ebook img

Carbon Monoxide-releasing Antibacterial Molecules Target Respiration and Global Transcriptional ... PDF

9 Pages·2009·1.68 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Carbon Monoxide-releasing Antibacterial Molecules Target Respiration and Global Transcriptional ...

THEJOURNALOFBIOLOGICALCHEMISTRY VOL.284,NO.7,pp.4516–4524,February13,2009 ©2009byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. Carbon Monoxide-releasing Antibacterial Molecules Target Respiration and Global Transcriptional Regulators*□S Receivedforpublication,October27,2008,andinrevisedform,December15,2008Published,JBCPapersinPress,December17,2008,DOI10.1074/jbc.M808210200 KellyS.Davidge‡,GuidoSanguinetti§,ChuHoiYee‡,AlanG.Cox¶,CameronW.McLeod¶,ClaireE.Monk‡, BrianE.Mann(cid:1),RobertoMotterlini**,andRobertK.Poole‡1 Fromthe‡DepartmentofMolecularBiologyandBiotechnology,§DepartmentofComputerScience,¶CentreforAnalytical Sciences,and(cid:1)DepartmentofChemistry,TheUniversityofSheffield,FirthCt.,WesternBank,SheffieldS102TN,UnitedKingdom andthe**DepartmentofDrugDiscoveryandDevelopment,ItalianInstituteofTechnology,Genova16163,Italy Carbonmonoxide,aclassicalrespiratoryinhibitor,alsoexerts icalsystems,particularlyhemes(inoxidases,globins,andCO vasodilatory,anti-inflammatory,andantiapoptoticeffects.CO- sensors, for example) (3), nickel (in CO dehydrogenase), and releasingmoleculeshavetherapeuticvalue,increasingphagocy- complexnickel-,iron-andsulfur-containingclusters(2).The tosisandreducingsepsis-inducedlethality.Hereweidentifyfor impactofCOinphysiologyandmedicinehasprompteddevel- the first time the bacterial targets of Ru(CO) Cl(glycinate) opment of metal carbonyl compounds (carbon monoxide-re- 3 (CORM-3),aruthenium-basedcarbonylthatliberatesCOrap- leasingmolecules;CO-RMs)2todeliverCOinbiologicalenvi- idlyunderphysiologicalconditions.Contrarytotheexpectation ronments. Such molecules are pharmacologically active, thatCOwouldbepreferentiallyinhibitoryatlowoxygenten- elicitingvasodilationinisolatedaortaandmediatinghypoten- sionsoranaerobically,Escherichiacolicultureswerealsosensi- sion in vivo (4). Newer water-soluble CO-RMs have revealed tive to CORM-3 at concentrations equimolar with oxygen. rolesforCOinsuppressionofinflammation,protectionagainst CORM-3,assayedasruthenium,wastakenupbybacteriaand hypoxia-reoxygenationandoxidativestress,andmitigationof rapidly delivered CO intracellularly to terminal oxidases. myocardialinfarctionandotherdisorders(5). Microarray analysis of CORM-3-treated cells revealed exten- ConsideringthepotentbiologicalactivitiesofCOandCO- sively modified gene expression, notably down-regulation of RMs,weknowlittleaboutCOtoxicitytowardmicroorganisms, genes encoding key aerobic respiratory complexes. Genes despite CO being a stable gas that might find application in involvedinmetalmetabolism,homeostasis,ortransportwere antimicrobialtherapies.Indeed,recentstudiesininflammatory also differentially expressed, and free intracellular zinc levels models of disease, such as endotoxin exposure, suggest that were elevated. Probabilistic modeling of transcriptomic data heme oxygenase-1 and its products exert beneficial effects in identified the global transcription regulators ArcA, CRP, Fis, mice(6–8).Althoughbiliverdin(9)generatedbyHOactivity FNR, Fur, BaeR, CpxR, and IHF as targets and potential CO andCOsignificantlysuppresstheinflammatoryresponse(10), sensors. Our discovery that CORM-3 is an effective inhibitor it is now clear that heme oxygenase-1-derived CO plays an andglobalregulatorofgeneexpression,especiallyunderaero- importantroleintheantimicrobialprocesswithoutinhibiting bicconditions,hasimportantimplicationsforadministrationof the inflammatory response (11). HO-deficient mice suffered CO-releasingagentsinsepsisandinflammation. exaggeratedlethalityfrompolymicrobialsepsis,whereasheme oxygenase-1overexpressionimprovedsurvivalfromEnterococ- cus faecalis-induced sepsis (11). Direct evidence for CO Ithasbeenrecognizedforover80yearsthatcarbonmonox- involvementcamefrominjectionoftricarbonyldichlororuthe- ide(CO)combineswithferroushemoglobin,competingwith nium(II)dimer(Ru(CO) Cl ) (CORM-2)intowild-typemice, 3 2 2 oxygen and inhibiting respiration (1). Recently, however, CO whichincreasedphagocytosisandrescuedhemeoxygenase-1- hasbeenshowntohaveunexpectedandprofoundphysiological deficient mice from sepsis-induced lethality. CO-RM-derived effects in higher organisms. Inducible heme oxygenase-1 and COalsoinhibitsbacterialgrowthandviabilityinvitro(12).The constitutivehemeoxygenase-2degradehemetogenerateCO effectivenessofCORM-2andRu(CO) Cl(glycinate)(CORM-3) 3 thathasvasodilatory,antiflammatory,andantiapoptoticeffects wasgreaterinnearanaerobicenvironments,suggestingcom- (2).TheCOisthoughttotargettransitionelementsinbiolog- petitiveinhibitionofoxygenutilization,butnolinkbetweenthe establishedhemoproteinreactivityofCOandtheantibacterial activityofCO-RMshasbeendemonstrated. *ThisworkwassupportedbytheBiotechnologyandBiologicalSciences Exploiting the antimicrobial utility of CO and CO-RMs ResearchCouncil(UK)andaVacationStudentshipfromtheSocietyfor requiresanunderstandingofthegrowthinhibitoryeffectsand GeneralMicrobiology(toR.K.P.andC.H.Y.).Thecostsofpublicationof thisarticleweredefrayedinpartbythepaymentofpagecharges.This elucidation of the stress responses elicited. Here, we demon- articlemustthereforebeherebymarked“advertisement”inaccordance strate that CORM-3 possesses potent antimicrobial activity with18U.S.C.Section1734solelytoindicatethisfact. □S Theon-lineversionofthisarticle(availableathttp://www.jbc.org)contains against Escherichia coli, particularly aerobically, and that in supplementalFigs.S1–S6andTablesS1–S4. 1Towhomcorrespondenceshouldbeaddressed:Dept.ofMolecularBiol- ogy and Biotechnology, University of Sheffield, Sheffield S10 2TN, 2The abbreviations used are: CO-RM, CO-releasing molecule; CORM-2, UnitedKingdom.Tel.:44-114-222-4447;Fax:44-114-222-2800;E-mail: (Ru(CO) Cl ) ;CORM-3,Ru(CO) Cl(glycinate);ICP-AES,inductivelycoupled 3 22 3 [email protected]. plasma-atomicemissionspectrometry. 