aenddia ebniohmanocleedcu alegsgwreigthattihoen fudluleer eton ehsiugrhfearc eioannidc 60 esntrheanngctehd [6a5g]g. rDegisactuiosnsidngu ethtoe henigvhireorniomneicntsatrl einmgpthac[t6 5o]f. CDNisTcu osnsi nthget bhaeseisn voifr obnamcteernitaa sltiumdpieasc,t LoyfoCnN eTt oanl. tahsesebrat stihsaot ffuballcetreerniaess taurde iteosx,iLcy toon beatctael.riaas, sbeurtt tiht aist dfuifllfeicruenlte tsoa friendto ax ircetaolibstaicct teersiat ,sbyustteimti sthdaitf fidcouelst tnoofit naldtear rdeiaslpisetrisciotens tbseyhsatvemiort hanatdd toheuss nthote atoltxeircd riessppeornsisoen [6b1e]h. aviorandthusthetoxicresponse[61]. AA ssttrriikkiinngg ffeeaattuurree ooff ffuulllleerreenneess iiss tthheeiirr ssttrroonngg pphhoottooccaattaallyyttiicc aaccttiivviittyy,, wwhhiicchh iiss ccaauusseedd bbyy tthheeiirr aabbiilliittyy ttoo pprroodduuccee ooxxyyggeenn rraaddiiccaallss uuppoonn UUVV raraddiaiatitoionn (F(Figiguurer e4)4 )[5[85,86,66,66,76]7.] P.hPohtootcoactaaltyaltyict iaccaticvtiitvyi tiys iwsewlle lklnkonwown nfofro rsesmemiciocnodnudcutcintign gnnananopoparatritcilcelse slilkike eTTiOiO2.2 .HHeerere, ,pphhoottoonnss wwiitthh aa ssppeecciiffiicc mmiinniimmuumm eenneerrggyy ((uussuuaallllyy wwiitthhiinn tthhee UUVV rreeggiimmee)) aarree aabbllee ttoo eexxcciittee eelleeccttrroonnss iinnttoo tthhee ccoonndduuccttiinngg bbaanndd ccrreeaattiinngg aa ccoonndduuccttiinngg eelleeccttrroonn aanndd aann eelleeccttrroonn hhoollee.. TThhee nneexxtt sstteepp aafftteerr pphhoottoo--iinndduucceedd cchhaarrggee sseeppaarraattiioonn iiss tthhee ttrraannssffeerr ooff tthhee iinndduucceedd cchhaarrggee ttoo ddoonnoorr oorr aacccceeppttoorr ssuubbssttrraatteess oonn tthhee ppaarrttiiccllee ssuurrffaaccee [[6688]].. IInn tthhee ccaassee ooff ffuulllleerreenneess, ,sisningglelte otxoyxgyegne n(1O(12O) a2n)da nsudpseuropxeirdoex irdaedircaadlsi c(aOls2−)( Oar2e´ c)reaarteedcr aeta ttheed paatrttihcelep saurrtfiacclee s(Fuirgfaucree 4(F) [ig69u]r.e Th4)es[e6 9o]x.ygTehne sraedoicxaylgs eanrer iand tiucranls aabrlee tion ctruearnte afubrlethteor RcrOeaSt aenfdu irnthfleicrt RoxOidSaatinvde sintrfleiscst. oBxriudnaettiv eet satlr.e csos.mBpruarneedt ethtea lp. choomtopaacrtievdittyh eofp fhuoltloeraecntievsi twyiotfhf uthllaetr eonf ewsewlli-tshtuthdaietdo fTwiOe2ll -psaturtdicieleds T[6iO6]2. pDaerptiecnledsin[6g6 o].nD perep-etnredaitnmgeonnt, pnroet- atrlel afutmlleernetn,en wotaatellr fsuullsepreennseiownas tsehroswusepde andsdiointisonshalo bwaecdteraidad toitxioicnitayl buapcotner iUaVto xriacditiyatuiopno, nbUutV trhaodsiea ttihoant, bshuotwtheods eththisa tesfhfeocwt eddidt hsios eaftf emctudcihd sloowaetrm puacrhtilcolew (efrupllaerrteinclee) (cfounllceernentrea)ticoonnsc ethnatrna TtiioOn2s. t hanTiO2. Figure 4. Mechanism of ROS production by fullerenes. Obtained from [69], with permission of the Figure4. MechanismofROSproductionbyfullerenes. Obtainedfrom[69],withpermissionofthe American Chemical Society 2009. AmericanChemicalSociety2009. 2.4. Nanodiamond 2.4. Nanodiamond In contrast to the other carbon nanomaterials, nanodiamond is comprised of sp3 hybridized Incontrasttotheothercarbonnanomaterials,nanodiamondiscomprisedofsp3hybridizedcarbon. carbon. However, since sp3 hybridized carbon would create dangling bonds at the surface, However, since sp3 hybridized carbon would create dangling bonds at the surface, nanodiamond nanodiamond surface chemistry is rich with different oxygen species and residual graphene. The surfacechemistryisrichwithdifferentoxygenspeciesandresidualgraphene. Thesurfacechemistry surface chemistry is further enhanced by the faceted nature of the nanocrystals contributing slightly isfurtherenhancedbythefacetednatureofthenanocrystalscontributingslightlydifferentreactivities atthedifferentcrystalplanes. Theactualcompositionofthesurfacechemistryandtheamountof