Springer Series in Materials Science 210 Soo-Jin Park Carbon Fibers Springer Series in Materials Science Volume 210 Series editors Robert Hull, Charlottesville, USA Chennupati Jagadish, Canberra, Australia Richard M. Osgood, New York, USA Jürgen Parisi, Oldenburg, Germany Tae-Yeon Seong, Seoul, Korea, Republic of (South Korea) Shin-ichi Uchida, Tokyo, Japan Zhiming M. Wang, Chengdu, China The Springer Series in Materials Science covers the complete spectrum of materialsphysics,includingfundamentalprinciples,physicalproperties,materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling the structure and properties of all important classes of materials. More information about this series at http://www.springer.com/series/856 Soo-Jin Park Carbon Fibers 123 Soo-JinPark Department of Chemistry InhaUniversity Incheon Korea,Republic of (SouthKorea) ISSN 0933-033X ISSN 2196-2812 (electronic) ISBN 978-94-017-9477-0 ISBN 978-94-017-9478-7 (eBook) DOI 10.1007/978-94-017-9478-7 LibraryofCongressControlNumber:2014949373 SpringerDordrechtHeidelbergNewYorkLondon ©SpringerScience+BusinessMediaDordrecht2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Recently, carbon-based materials have received much attention for their many potential applications. The carbon fibers are very strong, stiff, and lightweight, enabling the carbon materials to deliver improved performance in several appli- cations such as aerospace, sports, automotive, wind energy, oil and gas, infrastructure, defense, and semiconductors. However, the use of carbon fibers in cost-sensitive, high-volume industrial applications is limited because of their rela- tively high costs. However, its production is expected to increase because of its widespreaduseinhigh-volumeindustrialapplications;therefore,themethodsused for manufacturing carbon fibers and carbon fiber-reinforced composites and their structures and characteristics need to be investigated. This book contains eight chapters that discuss the manufacturing methods, surface treatment, composite interfaces, microstructure–property relationships with underlying fundamental physical and mechanical principles, and applications of carbon fibers and their composites. Chapter1providesabriefoverviewofcarbonsandcarbonfibers,includingtheir origin,history,manufacturingtechnologies,performance,andglobalmarkettrends. Chapter 2 introduces the precursors and manufacturing processes of carbon fibers. Chapter 3liststhevariousmatrices forcarbon fibercompositesandfocusesonthe thermosetting resins and thermoplastic resins. Chapter 4 reviews the effect of sur- face treatment on the properties of carbon fiber composites. The characteristics of carbon fibers were measured using XPS, x-ray diffraction (XRD), EA, Raman spectroscopy,scanningtunnelingmicroscopy(SEM),andatomicforcemicroscopy (AFM)are presentedin Chap. 5. The selection of manufacturing processes, matrix type, and molding processes for carbon fiber composites are presented in Chap. 6. v vi Preface Chapter 7 describes the recent use of carbon fibers for applications such as adsorbents, energy storage, molecular sieves, catalysts, carbon fiber-reinforced composites, and carbon/carbon composites. Lastly, Chap. 8 introduces low-cost techniquesforgeneralindustries,thincarbonfibersforextremeindustriesandsmart carbon/carbon composites. The authors are grateful to everyone who has contributed to this book. Soo-Jin Park Contents 1 History and Structure of Carbon Fibers . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Origin and History of Carbon Fibers . . . . . . . . . . . . . . . . . . . . 3 1.3 Definition of Carbon Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Classification of Carbon Fibers . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.1 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.2 Precursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.3 Commercial Availability. . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 Structure of Carbon Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 State of Carbon Fiber Industry. . . . . . . . . . . . . . . . . . . . . . . . . 21 1.6.1 Technology Development Trends . . . . . . . . . . . . . . . . . 21 1.6.2 Utility Development Trends . . . . . . . . . . . . . . . . . . . . . 23 1.6.3 Market Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Precursors and Manufacturing of Carbon Fibers. . . . . . . . . . . . . . 31 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 Acrylic Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.1 PAN Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.2 Polymerization Methods for Production of PAN-Based Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.3 Manufacture of Carbon Fibers from PAN-Based Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.4 Types of Polyacrylonitrile-Based Carbon Fibers . . . . . . . 44 2.3 Cellulosic Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.1 Cellulosic Precursors. . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.2 Rayon Precursor for Production of Cellulose-Based Carbon Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3.3 Manufacture of Carbon Fibers from Cellulosic Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 vii viii Contents 2.4 Pitch Precursors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4.1 Petroleum Pitch Precursors. . . . . . . . . . . . . . . . . . . . . . 