4516 JOURNALOFBIOLOGICALCHEMISTRY VOLUME284•NUMBER7•FEBRUARY13,2009 This is an Open Access article under the CC BY license. BacterialTargetsofCO-releasingMolecules such cells, the compound is internalized and delivers CO to for 30 min to break the cells. The resultant digest was then terminaloxidases.Moreover,thegrowth-inhibitoryeffectscor- quantitativelytransferredtoacalibrated15-mltubeandmade relatewiththeresultsofatranscriptomicstudyandapplication upto5mlwith1%HNO .SampleswereanalyzedusingaSpec- 3 ofaprobabilisticsystemsmodel,whichrevealforthefirsttime troCirosCCD(SpectroAnalytical)inductivelycoupledplasma- that bacteria mount a global response to CORM-3 involving atomic emission spectrometer (ICP-AES) using background aerobically eight transcription factors. We anticipate that correction.Calibrationcurveswerecreatedforeachelementto understandingthemolecularandbiochemicalmechanismsof betestedusingmultielementstandardsolutionscontaining0.1, CO delivery and toxicity and the cognate bacterial stress 0.2, 1, 5, and 10 mg/liter. The wavelengths for elements responseswillcontributetowardutilizationofCO-RMsinsep- reportedherewere213.856nm(zinc)and240.272nm(ruthe- sisandotherclinicalapplications. nium).A1%nitricacidsolutioninMilliQwaterwasusedasa blank and to dilute cell digests before ICP-AES analysis. Ele- EXPERIMENTALPROCEDURES mentalrecoverieswerecalculatedfromthesesamples. E.coliStrainsandGrowthConditions—Allstrainsusedwere CalculationofDryCellWeightandIntracellularRuthenium E.coliK-12derivatives;thewildtypewasMG1655.Strainscar- Concentrations—Dry weight was determined by filtering rying lacZ transcriptional fusions were ECL933 ((cid:1)(cyo-lac) knownvolumesofculture(usually10,20,and30ml)through bla(cid:2)cyo(cid:2))(13),MC4100(cid:1)RS88(spy-lacZ)(14),andRKP2910 preweighedcellulosenitratefilters,47-mmdiameterandpore ((cid:1)(zntA-lacZ)) (15). The cyo mutant was RKP4544 (cyo::kan; sizeof0.2(cid:2)m(MilliporeCorp.).Thefiltershadpreviouslybeen laboratory collection). Cells were grown in defined medium dried at 105°C for 18–24 h to constant weight. Filters were withglycerol(54mM)assolecarbonsource,asbefore(16).For again dried at 105°C until a constant weight was attained, anaerobic growth, fumarate was added as terminal electron whichwasrecorded.Alternatively,bacteriaweresedimentedin acceptor (50 mM), in addition to LB (5%, v/v) and casamino preweighed,driedcentrifugetubes,whichwerereweighedafter acids(0.1%,w/v),togiveagrowthratecomparablewithaerobic dryingtoconstantweight.Bothmethodsgavesimilarresults. cultures. For aerobic growth, cells were grown in 30 ml of To calculate intracellular ruthenium concentrations, we definedmediumin250-mlbaffledflasksfittedwithsidearms adoptedpublishedvaluesforindividualcelldrymassandvol- for measurements of optical density with a Klett meter (red ume(19).ValuesinTable1aremeansoftwogrowthexperi- filter)duringshakingat200rpmand37°C.Anaerobicgrowth ments,witheachsamplebeingassayedintriplicatebyICP-AES. was in Klett-compatible 8.5-ml screw cap tubes, filled to the CytochromeandRespirationAssays—Differencespectra(CO brimwithdefinedmedium,at37°Cinawaterbath.Forviability plusreducedminusreduced)ofwholecellswererecordedina assays,anaerobiccellsweregrownin175-mlbatchculturesin dual wavelength spectrophotometer (20). Cells were reduced defined medium in stirred (200 rpm) minifermenter vessels with dithionite; after treatment with CORM-3, CO, or (17)modifiedforanoxicsamplingbyspargingwithN .Starter 2 RuCl (DMSO) , spectra were recorded in triplicate (10-mm culturesweregrownindefinedmedium(anaerobic)or10mlof 2 4 pathlength)andaveraged.Formyoglobincompetitionanalysis, LB (aerobic); for the latter, cells were harvested and resus- pended in defined medium before inoculation. Viability was 8 (cid:2)M CORM-3 was added to cells or buffer with dithionite. determinedafterdilutionofsamplesinwaterbyplating10-(cid:2)l Myoglobin(10(cid:2)M)wasaddedat0,10,and20min,andspectra wererecordedusingabaselineofeitherreducedcellsandmyo- dropsonnutrientagar.Proteinconcentrationsweremeasured globinorreducedbuffer.Thecontributionofcytochromeoto usingtheMarkwellassay(18). CO difference spectra was determined by a deconvolution CORM-3andCOTreatments—CORM-3(Hemocorm)was method. From the CO difference spectrum (mean of three preparedasa100mMstocksolutionindistilledwaterfreshlyfor scans)ofcyo::kancellswassubtractedthespectrumofpurified eachexperiment.RuCl (DMSO) waspreparedsimilarly.CO- 2 4 cytochromebd(21),suchthatthedistinctivesignalsinthered saturatedsolutionsweremadebybubblingCOgas(CPgrade) region (575–675 nm) were brought to zero. The resultant from a cylinder (BOC, Guildford, UK) through buffer for 20 residualandthecytochromebdspectrumwerethensubtracted min, resulting in a 1.8 mM stock solution. CORM-3, RuCl (DMSO) , and CO-saturated solution were added fromascanofwild-typecells,leavingonlythecytochromebo(cid:5) 2 4 directlytogrowingculturesinlogphase,determinedbyaKlett spectrum.Samplesweretakenfromculturesafterexposureto ODof(cid:3)40(whengrowninsidearmflasksorscrewcaptubes) CORM-3, and the harvested cells were washed and resus- oranA of(cid:3)0.5(whengrowninminifermentervessels). pendedin50mMTrisbuffer(pH7.5);respirationwasmeasured 600 UptakeofCORM-3byGrowingCells—CORM-3wasadded usingaClarktypepolarographicoxygenelectrode(RankBroth- duringlogarithmicphasetoaerobic(finalconcentration30(cid:2)M) ers)at37°C(22). andanaerobic(finalconcentration100(cid:2)M)cultures.After15 (cid:3)-Galactosidase Assays—Assays were carried out as min, cells were harvested by centrifugation at 5000 (cid:4) g for 5 described before (23) in CHCl - and SDS-permeabilized cells 3 min(4K15;Sigma)inpolypropylenetubes(62.547.004(50ml) by monitoring o-nitrophenyl-(cid:3)-D-galactopyranoside hydroly- or 62.554.001 (15 ml); Sarstedt). Culture supernatants were sis.ActivitiesareexpressedintermsoftheA ofcellsuspen- 600 retained for analysis. Cell pellets were washed three times in sions using the formula of Miller (23). Each suspension was 0.5% HNO (0.5 ml; Aristar nitric acid (69%, v/v)) to remove assayedintriplicate,andresultswereconfirmedinatleasttwo 3 loosely bound elements. Supernatants collected from the independentexperiments.Forassaysof(cid:1)(zntA-lacZ)activity washes were also retained for analysis. Pellets were resus- (15),weincludedwhereshown0.5mMZn(II)toelevatethelow pendedinHNO (0.5ml,69%)andplacedinanultrasonicbath basallevelsofexpression,asdescribedinRef.24. 