defectsinthecrystallatticearearesultofthesynthesisroutefornanodiamond,whichiseitherbased ondetonatingTNTandhexagonorsimilarcompoundsinapressurizedcontainer(bottom-up)or bymillinglargerdiamonds(top-down). Detonationsynthesisyieldsnanodiamondswithadiameter of about 5 nm, while milled diamonds are usually larger. The final surface chemistry is defined Materials2016,9,617 8of19 duringpre-treatment,whichistypicallybasedonvariouswashingstepswithoxygenatingacidsthat removeresidualgraphene. Alsoincontrasttotheotherdiscussedcarbonnanomaterials, andasa resultofthehighamountofoxygenspecies(mainlycarboxylgroups)atthesurface,nanodiamond forms very stable aqueous dispersions with high zeta-potentials. However, proper protocols for dispersingindividualnanodiamondshaveonlybeenestablishedaroundtenyearsago,whichexplains thecomparativelysparsepublicationrecordonbiologicalinteractionswithnanodiamond. The current (early) consensus on the biocompatibility of NDs is that they are nontoxic for eukaryotic cells [70–73]. NDs are assumed to have the highest biocompatibility in comparison to allothercarbon-basednanomaterialsincludingcarbonblacks,single-andmulti-wallednanotubes, andfullerenes[74]. StudiesontheimpactofNDsonsmallorganismsorprokaryotesarerare,but results more recently drifted into a slightly adverse direction. Though Mohan et al. reported the nontoxicnatureofNDswithnodetectablestressforthewormCaenorhabditiselegans[75],Linetal. assumedthatNDsmightbemoretoxicformicroorganismsthanforanimal/humancells. Thiswas tentativelyconfirmedbyinvestigatingthetoxicpropertiesof5nmand100nmNDsontheprotozoa ParameciumcaudatumandTetrahymenathermophile. WhilesmallerNDsweremoretoxicthanbigger particles,carboxylatedNDswerelesstoxicthanthenon-carboxylatedNDs. Althoughthemeasured toxicity was relatively low, it was found to be significant [21]. A study on embryonic stem cells was the first hint that NDs might be toxic for eukaryotic cells. Here, carboxylated and oxidized detonationdiamonds(4–5nm)purifiedbyacidtreatmentwerefoundtoinduceDNAdamage[76]. FirststudiesontheimpactofNDsonbacteriaweremicroscopicinvestigations. Forthese,highND concentrations were applied leading to the coverage of bacterial cells [77,78]. Shortly afterwards, Beranovaetal. demonstratedtheinhibitingeffectsofdetonationNDonE.coligrowth[79]. Thesame authorsreportedthatdetonationNDsareantibacterial,whilelargerdiamondnanoparticlesobtained frommillingarenot[80].Thisstudylackedanexplanationfortheantibacterialpropertiesofdetonation ND,butitwassuggestedthatuntreatedNDsaremoreeffectiveinkillingbacteriathantheoxidized form. Inourownstudy[81],whichwaspublishedaroundthesametimeasBeranova’spaper,we found that the antibacterial activity of ND strongly depends on its surface chemistry. While fully carboxylated NDs do not show any antibacterial activity, NDs that are merely partially oxidized showveryhighantibacterialactivitythatissimilarinpotencytosilvernanoparticles. Mostlikely, carboxylanhydride groupsand otherreactive oxygengroupsonthe NDsurfacearethecause for thestrongeffect. Thesefindingsaresomewhatcomplicatedbythefactthatthesurfacechemistryof nanodiamondsisnotverywellcontrolledbymanufacturers[82],whichmightexplainthediffering findingsregardingthebiocompatibilityofND.Additionally,andanalogoustotheotherdescribed CNMs,wefoundthattheantibacterialeffectofNDdisappearsaftercontactwithbiomoleculesfrom nutritionmedia,mostlikelyduetounspecificreactionswithmediabiomolecules[81,83]. Sincenanodiamondscanbesemi-conductiveasaresultofdefectsinthecrystallattice,NDshave thepotentialforphotocatalyticactivity,ascouldbedemonstratedbyJangetal.[84]. However,atthe pointofwriting, anenhancementoftheantibacterialeffectofNDthatiscausedbyphotocatalytic activityhasnotyetbeenreported. 