54 2.4.2 Coal Tar Pitch Precursors. . . . . . . . . . . . . . . . . . . . . . . 55 2.4.3 Preparation Methods of Pitch-Based Precursors. . . . . . . . 55 2.4.4 Manufacture of Carbon Fibers from Pitch-Based Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Other Forms of Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3 Matrices for Carbon Fiber Composites . . . . . . . . . . . . . . . . . . . . . 67 3.1 Thermosetting Resins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.2 Cyanate Ester Resins. . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.1.3 Epoxy Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.4 Phenolic Resins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.1.5 Polyester Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.1.6 Polyimide Resins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.1.7 Vinyl Ester Resins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2 Thermoplastic Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.2.2 Acrylonitrile Butadiene Styrene Resins. . . . . . . . . . . . . . 86 3.2.3 Polyamide Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.2.4 Polycarbonate Resins. . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.2.5 Polyetheretherketone Resins . . . . . . . . . . . . . . . . . . . . . 89 3.2.6 Polyetherimide Resins . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.2.7 Polyethersulfone Resins. . . . . . . . . . . . . . . . . . . . . . . . 92 3.2.8 Polyethylene Resins. . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.2.9 Polyphenylene Sulfide Resins. . . . . . . . . . . . . . . . . . . . 94 3.2.10 Polypropylene Resins. . . . . . . . . . . . . . . . . . . . . . . . . . 95 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4 Surface Treatment and Sizing of Carbon Fibers . . . . . . . . . . . . . . 101 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Oxidation of Carbon Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2.1 Gaseous Oxidants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2.2 Acid Oxidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2.3 Electrochemical Oxidation . . . . . . . . . . . . . . . . . . . . . . 113 4.2.4 Treatment with Nonoxidative Agents. . . . . . . . . . . . . . . 116 4.3 Plasma Treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Contents ix 4.4 Other Surface Modification Methods . . . . . . . . . . . . . . . . . . . . 119 4.4.1 Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4.2 Fluorination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4.3 Polymer Coating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.4.4 Grafting with Inorganic Materials . . . . . . . . . . . . . . . . . 124 4.5 Sizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5 Testing of Carbon Fibers and Their Composites . . . . . . . . . . . . . . 135 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.2 Evaluation of Carbon Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2.2 Elemental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2.3 X-ray Photoelectron Spectroscopy. . . . . . . . . . . . . . . . . 137 5.2.4 X-ray Diffraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2.5 Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.2.6 Auger Electron Spectroscopy . . . . . . . . . . . . . . . . . . . . 142 5.2.7 Scanning Tunneling Microscopy (STM). . . . . . . . . . . . . 143 5.2.8 Atomic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . 144 5.2.9 Titration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.2.10 Moisture Content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.2.11 Thermal Stability and Oxidative Resistance . . . . . . . . . . 147 5.2.12 Filament Diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.2.13 Electrical Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.2.14 Coefficient of Thermal Expansion. . . . . . . . . . . . . . . . . 153 5.2.15 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.2.16 Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.2.17 Thermal Transition Temperature . . . . . . . . . . . . . . . . . . 155 5.2.18 Tensile Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.3 Evaluation of Composites. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.3.2 Coefficient of Thermal Expansion. . . . . . . . . . . . . . . . . 156 5.3.3 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.3.4 Poisson’s Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.3.5 Rheological Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 159 5.3.6 Tensile Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.3.7 Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.3.8 Flexural Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5.3.9 Uniaxial Compressive Behavior . . . . . . . . . . . . . . . . . . 166 5.3.10 Fatigue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 5.3.11 Creep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.3.12 Impact Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.3.13 Fracture Toughness. . . . . . . . . . . . . . . . . . . . . . . . . . . 171