3 FEBRUARY13,2009•VOLUME284•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 4517 BacterialTargetsofCO-releasingMolecules MicroarrayAnalysis—Cellsweregrownaerobicallyin30ml TABLE1 ofdefinedmediumin250-mlbaffledsidearmflasksoranaer- UptakeofCORM-3byaerobicallyandanaerobicallygrowingE.coli obicallyinfermentervesselsasabove.Atlogphase(KlettOD(cid:3) CORM-3wasaddedtoaerobic(finalconcentration30(cid:2)M)andanaerobic(final 40orA600(cid:3)0.5),CORM-3(30(cid:2)Mforaerobiccells,100(cid:2)Mfor scuocncceesnstivraetiwoans1h0in0g(cid:2)sMas)cduelttauirleeds.uCnedllesrre“EcoxpveerreimdbenytcaelnPtrroifcuegdautiroens.w”Reruethsuebnjieucmtedwtaos anaerobiccells)wasadded,andafter15min,30mlofculture assayedinallfractions,includingtheculturesupernatantandacid-digestedcell wasaddedtochilledphenol(188(cid:2)l)/ethanol(3.6ml)andflash- pellet,byICP-AESandthenusedtocalculateintracellularrutheniumconcentra- tions,usingthevaluesforcelldrymassandvolumedetailedunder“Experimental frozeninliquidnitrogen.RNAwaspreparedusinganRNeasy Procedures.”Thevaluesaremeansoftwobiologicalreplicates(growths)foreach condition,andeachsamplewasassayedintriplicatebyICP-AES. minikit from Qiagen, from four biological repeats of control Ruthenium and CORM-3-exposed cells. Other procedures were as Addedas Culture Pellet Cell Ruitnhecnelilum Recoveryc describedbefore(16,17).Thedatahavebeendepositedinthe CORM-3 supernatant washesa pelletb NCBI Gene Expression Omnibus and are accessible through (cid:2)g mM % GEOSeriesaccessionnumberGSE13048(25). Aerobic 26.4 19.4 0.067 0.40 209 81.0 Modeling Transcription Factor Activities—Transcriptomic Anaerobic 85.9 63.2 0.72 0.28 214 80.7 aOnlygivenwheredeterminationsexceedlimitsofdetection. data were analyzed using a probabilistic model (26), which bRutheniumlevelsincontrolcellswerelessthanthelimitsofdetection,definedas adoptsalog-linearapproximationtothetranscriptionalreac- 3(cid:4)S.D.ofablanksample. cExpressedasthesumofrutheniumassayedintheculturesupernatant,washesand tiontochangesintranscriptionfactoractivity.Changesingene cellpelletasapercentageoftheaddedrutheniumintheformofCORM-3. expressionasaweightedlinearcombinationofchangesintran- scriptionfactoractivityaregivenbyEquation1. (cid:2)M CORM-3 had no effect on viable counts within 2 h (Fig. (cid:2) S2A).Aerobically,30(cid:2)MCORM-3waswithouteffectonviabil- y (cid:4) X b c (cid:5)(cid:6) (Eq.1) itywithin10minbutcauseda10-foldreductionincountsafter n nm nm m n m 2 h. However, 125 (cid:2)M CORM-3 reduced the viable count by 104-foldwithin30min;themarkedincreaseintoxicitybetween Here,ynisthelog-foldchangeforthenthgene,Xnmisabinary 30and125(cid:2)MCORM(Fig.S2B)mayreflectthelevelofaccu- matrix encoding the structure of the regulatory network mulationofCORM-3(seebelow).ThetoxicityofCORM-3,but (obtained from the literature), bnm is the unknown rate con- notRuCl2(DMSO)4,toaerobiccellswasalsoconfirmedbyflu- stantforactivation/repression,cmisthe(log)changeintran- orescentlive/deadstaining(Invitrogen);SYTO9stainsallbac- scriptionfactoractivity,and(cid:6)nisanerrorterm.Boththerate teriagreen,whereaspropidiumiodidepenetratesonlybacteria constants and the transcription factor activity changes are withdamagedmembranesandstainsthemredwhilereducing given zero mean normal priors. Standard statistical inference theamountofSYTO9whenbotharepresent.Aerobically,the techniquesprovideestimatesofthechangesinactivityofreg- additionofCORM-3causeda48%reductioninthepercentage ulators from an analysis of the behavior of their targets. This of live cells (only green) and an increase in the percentage of technique has been applied to reconstructing the regulatory deadandunhealthycells(redorred/green),butanaerobically, response in E.coli to the transition between aerobic and CORM-3 did not reduce the percentage of live cells. microaerobicconditions(27). RuCl (DMSO) was without effect on the proportions of live 2 4 and dead cells (data not shown). Thus, CORM-3 is a potent RESULTS antibacterialmoleculeevenunderaerobicconditions. CORM-3,butNotaSolutionofCOGas,TargetsbothAerobi- Uptake of CORM-3 by Growing Cells—To demonstrate cally and Anaerobically Growing E.coli—To establish condi- uptake of CORM-3 by both aerobic and anaerobic cells, we tionsforCO-RMtoxicity,wefirstdefinedthegrowth-inhibi- assayed for the presence of ruthenium from the tory effects of CORM-3, a proprietary water-soluble CO-RM Ru(CO) Cl(glycinate), since the radiolabeled compound is 3 (28).WefirsttestedCORM-3againstananaerobicculturewith unavailable.AssaysbyICP-AESofcellsfromCORM-3-treated glycerol as carbon source and fumarate as terminal electron cultures, after extensive washing and digestion to solubilize acceptor, expecting the absence of oxygen, with which CO biomass, are presented in Table 1. The levels of ruthenium competes,torevealmaximalCORM-3toxicity.Theadditionof detectedincontrolcellsnottreatedwithCORM-3wereinsig- 100 (cid:2)M CORM-3 slowed growth, but higher concentrations nificantasexpected,sincerutheniumhasnoknownbiological (200(cid:2)M)wererequiredtoinhibitgrowthcompletely(Fig.S1A). function. The majority of CORM-3 added was recovered in However,undertheseaerobicconditions(Fig.S1B),CORM-3 theculturesupernatant,andsmallamountswerefoundinthe atonly30(cid:2)Minhibitedgrowth,and100(cid:2)MCORM-3totally washings after treating cells with dilute HNO . Although the 3 preventedfurthergrowth.Inoculationofcellsintomediacon- absolute amounts of ruthenium recovered in digested cells taining 250 (cid:2)M CORM-3 also prevented growth and killed a werealsosmall,theselevelsequatedwithsignificantintracellu- significantproportionofcellswithin2h(notshown).However, larconcentrations,assumingliteraturevalues(19)forthemass thesameconcentrationsofCOaddedasaCO-saturatedsolu- andvolumesofindividualcells.Foraerobiccells,theestimated tion did not prevent anaerobic or aerobic growth; nor did intracellular ruthenium concentration (209 (cid:2)M) exceeds by RuCl (DMSO) , a compound with similar structure to 7-foldtheconcentrationintheculture,whereasforanaerobic 2 4 CORM-3 but where the carbonyl groups have been replaced cells,theaccumulationis2.1-fold.Recoveriesintheprocedure withDMSO(28)(Fig.S1,AandB,insets). ofover80%testifytothereliabilityoftheanalyticaldata.Ina ThetoxicityofCORM-3wasalsoinvestigatedbymeasuring furtherpairofexperimentsonaerobiccells,therecoverywas cellviabilityunderourgrowthconditions.Anaerobically,100 lower (63%), but again a high level of intracellular uptake of 4518 JOURNALOFBIOLOGICALCHEMISTRY VOLUME284•NUMBER7•FEBRUARY13,2009 BacterialTargetsofCO-releasingMolecules ruthenium (168 (cid:2)M) was demonstrated (results not shown). Thus,CORM-3(andtheCOreleased,1COperCORMmole- cule)istakenuptoachieveconcentrationssignificantlygreater thanthoseintheexternalmedium,andthecapacityofaerobi- callygrowncellstoaccumulateCORM-3appearsgreaterthan foranaerobiccells,giventhehigherexternalCORM-3concen- trations used for the latter. Thus, in terms of intracellular uptakeofrutheniumandtheobservedeffectsoncellviability (Fig.S2),30(cid:2)MCORM-3foraerobiccellsequateswith100(cid:2)M CORMforanaerobiccells.Theuptakeofrutheniumaftertreat- mentofaerobiccellswith125(cid:2)MCORMwasnotinvestigated duetotheextremetoxicityobservedundertheseconditions. COIsDeliveredIntracellularlybyCORM-3—SinceCORM-3 is taken up by growing cells and is an effective inhibitor of growth at concentrations where dissolved CO gas is not, we investigated further CO delivery. The high affinity of ferrous spermwhalemyoglobinforCO(k /k (cid:6)2(cid:4)107M(cid:7)1),and on off the impermeability of bacterial cells to myoglobin (16.7 kDa) allowsdistinctionbetweenextracellularandintracellularCO. WhenCORM-3andmyoglobinatnearlyequimolarconcentra- tionsweremixedintheabsenceofbacteria,therewasimmedi- ate formation of the carbonmonoxy adduct, characterized by the appearance in CO difference spectra (reduced myoglobin plus CO minus reduced myoglobin) (Fig. 1) of a Soret maxi- mum at 426 nm and minimum at 442 nm (29). In contrast, myoglobin addition to bacteria supplemented with CORM-3 detectedreducedlevelsofCO;within10minofCORM-3addi- tion to bacteria, only 28% of the initial CO was found by the myoglobincompetitionassay,andafter20min,only15%was found (Fig. 1). Thus, in support of the ICP-AES assays, CORM-3rapidlyentersbacterialcellsandrendersCOinacces- sibletoexogenousmyoglobin. CORM-3InhibitsBacterialRespirationandReactswithTer- FIGURE1.MyoglobincompetitionassaysrevealCORM-3uptakebybac- minalOxidases—Wenextinvestigatedthenatureoftheintra- teria.CORM-3(8(cid:2)M)andmyoglobin(10(cid:2)M)wereaddedtobufferonly(A)or bufferpluscells(B).CORM-3wasaddedatt(cid:6)0,andmyoglobinwasaddedat cellulartargets.AlthoughCOisaclassicalinhibitorofrespira- 0(continuousline),10(shortdashedline),or20min(longdashedline).Differ- tion,highpartialpressuresofCOrelativetoO (typically9:1) enceabsorbancespectraareshown;thereferencespectrumisFe(II)myoglo- 2 binwithcellsorbuffer,reducedwithdithionite. arerequiredforsignificantcompetitiveinhibition(1).Surpris- ingly, CORM-3 (125 or 250 (cid:2)M) was an effective inhibitor of bacterialcellrespirationwhenaddedtovigorouslyaeratedcul- tration of RuCl (DMSO) did not result in reaction with 2 4 tures at concentrations equimolar with dissolved oxygen (i.e. cytochromedover60min(Fig.S3),butabsorbanceminima (cid:3)200 (cid:2)M) (Fig. 2A). Neither CO added as a gaseous solution of lower magnitude centered at 432 and 562 nm indicated nor RuCl (DMSO) was effective as an inhibitor under these cytochromeoxidation,perhapsduetotheDMSOmoietyof 2 4 conditions.Inhibitionofrespirationby125(cid:2)MCORM-3was RuCl (DMSO) . We conclude that CORM-3, but not 2 4 rapid,50%inhibitionbeingachievedwithin10minofCORM-3 RuCl (DMSO) ,orCOadministeredasagas,isaneffective 2 4 addition(Fig.2B). respiratory inhibitor, an activity that is attributable to CO Inhibition of respiration by CO was accompanied by rapid releaseandreactionwithterminaloxidases. formation of carbonmonoxy adducts of terminal oxidases CO Delivered by CORM-3 Elicits Global Transcriptional withinintactcellswhenCORM-3wasaddedexogenously(Fig. Changes—To identify bacterial genes that are differentially 3).ImmediatelyafterCORM-3additiontoE.colicells,thedis- expressed during exposure to CORM-3, we performed tran- tinctive(cid:7)-bandat648nmoftheCOcompoundofcytochrome scriptomicprofilingofculturesexposedtoCORM-3.Inboth dwasformed,withanaccompanyingchangeintheSoretregion aerobic and anaerobic cultures, the CORM-3 concentrations near448nm.Subsequently,theSoretfeaturesintensified,anda used (30 and 100 (cid:2)M, respectively) were without significant troughformedat560nm,withoutchangeat648nm,suggesting effectonviabilityover15min(Fig.S2),andgrowthrateswere CO reactivity with a cytochrome of lower CO affinity. This slowedtosimilarextents(Fig.S1).Thegeneexpressionprofiles component is probably the oxidase cytochrome bo(cid:5) based on were reproducible and revealed marked differences between the appearance of the Soret band at 422 nm (the CO-ligated theaerobicandanaerobicconsequencesofCORM-3exposure ferrousspecies)andatroughat434nm(thelossoftheferrous (Figs.4and5).MicroarrayanalysisispresentedinfullinTables signal)(29,30).Incontrast,theadditionofasimilarconcen- S1–S4.Underaerobicconditions,63geneswereup-regulated FEBRUARY13,2009•VOLUME284•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 4519 BacterialTargetsofCO-releasingMolecules FIGURE 3. Reaction of terminal oxidases in vivo with CORM-3 (2 mM) addedtointactcellsinadualwavelengthspectrophotometer.COdiffer- encespectra(reducedplusCOminusreduced)weretakenattimes(shownin min)aftertheadditionofCORM-3. FIGURE 2. CORM-3 inhibits bacterial aerobic respiration. In A, cultures weregrowntomidlogphaseandthenexposedfor2hto125or250(cid:2)M CORM-3(blackbars),RuCl (DMSO) (darkhatchedbars),orCOgas-saturated 2 4 offdogenesencodingthreesubunitsofthemembrane-bound solution(lighthatchedbars);controls(noaddition)areshownbywhitebars. Protein concentration of the suspensions was 4.5 mg ml(cid:7)1. The asterisks formatedehydrogenase,andofglpgenesencodingaerobicand denotesignificantdifferencesfromcontrol.*,p(cid:8)0.01;**,p(cid:8)0.002;***,p(cid:8) anaerobicglycerol3-phosphatedehydrogenasesandglycerol/ 0.001.Bshowsthetimecourseofinhibitionby125(cid:2)MCORM-3ofcellrespi- ration(2.6mgproteinml(cid:7)1). glycerol 3-phosphate transporters. There were smaller decreases in expression from genes in the atp operon (previ- bymorethan2-fold(p(cid:8)0.05),and183weredown-regulated ouslyunc)encodingtheF F ATPsynthase. 1 o usingthesamecriteria.Underanaerobicconditions,29genes To confirm the differential regulation of oxidase genes wereup-regulatedbymorethan2-fold(p(cid:8)0.05),and41were revealedbytranscriptomeprofiling,wefirstrecordedabsorb- down-regulatedusingthesamecriteria.Themajorfunctional ancedifferencespectraofintactcellsfromcontrolandCORM- categoriesofgenesaffectedaredescribedbelow. 