2.5. Diamond-LikeCarbon,DiamondThinFilms Diamond-likecarbon(DLC)isaclassofcarboncoatings. Althoughtheyarenotcolloidsperse, thecomparisonofthesecoatingswithdispersedCNMsisvaluableforunderstandingtheantibacterial action of CNMs in general. DLC coatings have attracted great attention from the biomaterials communitybecausetheyimpartbiocompatibility,chemicalinertness,alowfrictioncoefficient,high hardness,wearandcorrosionresistancetomedicaldevicesurfaces[85,86]. DLCconsistsofamorphous carbon and/or carbon crystallites and possesses a disordered structure with a mixture of sp2 and sp3 hybridizedcarbon[87](Figure5a). Dependingonthesp2/sp3 ratio,thepropertiesofDLCcan varysignificantly. Ultrananocrystallinediamond(UNCD)isverysimilartoDLC,buthasahighersp3 contentanddistinctnanocrystallinedomains. Materials 2016, 9, 617 9 of 18 mixture of sp2 and sp3 hybridized carbon [87] (Figure 5a). Depending on the sp2/sp3 ratio, the Mpratoepriaelrst2i0e1s6 ,o9f, 6D17LC can vary significantly. Ultrananocrystalline diamond (UNCD) is very simi9laorf 1to9 DLC, but has a higher sp3 content and distinct nanocrystalline domains. (A) (B) Figure 5. (A) DLC film; and (B) number of E. coli and B. subtilis colonies on DLC and UNCD films and Figure5.(A)DLCfilm;and(B)numberofE.coliandB.subtiliscoloniesonDLCandUNCDfilmsand the respective antibacterial efficiency. Obtained from [87], with permission of John Wiley & Sons 2013. therespectiveantibacterialefficiency.Obtainedfrom[87],withpermissionofJohnWiley&Sons2013. Both ultrananocrystalline diamond films and DLC exhibit strong antibacterial properties [85,87– Both ultrananocrystalline diamond films and DLC exhibit strong antibacterial 89] (Figure 5b). Nanocrystalline diamond surfaces with larger crystallite sizes than DLC or UNCD properties[85,87–89] (Figure 5b). Nanocrystalline diamond surfaces with larger crystallite also show bactericidal and anti-adhesive properties [90–92], but bacteria toxicity disappears if the sizesthanDLCorUNCDalsoshowbactericidalandanti-adhesiveproperties[90–92],butbacteria crystallites are in the micrometer range [92]. Jelinek et al. compare UNCD and DLC films with varying toxicitydisappearsifthecrystallitesareinthemicrometerrange[92]. Jelineketal. compareUNCD sp3 content showing that all those materials exhibit high antibacterial activity (Figure 4) [87]. Since andDLCfilmswithvaryingsp3 contentshowingthatallthosematerialsexhibithighantibacterial DLC films are extremely smooth, interfacial roughness or sharp features (as in graphene films) are activity(Figure4)[87]. SinceDLCfilmsareextremelysmooth,interfacialroughnessorsharpfeatures not important parameters for the antibacterial properties [88]. Instead, the strong hydrophobicity of (as in graphene films) are not important parameters for the antibacterial properties [88]. Instead, the coatings might lead to alterations of the cell membrane, resulting in bacterial death [87]. thestronghydrophobicityofthecoatingsmightleadtoalterationsofthecellmembrane,resultingin Hydrophobicity and reactivity of the chemically stable coatings also depend on the hydrogen content, bacterialdeath[87]. Hydrophobicityandreactivityofthechemicallystablecoatingsalsodependon with increased hydrogen content resulting in lower antibacterial activity [93]. Various other studies thehydrogencontent,withincreasedhydrogencontentresultinginlowerantibacterialactivity[93]. have investigated the interactions of nanocrystalline diamond surfaces with eukaryotic cells and Variousotherstudieshaveinvestigatedtheinteractionsofnanocrystallinediamondsurfaceswith biological molecules [86,91,94,95]. Here, hydrophilic, oxygen-terminated surfaces were described to eukaryotic cells and biological molecules [86,91,94,95]. Here, hydrophilic, oxygen-terminated be the anchor point of interaction on the otherwise anti-adhesive