3-treated aerobic cultures of a cyo mutant, in which the sole CORM-3 Targets Bacterial Respiration—In the defined CO-reactiveoxidaseiscytochromebd.Inreducedminusoxi- mediumusedhere,aerobicgrowthisdependentonrespiratory dizeddifferencespectra,anelevatedlevelofcytochromedin energyconservationwithoxygenasterminalelectronacceptor. theCORM-3-treatedcellswasevidentfromthecharacteristic The effects of CO from CORM-3 on respiration (Fig. 2) and redbandat633nm(Fig.S4A).Interestingly,inCOdifference oxidases(Fig.3)werereflectedindramaticdown-regulationof spectra of this strain (Fig. S4B), cytochrome d was readily many genes encoding components of the aerobic respiratory detectable in control cells but not in cultures treated with chain(Fig.4).Mostprominentwere10–22-foldreductionsin CORM-3,aresultthatweattributetoreactionoftheoxidase transcript levels for the entire cyo operon (cyoABCDE) that withCORM-derivedCOduringgrowth,sothatthebase-line encodes the cytochrome bo(cid:5) heme-copper terminal oxidase spectrumisnotfurtherperturbedbyCO.Thesedataconfirm and the sdh operon (sdhABCD) that encodes the membrane up-regulationofcytochromebdbyCORM-3andrevealreac- succinatedehydrogenase,whichcouplestheKrebscycletothe tion of CORM-derived CO with the oxidase in vivo during respiratoryelectrontransportsystem.Down-regulationofcyo growth.Second,weassayedcytochromebo(cid:5)inwild-typecells geneswasaccompaniedbymodestup-regulationofthecydAB by CO difference spectra using a spectral deconvolution operon that encodes the alternative terminal oxidase, cyto- methodtoeliminatecytochromebd(Fig.S4C).Thedistinctive chrome bd. We also observed down-regulation of the nuo Soretbandsofcytochromeo(415and429nm)weredetectedin operon(11genes)encodingthemajorNADHdehydrogenase, control but not CO-RM-treated cells. Third, we measured 4520 JOURNALOFBIOLOGICALCHEMISTRY VOLUME284•NUMBER7•FEBRUARY13,2009 BacterialTargetsofCO-releasingMolecules REPRESSED INDUCED geneswasdifferentiallyregulated, >20 13-20 8-13 3-8 2-3 0 2-3 3-8 8-13 13-20 >20 buttheseincludedgenesofthecyo and cyd operons, formate dehy- Gene Product/function Fold change with Relevant regulatory proteins drogenase, glycerol 3-phosphate CORM-3 dehydrogenase, and succinate +O2 -O2 atpC F1Fo ATP synthase, ε SU - dehydrogenase. aattppDI FF11FFoo AATTPP ssyynntthhaassee, SβU S U -- CORM-3 Perturbs Metal Bio- cydA Cytochrome bd, SU I ArcA+, FNR+-, FruR+, HNS- chemistry—In biology, CO binds cydB Cytochrome bd SU II ArcA+, FNR+-, FruR+, HNS- cyoA Cytochrome bo' SU II ArcA-, CRP+, FNR-, Fur-, GadE+ preferentially and almost exclu- cyoB Cytochrome bo' SU I ArcA-, CRP+, FNR-, Fur-, GadE+ sively to transition metals, espe- cyoC Cytochrome bo' SU III ArcA-, CRP+, FNR-, Fur-, GadE+ cyoD Cytochrome bo' SU IV ArcA-, CRP+, FNR-, Fur-, GadE+ cially Fe(II) (2) but also cobalt (31, cyoE Protoheme IX farnesyltransferase ArcA-, CRP+, FNR-, Fur-, GadE+ fdoG Formate dehydrogenase-O SU; major - 32).Transcriptomicsrevealedmany fdoH Formate dehydrogenase-O SU; Fe-S - genesknowntobeinvolvedinmetal fdoI Formate dehydrogenase-O SU; cyt b556 - glpA Glycerol-3-P dehydrogenase (anO2) large SU ArcA- metabolism, homeostasis, or trans- glpB sn-Glycerol-3-P dehydrogenase (anO2) anchor SU ArcA- port (Fig. 5). Aerobically, CORM-3 glpD Glycerol-3-P dehydrogenase (aerobic) ArcA-, CRP+, GlpR- nuoA NADH:Q oxidoreductase SU A ArcA-, Fis+, FNR-, IHF-, NarL+ elicited a 26-fold up-regulation of nuoB NADH:Q oxidoreductase SU B ArcA-, Fis+, FNR-, IHF-, NarL+ nuoC NADH:Q oxidoreductase SU C ArcA-, Fis+, FNR-, IHF-, NarL+ spy,encodingaperiplasmicprotein nuoE NADH:Q oxidoreductase SU E ArcA-, Fis+, FNR-, IHF-, NarL+ that is induced by zinc and copper nuoF NADH:Q oxidoreductase SU F ArcA-, Fis+, FNR-, IHF-, NarL+ nuoG NADH:Q oxidoreductase SU G ArcA-, Fis+, FNR-, IHF-, NarL+ via the CpxR and BaeR sensor nuoH NADH:Q oxidoreductase SU H ArcA-, Fis+, FNR-, IHF-, NarL+ nuoI NADH:Q oxidoreductase SU I ArcA-, Fis+, FNR-, IHF-, NarL+ response regulator systems (33). nuoJ NADH:Q oxidoreductase SU J ArcA-, Fis+, FNR-, IHF-, NarL+ Other genes implicated in zinc nuoK NADH:Q oxidoreductase SU K ArcA-, Fis+, FNR-, IHF-, NarL+ nuoL NADH:Q oxidoreductase SU L ArcA-, Fis+, FNR-, IHF-, NarL+ homeostasis and regulation ob- sdhA Succinate dehydrogenase flavoprotein SU ArcA+-, CRP+, FNR-, Fur+ served in this study are yodA (16- sdhB Succinate dehydrogenase iron-sulfur protein ArcA+-, CRP+, FNR-, Fur+ sdhC Succinate dehydrogenase anchor SU ArcA+-, CRP+, FNR-, Fur+ foldup-regulated)andznuA(5-fold sdhD Succinate dehydrogenase hydrophobic SU ArcA+-, CRP+, FNR-, Fur+ ubiC Q biosynthesis; chorismate pyruvate lyase ArcA-. FNR-, IHF-, NarL- up-regulated). The former encodes a periplasmic zinc- and cadmium- FIGURE4.Differentialexpressionofgenesinvolvedinrespiratoryelectrontransferandenergyconser- vation.Themean-foldincreaseordecreaseinindividualgeneexpressionafterexposuretoCORM-3compared bindingprotein(34–36).TheznuA withcontrolslackingthecompoundbothaerobically(30(cid:2)MCORM-3)andanaerobically(100(cid:2)MCORM-3)is gene also encodes a periplasmic indicatedbythecolorscalebar.Genesencodingterminaloxidasesarehighlightedinpalegray;genesencoding dehydrogenasesarehighlightedindarkergray.RelevantregulatoryproteinsweretakenfromtheEcoCycand Zn(II)-bindingprotein(37,38)asso- EchoBasesitesontheWorldWideWeb.SU,subunit. ciated with the high affinity ATP- binding cassette ZnuABC trans- REPRESSED INDUCED >20 13-20 8-13 3-8 2-3 0 2-3 3-8 8-13 13-20 >20 porter (39). Genes encoding ferritin-likeproteinsweredifferen- Gene Product/function Fold change with Relevant regulatory tiallyregulatedbyCORM-3inaero- CORM-3 proteins bicallygrowncells,withftnBbeing +O2 -O2 bfr Bacterioferritin - up-regulated and bfr down-regu- ftnA Ferritin - lated. Several genes in the mem- ftnB Ferritin-like protein CpxR+ msrB Methionine sulfoxide reductase B - branetransportclassarealsoimpli- mdtA Multidrug efflux system SU BaeR+, CpxR+ mdtB Multidrug efflux system SU BaeR+, CpxR+ cated in metal homeostasis (see mdtC Multidrug efflux system SU BaeR+, CpxR+ below). spy Periplasmic protein, Zn-induced BaeR+, CpxR+ yodA Periplasmic Cd-, Zn-binding protein Fur+, SoxS+ In anaerobically grown cells, spy znuA zinc transporter SU Zur- was up-regulated (cid:9)100-fold and is zraP Zn-binding periplasmic protein ZraR+ thus the gene most dramatically FIGURE5.Differentialexpressionofgenesinvolvedinmetalbiochemistry.Themean-foldincreaseor regulated in response to CORM-3 decreaseinindividualgeneexpressionafterexposuretoCORM-3comparedwithcontrolslackingthecom- poundbothaerobically(30(cid:2)MCORM-3)andanaerobically(100(cid:2)MCORM-3)isindicatedbythecolorscalebar. administrationinourstudies.Con- Genesimplicatedinmetabolismoforregulationbyzincionsarehighlightedinpalegray.Relevantregulatory firmation of the microarray data proteinsweretakenfromtheEcoCycandEchoBasesitesontheWorldWideWeb.SU,subunit. were obtained by measuring (cid:3)-ga- lactosidaseactivityinanaerobiccul- (cid:3)-galactosidase activity in a (cid:1)(cyo-lacZ) strain and demon- turesofastrainharboringaspy-lacZtranscriptionalfusion;100 strated down-regulation of cyo-lacZ activity by CORM-3 but (cid:2)MCORM-3addedtoanexponentiallygrowingcultureelic- notbyRuCl (DMSO) (resultsnotshown).Collectively,these ited an increase from 381 to 2960 Miller units over 60 min, 2 4 data support a marked decrease in cyo operon transcription whereas untreated cultures or those treated with 100 (cid:2)M elicitedbyCORM-3andamodestup-regulationofthealterna- RuCl (DMSO) showed no change (Fig. S5). (cid:3)-Galactosidase 2 4 tiveoxidase,cytochromebd(Fig.4). wasnotmeasuredatzerotime,butthebasallevelisverylow There was also evidence of a downshift in respiratory and ((cid:8)36Millerunits),similartothatmeasuredfortheuntreated bioenergeticgeneexpressionanaerobically,alsoshowninFig. controlatlatertimes.TheadditionofCuSO (200mM)elicited 4 4.Undertheseconditions,fumarateisprovidedasanalter- onlya6-foldincreaseinspytranscriptionover60min(Fig.S5), native terminal electron acceptor. A much smaller set of asreportedrecently(33). FEBRUARY13,2009•VOLUME284•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 4521 BacterialTargetsofCO-releasingMolecules Other zinc-regulated genes exhibiting increased transcript levels upon CORM-3 treatment were yodA and znuA (as in aerobiccells)butalsozraP,encodingaperiplasmiczinc-bind- ingprotein.WethereforeconsideredwhetherCORM-3liber- atesfreeintracellularzinc.Zincwasdetectableincelldigestsby ICP-AES at levels of 0.01–0.02 (cid:2)g/mg but was not markedly affecteduponCORM-3treatmentofcells.Sincetheseelemen- talanalysescannotdistinguishbetweenfreeandboundmetal, we exploited the zinc-responsive expression of (cid:1)(zntA-lacZ). Thisfusionissensitivetointracellularzinc,sincezntAencodes a P-type ATPase that exports excess zinc and contributes to zinchomeostasis(40).Weshowedpreviously(24)thatNOelic- itsintracellularzincreleasethatisdetectablebythisfusionand thattheresponseisdependentonzincsensingbyzntR.Inthe absenceofadditionalzincinthemedium,modestorinsignifi- cant changes in (cid:3)-galactosidase activities were measured in FIGURE 6. Probabilistic modeling of the transcriptomic data for the bothaerobicandanaerobicculturestreatedwithCORM-3(Fig. effectsofCORM-3treatment.Predictedactivities(whichmaybepositiveor negative)underaerobic(black)andanaerobic(gray)conditionsareshownfor S6).Therefore,toelevateexpressionof(cid:1)(zntA-lacZ)fromvery ArcA,CRP,Fis,FNR,Fur,BaeR,CpxR,andIHF.CORM-3concentrationswere30 lowbasallevels,zinc(0.5mM)wasaddedtocultures(24);under (cid:2)M(aerobic)and100(cid:2)M(anaerobic). theseconditions,significantincreasesin(cid:1)(zntA-lacZ)expres- sion were recorded (Fig. S6). Thus, zinc release and metal obic conditions seems to be very different. In particular, no homeostasisarecasualtiesofCORM-3treatment. significant change in activity was predicted for CRP, Fis, and DifferentialExpressionofGenesinOtherFunctionalClasses FNRunderanaerobicconditions.Inordertoassessthestatis- onCORM-3Treatment—Amongthemostdramaticallydown- ticalsignificanceoftheseresults,weranthemodelonthesame regulatedgenesareseverallinkedtoacetateandacetylgroup transcriptomic data but reshuffling at random the regulatory metabolism.Chiefamongtheseisacs,whichwasdown-regu- network.Thiswasrepeatedfor100differentrandomreshuffles. lated 18-fold in aerobic cells. This gene encodes acetyl-CoA Strikingly,inthevastmajorityofcases(84%),themodeliden- synthetase;intriguingly,thismetalloenzyme,togetherwithCO tifiedonlyonesignificantlychangingregulatorintheserandom dehydrogenase,playsapivotalroleinCOmetabolism(41).CO networks; in 12 cases, it explained the data with two signifi- dehydrogenase oxidizes CO to CO , providing low potential cantlychangingregulators,andinonlyfourcasesitpredicted 2 electronsforthecelloralternativelyreducesCO toCO.The threeregulatorstosignificantlychange.Basedonthesesimula- 2 latterreaction,whencoupledtoacetyl-CoAsynthetase,gener- tions,wecanestimatethattheprobabilityofobtainingsucha atesacetyl-CoAfromCO forcellcarbonsynthesis.Alsohighly richregulatoryresponsepurelyfromrandomdataislessthan 2 down-regulated were the acetate transporter gene actP (11- 10(cid:7)6. fold)andthreegenesintheaceoperon(anaerobically)encod- DISCUSSION ingisocitratelyase,malatesynthase,andpyruvatedehydrogen- ase.Genesimplicatedindiversemembranetransportprocesses COisaclassicalrespiratorypoisonbutalsoacriticalendog- werestronglyrepresentedintheaerobicgenelists(TablesS1 enous“gasotransmitter”(42,43).Itspotentialimpactinmicro- andS2).Notablearethedown-regulatedgenesencodingtrans- biology is considerable; contrary to expectations that endog- porters for methyl-galactoside (mglABC) and the highly up- enously generated CO might suppress the inflammatory regulated (8–13-fold) mdtABC operon implicated in a multi- response, HO-derived or CO-RM-derived CO limits sepsis drugexportsystem,whichisalsoup-regulatedinresponseto (11), suggesting new intervention approaches in microbial supraoptimal zinc levels (17). The cus operon was highly up- pathogenesisanddisease.AlthoughCOisalsotoxicinvitroto regulated anaerobically, and this too is up-regulated in Gram-positiveand-negativebacteria(12),themodeofaction responsetohighzinclevels(17). has remained obscure. It is remarkable that, in the present StatisticalAnalysisofCO-RMData—Inmodelingthetran- study,CORM-3iseffectiveasanantimicrobialagent(whether scriptomedata,wefocusedonasubsetofeightkeyregulators: assayedbygrowthratesorviabilitycountsorlive/deadstaining) ArcA,CRP,Fis,FNR,Fur,BaeR,CpxR,andIHF.Alistofgenes evenunderaerobicconditionsandatambientoxygenconcen- populating the (overlapping) regulons of these transcription trations higher than CO. Critically, the control molecule factors,togetherwithinformationonthesignoftheregulation RuCl (DMSO) isineffectiveasaninhibitorofgrowthorrespi- 2 4 whereavailable,wasobtainedfromregulonDB(availableonthe rationanddoesnotelicitincreasedspygeneexpression,sug- WorldWideWeb).Theestimatedchangeintranscriptionfac- gestingthattheeffectsobservedherecanbedirectlyattributed toractivity(withassociateduncertainty)fortheseregulatorsis toreleasedCO.Basedon(i)directassaysoftheaccumulationin showninFig.6.Inaerobicconditions,alltranscriptionfactors cellsofrutheniumfromCORM-3bybacteria(Table1),(ii)our investigated exhibit a significant change in activity after a useofmyoglobintodemonstratelossofaccessibleCOfromthe 15-minexposuretoCORM-3.Inallcases,thesignal/noiseratio culturemedia(Fig.1),and(iii)directdemonstrationofthefor- isveryhigh,givingestimatedpvaluesoflessthan10(cid:7)6.Inter- mationofthecarbonmonoxyformsofterminaloxidases(Fig. estingly,thereactionofthetranscriptionalregulatorsinanaer- 3),weproposethatCORM-3effectivelydeliversCOtointra- 4522 JOURNALOFBIOLOGICALCHEMISTRY VOLUME284•NUMBER7•FEBRUARY13,2009 BacterialTargetsofCO-releasingMolecules cellulartargets.Weareunawareofotherreportsoftheaccu- interactionofasyntheticclusterwithCOoccurredonlywhen mulation of a ruthenium-containing CO-RM by bacterial or thehighlyreducedstatewasaccessed,correspondingtoaphys- highercells,butmolybdenumisaccumulatedbybacteriaafter iologicallyunusualreductionlevel(50).Futureworkmighttest administrationoftheCO-RMtetraethylammoniummolybde- FnrinvitrowithCO-RMs.Alesslikelyexplanationisthatfer- numpentacarbonylbromide(ALF062)(12).Itshouldbenoted rousironbinds,forexample,twocysteineandtwolysineresi- thatalthoughonlyoneCOispromptlyreleasedfromCORM-3, dues,andCOthenbindstoiron(51).Evenbleomycinwillcoor- two residual CO moieties remain coordinated to the ruthe- dinate Fe(II), which then coordinates CO, but the binding is nium. Intracellular catabolism may result in release of more weak(52).Weareunawareofanyreportsonthereactivityof thanoneCOperCORM-3. COwiththemetalcentersofFur. Toxicity of CORM-3 is observed even in competition with OthereffectsmayreflectnotCOreactivityinvivobutglobal oxygen,perhapseffectingariseintheCO/O ratioincritical disturbance by the ruthenium content of CORM-3. Previous 2 microenvironments of the cell, membrane, or oxidase active work has shown the effects of dimeric, mixed valence ruthe- site.TheimportanceofrespirationasatargetforCO-RMsis niumcompounds(53)ongrowthofE.coliatmicromolarcon- highlightedbytherecentreportthatCORM-2orCOgasinhib- centrations,butrutheniumnitrosylcomplexesarelessinhibi- its L-type Ca2(cid:2) channels in rat ventricular cardiac myocytes torybecauseoftheirinabilitytoentercells(54).Theeffectsof (44). The inhibition can be attributed to inhibition by CO of CORM-3onintracellularfree(butnottotal)zincpoolscannot electrontransfertocytochromecoxidase,consequentgenera- currentlybeexplained. tionofreactiveoxygenspecies,andredoxmodulationofcritical Theup-regulationofferritin-likeproteinsisofinterest,since cysteineresiduesinthechannel.Althoughtheideathatregula- FtnBinSalmonellaisimplicatedinrepairofoxidativelydam- tory effects might be due to partly reduced oxygen species agedproteins(55),whichcouldarisefrominhibitionbyCOof appears inconsistent with the presented modeling outcome, terminalrespiratorypathwaysandconsequentradicalforma- Soxhasbeenimplicatedinadditionalpreliminarymodeling,3 tion.Indeed,CORM-2increasesoxidantproductionbymito- which requires extension in a time course study. Critically, chondria(56),andNO,byarrestingrespirationofSalmonella, directexperimentalassaysofsuperoxideandperoxidegenera- triggersanadaptiveresponsetooxidativestress(57). tionarerequiredtotestfurtherthishypothesisbutareoutside Also implicated both aerobically and anaerobically by the thescopeofthepresentreport. modelingdataareCpxRandBaeR.TheCpxstressresponseis Transcriptomics and modeling reveal the involvement of activated by misfolded envelope proteins, and, in the present several CO-RM-responsive transcription factors, but the study,cpxP(encodingtheperiplasmicinhibitor)ishighlyup- mechanism for only one of these, ArcAB, can be readily regulatedbothaerobically(24-fold;TableS2)andanaerobically explainedwithcurrentinformation.Thistwo-componentsig- (8-fold;TableS4),suggestingthattheCpxresponseisimpor- naltransductionsystemofE.colimediatesadaptiveresponses tantinmaintainingtheintegrityofenvelopeproteinsintheface to the prevailing respiratory conditions. Oxidized forms of ofCO-relatedinsults.Themostdramaticup-regulationinthis ubiquinoneinthecytoplasmicmembraneactasdirectnegative study is that of spy, which encodes a periplasmic protein of signals that inhibit autophosphorylation of ArcB and conse- obscurefunction,induciblebyexposuretocopperandzincions quentlyofformationofArcA-P(45),whichbindstoDNAtar- (33) and by envelope stress in general (58). The spy gene is gets.Thus,inhibitionofrespirationbyCO,forexample,results regulatedbybothBaeSRandCpxAR(33,58). in ubiquinone reduction; under these conditions, the kinase Inconclusion,wedemonstratetheeffectivenessofaruthe- activity of ArcB is unchecked, the level of ArcA-P rises, and nium-based carbonyl compound as an inhibitor of bacterial repression of respiratory chain gene expression ensues. The growthandrespirationandtherapiduptakeofthiscompound widespreadoccurrenceoftheArcABsystemindiversebacteria, into bacterial cells where heme proteins are targeted. More- including Salmonella, Vibrio, Shigella, Yersinia, and Erwinia over,theeffectsongrowthandviabilityareevidentinaerobic (46)suggeststhatpathogensmightsensehost-derivedCOby cultures, in apparent contradiction to the conventional view suchamechanism. thatCOactsbycompetingwithoxygenforbindingtoferrous TheinvolvementofCRPactivityinaerobiccells,revealedin hemeproteins.UnderstandingthedeliveryofCO-RMsand/or thetranscriptomicsandtheirmathematicalmodeling,maybea COreleasetointracellulartargets,someofwhicharerevealed consequenceofchangingcAMPavailability,inturndrivenby byglobaltranscriptprofiling,willbecriticalforfutureantimi- theeffectsofCOonDOSEc,aheme-regulatedphosphodiester- crobial applications of CO-RMs. Although physiological side ase that is expressed especially in aerobic cells (47). It is well effectsoftherapidreleaseofCO(asmeasuredbyformationof known that CO combines only with ferrous, not ferric, heme carbonmonoxymyoglobin in vitro) might be anticipated, (1),butinteractionofCOwithotherintracellularmetaltargets increasesinthelevelsoftheCOadductofhemoglobininvivo may explain the participation in the cellular responses to aremodest.Thus,intravenousinjectionsofCORM-3inmice CORM-3ofFnrandFur,bothofwhichcontainironcenters. donotleadtosubstantialincreasesincarbonmonoxyhemoglo- Fnrcontains,initsactiveform,a[4Fe-4S]clusterthatisreactive bin(0.5%increase/100(cid:2)MCORM-3)(59).Sincethefirstsymp- withO (48)andNO(49).Althoughhydrogenasesandnitroge- tomsofCOpoisoninginhumans(headache,dilationofcuta- 2 nases possessing [4Fe-4S] clusters are inhibited by CO, rapid neousbloodvessels)aremanifestatcarbonmonoxyhemoglobin concentrations exceeding 15–20%, there is reason to predict thatsideeffectsofCO-RMtherapymaybeminimal.Surpris- 3G.Sanguinetti,unpublishedresults. ingly,thepredominantlyaerobicenvironmentofthevascula- FEBRUARY13,2009•VOLUME284•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 4523 BacterialTargetsofCO-releasingMolecules ture and macrophage may prove to be a suitable milieu for 22,2775–2781 antimicrobialCO-RMactivity. 27. Partridge,J.D.,Sanguinetti,G.,Dibden,D.P.,Roberts,R.E.,Poole,R.K., andGreen,J.(2007)J.Biol.Chem.282,11230–11237 28. Clark,J.E.,Naughton,P.,Shurey,S.,Green,C.J.,Johnson,T.R.,Mann, Acknowledgments—WethankMarkShepherdforcontributionstothe B.E.,Foresti,R.,andMotterlini,R.(2003)Circ.Res.93,e2–e8 spectraldeconvolution,AlisonGrahamforadviceonICP-AESanal- 29. Wood,P.M.(1984)Biochim.Biophys.Acta768,293–317 ysesonbacteria,MarkJohnsonfortechnicalsupport,andTomSil- 30. Poole,R.K.,Waring,A.J.,andChance,B.(1979)Biochem.J.184,379–389 havy for strains. CORM-3 and RuCl (DMSO) were generous gifts 2 4 31. Desmard,M.,Amara,N.,Lanone,S.,Motterlini,R.,andBoczkowski,J. fromHemocorm. (2005)Cell.Mol.Biol.51,403–408 32. Barbe,J.M.,Canard,G.,Brandes,S.,Jerome,F.,Dubois,G.,andGuilard,R. NoteAddedinProof—Indeed,averyrecentstudy(60)demonstrates (2004)DaltonTrans.1208–1214 33. Yamamoto,K.,Ogasawarab,H.,andIshihama,A.(2008)J.Biotechnol. that CORM-3 exerts bactericidal activity against Pseudomonas 133,196–200 aeruginosaandimprovessurvivalinananimalmodelofbacteraemia. 34. Puskarova,A.,Ferianc,P.,Kormanec,J.,Homerova,D.,Farewell,A.,and Nystrom,T.(2002)Microbiology148,3801–3811 REFERENCES 35. Kershaw,C.J.,Brown,N.L.,andHobman,J.L.(2007)Biochem.Biophys. 1. Keilin, D. (1966) The History of Cell Respiration and Cytochrome, pp. Res.Commun.364,66–71 252–268,CambridgeUniversityPress,Cambridge,UK 36. David,G.,Blondeau,K.,Schiltz,M.,Penel,S.,andLewitBentley,A.(2003) 2. Boczkowski,J.,Poderoso,J.J.,andMotterlini,R.(2006)TrendsBiochem. J.Biol.Chem.278,43728–43735 Sci.31,614–621 37. Li,H.,andJogl,G.(2007)J.Mol.Biol.368,1358–1366 3. Roberts,G.P.,Youn,H.,andKerby,R.L.(2004)Microbiol.Mol.Biol.Rev. 38. Yatsunyk,L.A.,Easton,J.A.,Kim,L.R.,Sugarbaker,S.A.,Bennett,B., 68,453–473 Breece,R.M.,Vorontsov,I.I.,Tierney,D.L.,Crowder,M.W.,andRosen- 4. Motterlini,R.,Clark,J.E.,Foresti,R.,Sarathchandra,P.,Mann,B.E.,and zweig,A.C.(2008)J.Biol.Inorg.Chem.13,271–288 Green,C.J.(2002)Circ.Res.90,E17–E24 39. Patzer,S.I.,andHantke,K.(1998)Mol.Microbiol.28,1199–1210 5. Motterlini,R.(2007)Biochem.Soc.Trans.35,1142–1146 40. Beard,S.J.,Hashim,R.,Membrillo-Herna´ndez,J.,Hughes,M.N.,and 6. Ryter,S.W.,Alam,J.,andChoi,A.M.K.(2006)Physiol.Rev.86,583–650 Poole,R.K.(1997)Mol.Microbiol.25,883–891 7. Otterbein,L.E.,Bach,F.H.,Alam,J.,Soares,M.,TaoLu,H.,Wysk,M., 41. Ragsdale,S.W.(2004)Crit.Rev.Biochem.Mol.Biol.39,165–195 Davis,R.J.,Flavell,R.A.,andChoi,A.M.(2000)Nat.Med.6,422–428 42. Marks,G.S.,Brien,J.F.,Nakatsu,K.,andMcLaughlin,B.E.(1991)Trends 8. Foresti,R.,Shurey,C.,Ansari,T.,Sibbons,P.,Mann,B.E.,Johnson,T.R., Pharmacol.Sci.12,185–188 Green,C.J.,andMotterlini,R.(2005)Cell.Mol.Biol.51,409–423 43. Wang,R.(2002)FASEBJ.16,1792–1798 9. Overhaus,M.,Moore,B.A.,Barbato,J.E.,Behrendt,F.F.,Doering,J.G., 44. Scragg,J.L.,Dallas,M.L.,Wilkinson,J.A.,Varadi,G.,andPeers,C.(2008) andBauer,A.J.(2006)Am.J.Physiol.290,G695–G703 J.Biol.Chem.283,24412–24419 10. Sawle,P.,Foresti,R.,Mann,B.E.,Johnson,T.R.,Green,C.J.,andMotter- 45. Georgellis,D.,Kwon,O.,andLin,E.C.C.(2001)Science292,2314–2316 lini,R.(2005)Br.J.Pharmacol.145,800–810 46. Jung,W.S.,Jung,Y.R.,Oh,D.B.,Kang,H.A.,Lee,S.Y.,Chavez-Canales, 11. Chung,S.W.,Liu,X.,Macias,A.A.,Baron,R.M.,andPerrella,M.A. M., Georgellis, D., and Kwon, O. (2008) FEMS Microbiol. Lett. 284, (2008)J.Clin.Invest.118,239–247 109–119 12. Nobre,L.S.,Seixas,J.D.,Romao,C.C.,andSaraiva,L.M.(2007)Antimi- 47. Yoshimura-Suzuki,T.,Sagami,I.,Yokota,N.,Kurokawa,H.,andShimizu, crob.AgentsChemother.51,4303–4307 T.(2005)J.Bacteriol.187,6678–6682 13. Iuchi,S.,Chepuri,V.,Fu,H.A.,Gennis,R.B.,andLin,E.C.C.(1990)J. 48. Crack,J.C.,Green,J.,Cheesman,M.R.,LeBrun,N.E.,andThomson,A.J. Bacteriol.172,6020–6025 (2007)Proc.Natl.Acad.Sci.U.S.A.104,2092–2097 14. Raivio,T.L.,Laird,M.W.,Joly,J.C.,andSilhavy,T.J.(2000)Mol.Micro- 49. Cruz-Ramos,H.,Crack,J.,Wu,G.,Hughes,M.N.,Scott,C.,Thomson, biol.37,1186–1197 A.J.,Green,J.,andPoole,R.K.(2002)EMBOJ.21,3235–3244 15. Binet,M.R.B.,andPoole,R.K.(2000)FEBSLett.473,67–70 50. Alani, F. T., and Pickett, C. J. (1988) J. Chem. Soc. Dalton Trans. 9, 16. Flatley,J.,Barrett,J.,Pullan,S.T.,Hughes,M.N.,Green,J.,andPoole,R.K. 2329–2334 (2005)J.Biol.Chem.280,10065–10072 51. Schubert,M.P.(1933)J.Am.Chem.Soc.55,4563–4570 17. Lee,L.J.,Barrett,J.A.,andPoole,R.K.(2005)J.Bacteriol.187,1124–1134 52. Lomis,T.J.,Elliott,M.G.,Siddiqui,S.,Moyer,M.,Koepsel,R.R.,and 18. Markwell,M.A.K.,Haas,S.M.,Bieber,L.L.,andTolbert,N.E.(1978) Anal.Biochem.87,206–210 Shepherd,R.E.(1989)Inorg.Chem.28,2369–2377 19. Neidhardt,F.C.,Ingraham,J.L.,andSchaechter,M.(1990)Physiologyof 53. Gibson,J.F.,Poole,R.K.,Hughes,M.N.,andRees,J.F.(1984)Arch. theBacterialCell:AMolecularApproach,pp.1–29,SinauerAssociates, Microbiol.139,265–271 Inc.,Sunderland,MA 54. Gibson,J.F.,Poole,R.K.,Hughes,M.N.,andRees,J.F.(1986)Arch. 20. Kalnenieks,U.,Galinina,N.,Bringer-Meyer,S.,andPoole,R.K.(1998) Environ.Contam.Toxicol.15,519–523 FEMSMicrobiol.Lett.168,91–97 55. Velayudhan,J.,Castor,M.,Richardson,A.,Main-Hester,K.L.,andFang, 21. Borisov,V.B.,Sedelnikova,S.E.,Poole,R.K.,andKonstantinov,A.A. F.C.(2007)Mol.Microbiol.63,1495–1507 (2001)J.Biol.Chem.276,22095–22099 56. Taille,C.,El-Benna,J.,Lanone,S.,Boczkowski,J.,andMotterlini,R.(2005) 22. Gilberthorpe, N. J., and Poole, R. K. (2008) J. Biol. Chem. 283, J.Biol.Chem.280,25350–25360 11146–11154 57. Husain,M.,Bourret,T.J.,McCollister,B.D.,Jones-Carson,J.,Laughlin,J., 23. Poole,R.K.,Anjum,M.F.,Membrillo-Herna´ndez,J.,Kim,S.O.,Hughes, andVazquez-Torres,A.(2008)J.Biol.Chem.283,7682–7689 M.N.,andStewart,V.(1996)J.Bacteriol.178,5487–5492 58. Raffa,R.G.,andRaivio,T.L.(2002)Mol.Microbiol.45,1599–1611 24. Binet,M.R.B.,Cruz-Ramos,H.,Laver,J.,Hughes,M.N.,andPoole,R.K. 59. Guo,Y.,Stein,A.B.,Wu,W.J.,Tan,W.,Zhu,X.,Li,Q.H.,Dawn,B., (2002)FEMSMicrobiol.Lett.213,121–126 Motterlini,R.,andBolli,R.(2004)Am.J.Physiol.286,H1649–H1653 25. Edgar,R.,Domrachev,M.,andLash,A.E.(2002)NucleicAcidsRes.30, 60. Desmard,M.,Davidge,K.S.,Bouvet,O.,Morin,D.,Roux,D.,Foresti,R., 207–210 Ricard,J.D.,Denamur,E.,Poole,R.K.,Montravers,P.,Motterlini,R.,and 26. Sanguinetti,G.,Lawrence,N.D.,andRattray,M.(2006)Bioinformatics Boczkowski,J.(December24,2008)FASEBJ.10.1096/fj.08-122804 4524 JOURNALOFBIOLOGICALCHEMISTRY VOLUME284•NUMBER7•FEBRUARY13,2009

Description:
Kelly S. Davidge‡, Guido Sanguinetti§, Chu Hoi Yee‡, Alan G. Cox¶, Cameron W. McLeod¶, opment of metal carbonyl compounds (carbon monoxide-re- Overhaus, M., Moore, B. A., Barbato, J. E., Behrendt, F. F., Doering, J. G.,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.