surfaces. Furthermore, diamond surfaces were described to be the anchor point of interaction on the otherwise anti-adhesive thin films were shown to exhibit semiconducting properties [96]. The electrically active surface surfaces. Furthermore, diamond thin films were shown to exhibit semiconducting properties [96]. showed the capacity to form chemical bonds with biomolecules from the surrounding media. Theelectricallyactivesurfaceshowedthecapacitytoformchemicalbondswithbiomoleculesfromthe Therefore, nanocrystalline diamond surfaces might interact with bacterial cell membranes resulting surroundingmedia. Therefore,nanocrystallinediamondsurfacesmightinteractwithbacterialcell in an effective membrane-distortion mechanism. This could hinder bacterial adhesion and the membranesresultinginaneffectivemembrane-distortionmechanism. Thiscouldhinderbacterial subsequent bacterial colonization on the surface [92]. It should be noted that none of the cited adhesionandthesubsequentbacterialcolonizationonthesurface[92]. Itshouldbenotedthatnoneof antibacterial studies for DLC test for ROS or other oxidative stress that might originate from the redox thecitedantibacterialstudiesforDLCtestforROSorotheroxidativestressthatmightoriginatefrom active properties of the sp2 portions of DLC and nanocrystalline diamond. theredoxactivepropertiesofthesp2portionsofDLCandnanocrystallinediamond. Furthermore, not all studies for DLC films clearly differentiate between antibacterial and anti- Furthermore, not all studies for DLC films clearly differentiate between antibacterial and adhesive properties. In this context, antibacterial would mean inhibition of bacterial growth in the anti-adhesive properties. In this context, antibacterial would mean inhibition of bacterial growth surrounding medium, as is known, for example, for copper or silver surfaces through the leaching of in the surrounding medium, as is known, for example, for copper or silver surfaces through the toxic ions. Anti-adhesive simply means that bacteria cannot adhere to the surface and thus are not leachingoftoxicions. Anti-adhesivesimplymeansthatbacteriacannotadheretothesurfaceand able to form colonies on the material. This can be easily investigated using different methods: for example, thus are not able to form colonies on the material. This can be easily investigated using different the anti-adhesive properties can be tested using stamps that are equipped with the investigated methods: for example, the anti-adhesive properties can be tested using stamps that are equipped surface. Here, only adherent bacteria are transferred to a nutrition medium and quantified [92]. with the investigated surface. Here, only adherent bacteria are transferred to a nutrition medium Conversely, simple incubation tests that monitor the bacteria concentration in a medium containing andquantified[92]. Conversely,simpleincubationteststhatmonitorthebacteriaconcentrationina the investigated material provide information on the antibacterial properties of a (macroscopic) mediumcontainingtheinvestigatedmaterialprovideinformationontheantibacterialpropertiesof material [87]. Finally, a coating could be antibacterial only to bacteria that adsorb at the surface a(macroscopic)material[87]. Finally,acoatingcouldbeantibacterialonlytobacteriathatadsorbat without significantly influencing bacteria in the surrounding medium, thus featuring a bactericidal thesurfacewithoutsignificantlyinfluencingbacteriainthesurroundingmedium,thusfeaturinga b actericidalsurface. ThisisusuallytestedbySEMofbacteriaonthesubstratesurfaceorbyapplyinga Materials2016,9,617 10of19 smalldropletofbacteriamediumontothetestedsurfacefollowedbyincubationoveracertainperiod oftime. Afterwards,survivingbacteriaarequantified[89]. Differentiatingbetweenthesedifferenttest setupsiscriticalforcomparabilityandgeneralvalidityofantibacterialtestswithmacroscopicsurfaces, equallyimportantasconsideringdispersionstatesincolloidaldispersionsofcarbonnanomaterials. Asinthecasefornanodiamond,ithasbeenshownthatDLCcanbephotocatalyticallyactive[97]. Again, at the point of writing, an enhancement of the antibacterial effect of DLC caused by photocatalyticactivityhasnotyetbeenreported. 3. FunctionalizationofCarbonNanomaterialsforTailoringAntibacterialProperties The body of literature dealing with functionalization, enhancement and tailoring of carbon nanomaterials for different applications is overwhelming. However, since the mechanisms of the antibacterialactivityofCNMsarestillapointofdebate,muchfewerpublicationsexistthatdealwith CNMsthataretailoredforenhancedantibacterialproperties. Thefollowingisaselectionofengineered CNMsystemswithimprovedantibacterialactivity. Nexttodirectchemicalfunctionalization,CNMs have mostly been enhanced by combining them with other materials, for example in the form of nanocomposites,byloadingthemwithfunctionalbiomoleculesorbydopingdiamond. 3.1. Graphene Most publications dealing with antibacterial materials based on graphene describe nanocompositesofgraphenewithantibacterialnanoparticlesormolecules. Thisworkisgoverned by the principle that the antibacterial activity of the single component is lower than that of the nanocomposites. Forexample,countlesspapersdescribetheformationofantibacterialcomposites ofgrapheneandsilvernanoparticles,improvingtheantibacterialactivityofsilver[98–105]. Hybrids ofTiO andgraphenehavebeenproducedinordertoenhancethephotocatalyticactivityofTiO , 2 2 whichinturnincreasestheantibacterialactivity. Here,grapheneservesaselectronacceptor,while TiO isthephotocatalyticallyactivecomponent[106]. Workonmetaloxide/graphenecomposites 2 hasbeensummarizedinacomprehensivereviewbyUpadhyayetal.[107]. Thecompositeapproach has also been demonstrated with polymers. For example, Santos et al. combine graphene with poly(N-vinylcarbazole), again resulting in a higher bacteria toxicity than that of the individual components[31]. Furthermore,thebiocompatibilityofthiscompositewasshowntobehigherthan thatofpuregraphene. Asimilarsynergisticincreaseinantibacterialactivitycouldbedemonstrated byloadinggraphenewithantibioticmolecules. Forexample, Wantetal. describeadrugdelivery systemofgrapheneandtheantibioticoxide-benzylpenicillin[108],whileAbdelhamidetal. describe a similar system for gramicidin [109] and Pandey et al. for gentamicin [110]. While chemical functionalizationofgrapheneiswidelyinvestigated,sofar,toourknowledge,ithasnotbeenapplied toenhanceantibacterialapplicationsofgraphene,althoughitcouldbeshown,aswealreadydiscussed, thatdifferentoxidationstatessignificantlyalterbiologicalinteractionsofgraphene[28,44]. 3.2. CarbonNanotubes Analogoustographene,carbonnanotubeshavebeencombinedwithantibacterialnanoparticlesin ordertoenhancebacteriatoxicityofthebarenanoparticles. Thishasbeen,forexample,demonstrated byNiuetal. forsilvernanoparticles[111]andbyAkhavenetal. andWoanetal. forTiO [112,113]. 2 Likewise, workwithpolymercompositeshasbeendonebyJooetal. andJungetal. whografted antibacterialpolymerPoly[2-(dimethylamino)ethylmethacrylate]ontoMWNTs[114,115]. Ariasetal.studiedtheantibacterialeffectof–COOH,–OHand–NH functionalizedSWNTs[116]. 2 Theynotethat–COOHand–OHterminatedSWNTsaremoretoxicthanonesfunctionalizedwith–NH . 2 However,theauthorsdonotcharacterizethedispersionstateorsurfacechargeofthefunctionalized SWNTs. Accordingly,itisunclearwhetherthedifferencesinantibacterialactivityaremerelydueto differentaggregationstatesandthusbiologicalaccessibilityofthenanotubes. Thelattermightexplain theobservationthattheantibacterialactivityisalsoinfluencedbythepresenceofdifferentbuffers
Description: