ebook img

Carbon dynamics in the Amazonian Basin: Integration of eddy covariance and ecophysiological PDF

12 Pages·2013·1.75 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Carbon dynamics in the Amazonian Basin: Integration of eddy covariance and ecophysiological

AgriculturalandForestMeteorology182–183 (2013) 156–167 ContentslistsavailableatScienceDirect Agricultural and Forest Meteorology journal homepage: www.elsevier.com/locate/agrformet Carbon dynamics in the Amazonian Basin: Integration of eddy covariance and ecophysiological data with a land surface model BassilEl-Masri∗,RahulBarman,PrasanthMeiyappan,YangSong,MiaolingLiang1, AtulK.Jain DepartmentofAtmosphericSciences,UniversityofIllinoisatUrbana-Champaign,Urbana,IL,UnitedStates a r t i c l e i n f o a b s t r a c t Articlehistory: Informationcontainedineddycovariancefluxtowerdatahasmultipleusesforthedevelopmentand Receiv ed13August2012 applicationo fgloballa nd surfac emodels,s uch aseval uatio n/va lidation, calibr atio nan dprocesspar am- AReccceepivteedd i2n7 r Mevaisrechd 2fo0r1m3 27 February 2013 eterization for carbo n sto cks and fluxes. I n this st udy, we combine Larg e Scale Bio sphe re–Atmo sphere ExperimentinAmazonia(LBA)projectdatacollectedfromanetworkofeddycovariancefluxtowers deployedacrosstheAmazonianbasintoimprovethecarbonstocksandfluxestimatedbyalandsur- Keywords: facemode l,theI nteg ratedScienc eAsse ssm entMod el( ISAM).W eeval uate the keymodel par am eter sfor ISAM carbonallocationfactors,maintenancerespirationaswellastheautotrophicrespirationusingtheLBA GPP siteme asurement s.Ourm odelresultss howthatth et otalb io mas srangesfrom 0.7kgCm −2yr− 1for the LNSBoPiAPl carbon tphaest uunrcee srittaei ntoty 2r0a.8n gk eg oCf m th−e2syirt−e 1mfoera tshu er efmoree nstt sdiat eta. .TAh les oIS,At hMe reesstuimlt astreesv feoar l eGdPtPh aantda lNl,P bPu taoren ewfeolrl ewstit shiitne havelowernetprimaryproductivity(NPP)togrossprimaryproductivity(GPP)ratio(NPP/GPP=0.4com- paredtothesavannaandthepasturesites(NPP/GPP=0.5).Thisisbecausesavannaandthepasturesites experiencedthelongestdryseasonandplantsgrowinginsuchenvironmentalconditionshavestronger efficiencytostorecarboncomparedtoforests.Theforestevergreensite(Km67)hasahighermeasured NPP/GPPratio(0.5),becauseofhighercarbonaccumulation.Soilcarbonislowestforthepasturesite (Km77)( 7.2kg Cm−2 yr−1)an dh ighest forthef orestsite(Km3 4)( 12.8kgC m −2yr−1 ).Th em odelres ults suggest that all the forest sites are a net sink for atmospheric CO2, while the savanna (PDG) and pasture (FNS) sites are neutral and another pasture site (Km77) is net source for atmospheric CO2. Meanwhile, themodelresultshighlighttheimportanceoftheLBAsitedatatoimprovethemodelperformanceforthe tropicalAmazonregion.Thestudyalsosuggesttheneedforanetworkoflong-termmonitoringplansto measurechangesinthevegetationandsoilcarbonbiomassatthelocalandregionallevels.Suchprograms willbenecessarytomakereliableglobalcarbonemissionsestimates. © 2013 Elsevier B.V. All rights reserved. 1. Introduction have led to an increase in carbon uptake by about 3PgCyr−1 in undisturbedforests(Houghtonetal.,2000;Saleskaetal.,2003).In TheAmazonianforestsplayakeyroleintheglobalcarboncycle, contrast,ecosystemmodelingstudiessuggestthatduetoclimate contributingtoabout30%oftheglobalbiomassandterrestrialpro- variability,theAmazonbasinisanetsourceduringthedrierand ductivity(Beeretal.,2010;Houghtonetal.,2001;MalhiandGrace, warmerElNin˜oandnetsinkduringthewetterandcoolerLaNin˜a 2000; Melillo et al., 1996). The increase in air temperature, and cycle(Asneretal.,2000;Bakeretal.,2008;Foleyetal.,2002;Potter shiftinprecipitationintensityanddurationduetoclimatechange etal.,2001,2009;Tianetal.,1998). has altered carbon fluxes from the Amazonian rainforests (Botta ThelandscapeofAmazonisalsochangingdramaticallydueto etal.,2002).SomestudiessuggestedthatCO2 fertilizationmight humanactivities.Overthepastfewdecades,increaseddemandfor agriculturalproductsduetorisingpopulationledtomassivedefor- estationrates(Asneretal.,2005;Moran,1993;Mortonetal.,2005; SkoleandTucker,1993).Deforestationcanalsoleadtodegrada- ∗Correspondingauthor.Tel.:+12173001842. tionin the ecosyst emserv icessuchaslo wer wat erqu alit y,spread E-mailaddresse s:belma sri@ illi nois.edu(B.El-Masri),[email protected] ofin fec tiou sdiseases ,andinc rease si ntree morta litythro ughan (R.Barman ),meiyapp [email protected](P.Mei yap pan),song [email protected](Y.Song), increaseinfirefrequency(Foleyetal.,2007).Itisexpectedthatthe [email protected](M.Liang),[email protected](A.K.Jain). Pr1inCceutrornen,Nt Ja,dUdnrietsesd: SCt iavtiel s a.nd En vironmental Engi neeri ng, Princeton University, triaotnese oxfp danefdosretosttahtieocno wreilol fctohnetifnouree stto( Linacurreaanscee aest malo.,r2e0 u0r1b)a.nSiuzcah- 0168-1923/$–seefrontmatter© 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.agrformet.2013.03.011 B.El-Masrietal./AgriculturalandForestMeteorology182–183 (2013) 156–167 157 hadledtotheestablishmentofaLargeScaleBiosphere-Atmosphere Notation ExperimentinAmazonia(LBA)(AvissarandNobre,2002)Themain scienceobjectiveoftheLBAprojectistounderstandtheinterac- Vegfrct vegetationcoverfraction tionsbetweentheatmosphereandclimatechangevariability,in Cn carbon:nitrogenratiofortheleaves leaf theAmazonianterrestrialecosystems(Avissaretal.,2002).Such Cnstem carbon:nitrogen ratio for the stem obs ervational d ata from t he LBA sites can sub sta ntia lly imp rove CVncmroaoxts cmaarbxoimn:unmit rcoagrebno xraytlaioti foonr rtahtee raoto 2ts5◦C ethceo suynsdteemrstaannd dtinhge aotfm thoes pchareb roena ne dxcthhaen dgeet eb cettiwoneeonf dthefie cti eernrceisetsriianl kn light extinction coefficient thelandsu rfac emo dels(LSMs) .For inst ance,seve ra lstudiesusin g k baserespirationrateforleaves leaf LSMshavepredictedadeclineintopicalforestwaterandcarbon Kstem base respiration rate for stem fluxes duri ngthedry s eason(B ot taetal. ,2002; Tiane tal. ,1998), Kroot base respiration rate for roots while siteme asur eme ntssug gestth eo ppo site(V onR an dow etal., ω allocationparameter 2004;Saleskaetal.,2003).Withoutconstrainingthemodelsusing ε parametercontrollingallocationtoleaves leaf siteobservations,LSMswouldperhapsunderestimatetheglobal εstem parameter controlling allocation to stem carb onfluxesand failto detec tthecarb ondynamicof the tropi- εroot parameter controlling allocation to roots calfore sts(Sa leska et al., 2003). The refore, theseobs erv atio nsare k allocationparameter crucial for the improvement of LSMs. Since climate change and Y leaflifespan leaf variabilityaffecttheglobalterrestrialbiogeophysicalandbiogeo- rwmax maximum drought leaf loss rate chemical c ycles (Dav idson et al., 201 2; Malhi et al., 2008 ), LSMs rtmax maximum cold leaf loss rate withthei rcomp lexanddet ail edb iogeoc hemic al and biogeo phys- bw parameter for leaf loss (drought) icalp roces sesareim por tanttool stogainbetter unde rstandingof bt parameter for leaf loss (cold) the interaction sb etweenthe Ama zo nbas interr estrialecosyste m T temperaturethresholdforleaflossbecauseofcold cold andenvironmentalchange. stess Inthispaper,wetakeadvantageofobservationaldatafromflux Ystem stem turnover rate tower site stopr ese nta methodolo gy tocalibratean dim prov ean Y finerootturnoverrate froot LSMbyidentifyingandmodifyingthekeymodelcarbonschemesin Ycroot coarse root turnover rate orde rto enhanceth eve getationa ndt hes oilcar bonest imates.W e R maintenancerespirationforleaves leaf usetheIntegratedScienceAssessmentModel(ISAM)toshowthe Rstem maintenance respiration for stem feas ibili ty of our a pproach and its rele vance to othe r L SMs. T his Rroot maintenance respiration for roots paper ext end s up on previo us m od eling appl ica tion o f the I SAM R totalmaintenancerespiration mtotal (Jainetal.,2009;Yangetal.,2009)bydetailingthecarbondynamics R growthrespiration G oftheLBAsitesrepresentingforests,savannas,andpasturesecosys- Rauto autotrophic respiration tem so fth eAm azonianbasin .Notab ly,thever sion ofISAM usedin C leafcarbon leaf thisstudycontainsdetailedbiogeophysicalprocesses(Songetal., Cstem stem carbon 201 3)cou pledinto thebiog eochemicalcom ponento fISAM .T his Croot root carbon extend edversi onof the modelisusedto examineth ei nteran nual Ø leafphonologicalstatusdefinedasthecurrentfrac- variabilityofcarbonfluxes(Grossprimaryproduction(GPP),net tionofmaximumLAI primaryproduction(NPP),autotrophicandheterotrophicrespira- gt temperaturedependentfunction TTv eg vsoeigletteamtiponer taet murpee(r◦aCt)ure (◦C) tinio nthse) aAnmd aabzoonve b aansdin b e(Tloawbl eg r1o)u. nTdh bei oombjaescst iovfe e ihgahst LbBeAen s taucdhyi esviteeds soil bycomparingthemodelestimatedcarbonfluxeswitheightLBA GPP grossprimaryproductivity project flux towers measurements. The study is designed to: (1) NPP netprimaryproductivity provideabriefdescriptionofthecarbondynamicsofISAM,(2)cal- Allofact allocationfactorforleaves leaf ibratethemodelparametersusingsitedata,(3)evaluatethemodel Allo factstem allocation factor for stem perfor man ce by comparing the m ode l cal cul ated carb on fluxes Allo factroot allocation factor for roots with eddy co var iance flux t owe rs meas urements, and (4) evalu- L lightavailabilityfactor atethemodelestimatedsoilandvegetationcarbonwithpublished ws waterstressfactor studies. LAI leafareaindex LAImax biomespecificmaximumLAI Tr root temperature 2. Methodology Biotr biomespecificroottemperature Biotrmin biomespecificminimumroottemperature 2.1. ISAMdescription daylen biomespecificdaylength TheISAMisoneofthe23modelsparticipatingintheLBAproject tostudytheresponsesofAmazonbasinterrestrialecosystemsto rapid changes in land use will lead to a massive carbon release environmental factors. The ISAM is a land surface model that is fromthesoils,andvegetationspeedinguptheclimatechange.The appliedtoexaminetheimpactsofchangingCO intheatmosphere, 2 forestsandwoodlands(e.g.Savannas)alsoexchangelargeamounts fire,andlandusechangeonterrestrialecosystemsfunctions(Jain ofwaterandenergywiththeatmosphere,andthelossoflargeareas etal.,1996;JainandYang,2005;Jainetal.,2006).ISAMhasalso of Amazonian forest due to land-use and land-use change could beenusedtodescribethedynamicoftheterrestrialbiospherecar- impactlocalandregionalclimates(Ramankuttyetal.,2007). bon(Jainetal.,1996;JainandYang,2005)andnitrogen(Jainetal., GiventheimportanceoftheAmazonbasintowardtheregional 2009;Yangetal.,2009).ItwasapartoftheIPCCassessmentsof andglobalbudgetsofcarbon,energy,andwaterfluxes(Andreae futureclimatechangescenarios(Schimeletal.,1996;Prenticeetal., etal.,2002;CostaandFoley,2000;Foleyetal.,2007;Werthand 2001).ThelatestversionoftheISAMhasalsoparticipatedinthe Avissar,2002),aninternationalscientificendeavorheadedbyBrazil ModelingandSynthesisThematicDataCenter(MAST-DC)studyas 158 B.El-Masrietal./AgriculturalandForestMeteorology182–183 (2013) 156–167 partoftheNorthAmericanCarbonProgram(NACP)toquantifyand Reference Araújoetal.(2002) Hutyraetal.(2007) DaRochaetal.(2004), (2004)etal.Miller VonRandowetal. (2004)Bormaetal.(2009) DaRochaetal.(2002) Andreaeetal.(2002), VonRandowetal. (2004)Sakaietal.(2004) erucsseiiatntn sreadkobTsle sl.oh ,utr, n eo2sat ,t i0nr loaae1ndnnng2i ditida;nro noRvsncpgdeioaceanlmah/ntttci ao,pao rmrloedni ennaustsineoeln tnbrndiegpyt ne yt losetet, y afma atnltle nps.ht,mchd oe2ae r p0lIwaseSo1ilszA ar2 dai(tM;nHeil sSgrr utc u erNnhflissbtAauoezuedlxCiuftne Peiti gso nird oen eaantrsttth se a oait0 sral faa .. n5,scln .2td◦a,gu 02 ×rmi db1n0 y0o21og .n)d25sf. i;er◦sm oKlossmeuu,p eflra rahncotteaaiemaslnsfl, hourlytoyearly.TheISAMhastwomaincomponents:(1)abiogeo- 05 04 03 02 06 03 01 chemic al module wh ereso ilc arbo n,litt erproduction ,re sp iration, 000 0 000 ars 02–202–201–2 00–2 04–202–299–2 01 pesrtoidmuactteivdit(yFi, gc.a1r)b(oJnai, nanetda slt.,o1c9k9s 6f;oJra diniffaenrdenYta vnegg,e2t0a0t5io;nY apnogolest aarle., Ye 202020 20 202019 20 2009)and (2)a bi ogeop h ysic almod ule repr esent ingsun lit-sh ad ed photosynthesisschemes(Daietal.,2004),energy,andsoil/snow hydrology(Songetal.,2013;Olesonetal.,2008;Lawrenceetal., mate yseason:July–September yseason:July–November yseason:July–November yseason:June–August yseason:May–September yseason:April–September yseason:May–September yseason:July–December 2maaoctiynnf0v acdd1tiTrlth 1eyyvhSe) oaOme.( tFnl IMIwanoiSdgtd Ae i.aspl unMe1idozltc)deayo oi( its lttnYeis hioc daoia(gonnanFthm rg ,ia etgy Isp esS. mf totwoA1i saamr)Meee.nl l.das, Ela b tt 2gaaosei0ceso,fs Ch 0d gsnn3 e9 eigoiv t;oatrr rercJni oiadnuhfidgi nenvc ecCmma enee4tgl tia illges o inaritmtnsrlaaa. y,,gsit o td is2eahocee0dtcnasni0 us,o li p9Ca ptnaorn)3is .ieodd fi adoly cnsc nn abdoa tapyn vCimo led4aan itn tecc, y itr llgp neoephaeiparttssclor ta hlo(d inpoitguntdnerecgisne--r,, Cli DrDrDr Dr DrDrDr Dr C3andC4pastures,shrubland,tundra,urban),andbaregroundas describedinMeiyappanandJain(2012). The ISAM utilizes Farquhar et al. (1980) C3 photosynthesis model as implemented by Collatz et al. (1991), and the Collatz m) et al. (1992) C4 photosynthesis model. The stomatal conductance y( modelisavariantoftheBall-Berrystomatalconductancemodel Canopheight 35 55 35 35 16 10 0.5 0.6 c(Boanldl uetc taal n., c 1e9a8n7d; Cpo hlola ttozs ye tn athl.e, 1si9s9f1o)r . sTuhne aISnAdMs h caodmedpuleteavs esst owmhaetrael leafareaindex(LAI)isusedtoscalethosevariablesfromtheleafto thecanopylevel.GPPismodifiedthroughthefeedbackofnitrogen W) availability on carbon assimilation, and is obtained by dynami- ◦on( 0.21 4.96 4.97 1.93 0.16 2.36 2.36 4.89 1ca9l9ly2 )c.omparing plant nitrogen demand and supply (McGuire et al., L 655 6 566 5 GPPisallocatedtoleavesandtheleafNPP(GPPminusleafmain- tenanceandgrowthrespirations)isallocatedtostem,androots. Maintenancerespirationiscalculatedseparatelyforleaves,stem, ◦Lat(S) 2.61 2.863.02 10.08 9.82 21.62 10.76 3.02 aatnudr ero doet p(ceonadresnet a Qnd10 fifnaec)t obra s(eAdro orna ,S 2it0c0h3 e)t. aTlh. (e2 g0r0o3w) athn dr eas tpeimraptieorn- foreachpoolisassumedtobeafixedpercentage(25%)ofthediffer- encebetweenGPPandmaintenancerespiration(Sitchetal.,2003). Equations describing carbon allocation, maintenance respiration, est estest est and phenology key processes that determine NPP, litter produc- dy. Biometype Evergreenbroadleaffor forEvergreenbroadleaf Evergreenbroadleaffor Evergreenbroadleaffor Semideciduousforest Woodysavanna Pasture Pasture thtcBinhieoaoceovenlTsueur,eh s adn( e flu2ebo upt 0itoao xh0y tme5eewrsno)te apoibsant hlene(o eitWrdgchn ysreW hdt e iirIosmtShepecAsip uitserMelm aet f t maeaaeictolrn e.ten,ato n e1,lgr t.ad 9 ie(nvt,9d1 haed7 9anni )an9td bi a7 tnthonh)r ,eviAde gnew pgIt cSapheietnAereh tsdnM h u dsbse soeiie esxemnl qoboAeeuwafs. ascmm egetidrnoiono cdnouieimsnfin d fcduAoea mrrbsto ciih oorrLaenmiAb rsaIbia nnttasdoogs- stu indicate the start of the leaf fall period. The phenology for decid- nthis uthoeusst faorrteosft tehceogsyrostweimngs hseaass foonu,rn sotramgeasl:g lreoawf othn,sleeta wffhailcl,ha ninddaicdaoters- usedi BAN) Tmhaen te,v werh girc ehe inn dfoicraetsetss na ore leaalfw par yesseonncen (oTrambalel Ag 2ro owf tthh.e Ta hpepeh ne drbixa)-. Table1 oftheeddyfluxtowersitesList Sitename Manaus(Km34) (Km67)Santarém Santarém(Km83) Jarú(RJA)Reserva JavaesRiver-BananalIsland( ReservaPe-de-Gigante(PDG) FazendaNossaSenhora(FNS) (Km77)Santarém tnucawedhennyooheodvnutAi ui epacsprls hnmholfh oo tbenayiecrincmrsaoreeoi tvmstoe ilthteoonlhseoegng.tes geayd U stihl to c atanocaoratmlo vmili aoa kneecnanne do tano dihndtsttt hrdi e ht sfoeaihcretnteotiaerid somg p iifi un nepsh ro setaosttu rruhntanims rgtredo henfg ilto toreemh.pergi r eTegereieysohch dtpta de tm sh (wl uA, te vsarchhrnteiaeoeanegonsrgrntelsabaeol ti ciaisatgatneic tty ndor eeil dotnuesroat na ruBfiafiv nrasnogopel geeelemsosr nc atoa, o o hvn sol2ssfie dn0lr y tiooe0rhpsSnn t5ergOs gemo) trdC m.aadoee.gswusnc Tet cittd hhdeohaoees-fl, B.El-Masrietal./AgriculturalandForestMeteorology182–183 (2013) 156–167 159 Fig.1. SchematicdiagramofallreservoirsandflowsofcarbonandnitrogenintheISAM. allocationofcarbontothesevenvegetationpoolsisdependenton are available until that month. The Javaes River–Bananal Island light,waterandphenologystagesofthecanopyandfollowsthefor- (BAN)siteisasemi-deciduoussiteanditresemblesthefeatures mulationsofFriedlingsteinetal.(1999)andAroraandBoer(2005) ofevergreenforests.Hence,wetreatthissiteastropicalevergreen (seeAppendixA),whereduringleafonsetcarbonisallocatedonly sitesimilartoothermodelingstudies(e.g.Poulteretal.,2010).The totheleaves.Duringnormalleafgrowth,carbonisallocatedtothe readersarereferredtodeGonc¸alvesetal.(2012)fordetailsabout sevenvegetationcarbonpoolsanditceasestotheleavesduring thesiteusedinthisstudy. leaf fall. The allocation of carbon to the vegetation pools is con- Toimprovethemodelestimatedcarbonpoolsizesandfluxes strainedduetoadverseeffectsoflimitedavailabilityoflight,water, fortropicalforestsites,thecarbonallocationfactorsandthemain- andnitrogen.Accordingly,theallocationinrootscanhelpaddress tenancerespirationrates(valuesareprovidedintheappendix)are thelimitedavailabilityofwaterandnitrogen,whileinvestmentsin calibrated based on LBA site data. Following Malhi et al. (2011), stemstendtoincreaseaccesstolight. theallocationfactorsareadjustedtohave35%ofthecarbonallo- Thecarbonallocationprocessisconstrainedbythreeconditions. catedeachtothestemandleafpoolsand30%totherootspools. First, for the cold deciduous trees all carbon is allocated only to Thecalibratedallocationfactorsaredynamicandtheirvaluescan theleavesduringleafonset.Asecondconditionisthatsufficient changewithtimedependingonwaterandlightstressfactors(Arora woodybiomassmustbeavailabletosupportthemassofleaves.A andBoer,2005).Studiessuggestthatmaintenancerespirationrates thirdconditionistoassurethattheplantstructureispreserved, aredifferentfordifferentcarbonpools(Amthor,1984,2000;Ryan meaningsufficientrootandstembiomassmustbebuiltpriorto etal.,1995).Therefore,differentmaintenancerespirationratesfor supporttheleafbiomass. leaf, stem, and, root pools for each biome are introduced in the The model estimates litter fall from leaves, stem and roots, maintenancerespirationequations(TableS2). whichisafunctionoftemperature,waterstress,andturnoverrates. TheISAMparametersforcarbonallocation,maintenancerespi- Theturnovertimescaleforleavesisbiomedependentandvaries ration,andturnoverratesareparameterizedusingthemeasured from0.75yearforsavannato2yearsforevergreenforest(Foley data from tropical biome site Km34. We optimize the model by etal.,1996).Theturnoverratesforthestemvaryfrom2.5yearsfor usingtrialanderrormethodtofindparametersthatcanachieve savannato50yearsforevergreenforest(Malhietal.,2004)and, theminimumabsolutedifferencebetweentheobservedandthe between1and8yearsfortheroots. estimatedvariables.Theoptimizationisdoneforeachbiometype becausetheparametersarebiomespecific.Inaddition,measured 2.2. Modelcalibrationandspin-up parametersthatareavailablefromtheliteratureareuseddirectly withoutopt imiz atio n.Weeva luate theo ptimized mo delus ingfour Inthisstudy,weusedatafromeightLBAfluxtowersites:cov- other tropical sites (Km67, Km83, RJA, and BAN). Similarly, we ering four tropic al e ver green fore st site s, on e tr opical decid uous calibr atethea bove mention edmod elpa rame tersfo rtheFNSp as- forest ,one savanna ,onepastu re,and onep astu re/agric ulturalsite turesite and tested themodel usingt heotherpa stur esi teKm 77. (Table 1).T heSanta rém Km77w aso rigin allyapasturesitef rom Also , we run and e valu ate the mod el p erform ance fo r a woody Septem be r200 0untilNo vembe r200 1,butwa sc onverte dto arice savan nas iteP DG. Wecould not validat eitwithother LBA s avanna siteinFebr uary2 002( Sakaietal. ,2004 ).W esim ulatethis sit e asa sites, du e to the lack of da ta. H owever , w e co mpar e ou r model past ur e(January 2001 –Nove m ber 2001), disc ontinuin g.th emo de l result swi tho the rpub lish edm easuredst udie s(Gracee tal., 2006). calculat ionsafter November2001 becaus ethefluxmea sure ments Finally, wea lsoev aluateand compare ourmod elresu lts wi thsite 160 B.El-Masrietal./AgriculturalandForestMeteorology182–183 (2013) 156–167 Table2 Summ aryofISAMestimatedabovegroundandbelowgroundcarbon(KgCm−2yr−1)reportedasthemeanforthestudysitesfluxmeasurementperiod. Km34 Km67 Km83 RJA BAN PDG FNS Km77 Cleaf MISAeaMsu rement –0.7 –0.6 –0.7 –0.6 –0.6 00..42 –0.4f –0.2 –0.1 Cstem MISAeaMsu rement 1–7.2 1–2.6 1–6.9 1–6.2 1–4.7 00..57 –1.2f –– –– Croot ISAM 2.9 2.2 2.8 2.7 2.4 1.0 1.2 0.6 Measurement – – – – – – – – AGB ISAM 17.9 13.2 17.6 16.8 15.3 0.9 0.2 0.1 Measu rement 16.5 ±5a 14.8 ±3a 15.6 b18.5–20.4c – – – – – BGB ISAM 2.9 2.2 2.8 2.7 2.4 1.0 1.2 0.6 Measu rement 3.8±0.6a 1.8±0.7b – – – 0.7 –1.1d – – TotalBiomass ISAM 20.8 16.4 20.4 19.5 17.7 1.9 1.4 0.7 Measu rement 20.3 ±5.6a 16.6 ±3.6a 19.9 –21.8±0.2a – – 1.7 –2.3e – – a MeasurementsdataarefromMalhietal.(2009),unlessindicatedbyaletter. b Measurementf rom Sale skae tal.(20 03 ). c Measurement from Millere ta l.(2 004). d Measurement from DeCas tro an dKaufman(1998). e Measurement from Da Rocha etal .(2002). f Measurement sfrom Gr aceet al. (2 006). ecophysiologicalmeasurementsforNPP,autotrophicrespiration, Table3 heterotrophicres piration,bioma ss,s oilca rbon,andlea flitter. ISAM estimated soil carbon (Kg C m−2) for the LBA study sites reported as the mean forthestudysitesfluxmeasurementperiod. Themodelisinitializedusingsitelevelsoilpropertiesandsite meteorological data and with the absence of CO and nitrogen Soilcarbon(0–1m) 2 disturbance.Thespin-upisachievedbyrepeatingthesitemete- orologicalda tafo rtheran ge ofavailab ley earsuntil the carb onand ISAM Measurement Km34 12.8 12.7a fnoirtrtohgeenso pilocoalsr broenac.hN ethxet, sttheeadmyo sdtaetleis, wruhnicfho rtaekaecsh asbioteutfo 7r0t0h yeesaitres KKmm6873 1122..62 172..80a±1.1–11.2±1.3b measurementperiod. RJA 10.0 – BAN 10.2 – PDG 8.3 8.3–8.9c 3. Results FNS 10.3 10.0–12.0c 10.0-10.8d Km77 7.2 – Thisstudyusesanetworkofmeteorologicalandclimatedata a MeasurementsarefromMalhietal.(2009). tfrhoemc aArbmoanzoflnu xseistews ittoh drerlievvea tnhteo bISsAeMrv attoio cnaslcoufleactoe saynstde mcoflmupxaerse. debptMh.easurements are from De ca rva hlo Conceic¸ ão Telles et al. (2003) for 1 m soil Specifically,thisstudytakesadvantageoftheLBAprojectupdated c MeasurementsarefromFishersetal.(1994)forSavannaandpasturesitesin database fro m e ight fl ux tow ers across a gra dien t of eco systems Colombia. d MeasurementsarefromTrumboreetal.(1995). withinAmazon.TheISAMsystematicallycalculatescarbonfluxes andstorageintheAmazonvegetationandsoils. 3.1. Biomass The ISAM calculated aboveground biomass (AGB) ranges betwee n 0.2k gCm−2yr−1 for pasture a nd 17.9kg Cm−2 yr−1 for tropical evergreen forest (Table 2). The AGB for the Km34, the Km67,andtheKm83sitesarewithintherangeofthesitemea- sureddata.TherearenomeasureddataavailableforAGBforthe RJAandBANtropicalevergreensites,buttheISAMestimatedAGB for this site falls within the range of Km34 and the Km67 sites (Table3).Thepasture(FNSandKm77)andthesavanna(PDG)sites storemorecarbonintheroots(Croot)thanintheabovegroundand range from 0.7to1 .2k gC m−2y r−1(Ta ble2 ).B elo wgrou ndbiom ass (BGB) for the Km34 and Km67 sites is estimated to be between 2.2an d2. 9kg Cm−2y r−1 withBG Bfor th eKm34sit eb ein gslightly lowerthanthemeasuredvalue(Table3).Asexpected,carbonin forest ecosystems is mostly stored in the stem (Cstem), whereas for grassland in the roots (Fig. 2). On the other hand, ISAM esti- ma ted total b io mas s for t he K m8 3 si te ( 20.4kg Cm−2 yr−1) was within the range of measured total biomass (Table 2). The ISAM modeled total biomass for the other tropical sites ranges from 16.4 to 2 0.8kg Cm−2yr −1, whic h is w ithin th e me asured range of values of total biomass at the Km34, Km67 and Km83 sites (Table 3). The modeled total biomass for the savanna (PDG) site is1.9k gC m−2 yr−1,whi chfal lswithin the mea suredva lueoft otal bi oma ss ,w hiletotal bioma ssfo rthepa stu resites(FN Sand Km 77) Fig.2. ComponentoftotalbiomassforeachsiteinkgCm−2yr−1 groupedwith are1.4an d0.9 kgCm −2yr−1 (Ta ble 2),respe ctive ly.Th eva riation resp ec ttosoiltypes . B.El-Masrietal./AgriculturalandForestMeteorology182–183 (2013) 156–167 161 inthetotalbiomassforthetropicalevergreensitesisduetothe factthatthesoilcharacteristicsvarywithsite.Thesiteswithclay soil have higher biomass than the sites with silt or sandy soils. However,thetopicalevergreensiteKm67isexceptional,whichhas beendisturbedoverthetimeandthereforehaslowertotalbiomass comparedtootherLBAforestsites(Fig.2). 3.2. Soilcarbon Themodelestimatedsoilcarbonforthetop1msoildepthranges betwee n 7.2k gCm−2 (K m7 7 site) and 12 .8kgC m−2 (Km3 4 site) (Table3).TheISAMestimatedsoilcarbonfortheKm67siteisonly 4.5%higherthanthesitemeasurement.Thesoilcarbonestimates for the RJA and BAN forest sites are within the range of the site measurementforKm83.Theestimatedsoilcarbonforthesavanna site(PDG)isatthelowerendofthesitemeasurement.Theesti- mat edsoil ca rbo nfo rthep astur es ite( FNS) (10.3kgCm−2) ish igher thanthatofthesavannasite,butthemodelestimatedsoilcarbon forbothofthesesitesarewithintherangeofmeasuredsoilcar- bon (Tab le 3).The past ure site(Km 77) soilca rb on(7.2KgC m− 2)is pFiegr. y3e. aSrcfaotrteera cphlosti tfeorin thgeC rmel−a2tiyorn−s1h.iTph beestowliedelnin IeSAreMp reessteimntasttehde G1P:1P lainnde. flux GPP lowe rthan the oth erpastu resi te(FNS) wh ichcan bere lat ed todi f- ferenceinsoiltypesandtextures(Andreaeetal.,2002;Kelleretal., 2005)th at det ermin esth eamoun tofcarbo n sto redin theso il. Similarly, the ISAM estimated autotrophic respiration (Rauto) (thesumofleaf,stem,roots,andgrowthrespiration)forthetropical ever gree ns ites varyb etwee n1 .5and2 .0kgCm−2y r−1 ,wh ichfall 3.3. GPP withintherangeofmeasuredRautofortheKm34andtheKm67sites (Table4).Thesavanna(PDG)siteandthepasturesite(Km77)have Overall, the ISAM GPP results are in good agreement with mea- thelow es tRau to (0.5k gCm− 2yr− 1),w hil epastur e(F NS)site Rauto sGuPrPemvaernytbse (tTwaebelen 42)..6 Faonrd tr3o.0pikcgalC emve−r2gyrre−e1nc soitmesp,a mreoddteol fleustximtoawteedr (1.0 kg C m− 2yr−1) is alm o st half of t he fore st sites, which cou ld be mea sured valueso f2. 7–3. 1kg C m −2yr−1(Table4).Th eG PPf orthe attributed to lower GPP compared to the evergreen sites (Table 4). savannaa ndpast ur esitesa re lo werthanthefo res tsit es,b eca use Rleaffor the tropical evergreen sites is about third of the total Rauto (Fig.4).TheRrootforthepasturesites(FNS)isthehighest,whichis herbaceousecosystemsarelessproductivethanforestecosystems. TheISAMes timatedGPP for the individuals itesis withi n15%offlux about 50% of the total Rauto, while Rleafleaf respiration accounts for about10%ofthetotalRauto(Fig.4).Themodelisabletocapturethe measurementvalues.Whenconsideringthelargeuncertaintiesin themeasured fluxGP P(±5– 20%)thatar ere lated toerrorsint he variability in the maintenance respiration for each of the vegeta- tionpoolofforestandherbaceousbiomes.Modelresultsshowthat partitioningofnetecosystemexchange(NEE)intoecosystemres- theherbaceoussites(especiallyforthepasturesites)havehigher pirationandGPPanderrorsinenergybalancecloser(Hollingerand Richards on,2 005 ;Wi lsonet al .,2002) ,themo delGPP estimates are Rroot, whereas for the forest biomes Rleafis the highest (Table 4). within the u ncerta inty ran ge of the m easu red flu x GP P values. eveTrhgree seinmfuolraetsetds s(0o.i9l –re1s.1pikrgatCiomn− (2Ryhert−ro1)) easrteimalasotews fiothr itnhteh terorpanicgael TheGPPfortheFNSpasturesiteisabout3timeshigherthanthe ofmeasuredvalues(Table4),exceptfortheKm67site.TheISAM otherpasturesite(km77).Oneexplanationforthelargedifference inpro ductivit ybe tweenth eset wopastures ite sist hatth eproduc- estimated Rhetrofor Km67 is lower than the measured fluxes, while leaf, stem, root respiration and the Rauto are within the range of tivityoftheKm77siteislowerduetowaterandnutrientstresses (Sakaietal.,2004).Therefore,Km77siteLAIisalmosthalfofthat oftheFNSsiteLAI. To evaluate the model performance for the yearly changes in GPP,wecomparedtheestimatedGPPwithsitemeasurements.The modelperformancesforall,butpasturesite(FNS)foryear2001are comparedwellwiththemeasurementsforallthemeasuredyears (Fig.3).WhileexactcauseofunderestimationofGPPfortheFNS pasturesiteGPPforyear2001isunknown;wespeculatethiscould beduetoerrorsinsomemeasuredinputvariable. 3.4. Respiration TheISAMestimatedmaintenancerespirationfortheleaf(R ) (0.4–0. 7kgC m−2yr−1), stem (Rstem) (0.3–0.4kg Cm −2 yr−1 ), alenafd roots(Rr oot )( 0.3–0.4kg Cm−2 yr−1)fo rtropical ev e rgreensite sare withintherangeofmeasuredvalues(Table4).Leafmaintenance respirationratesarehigherthanstemandrootsbecauseofthehigh leafturnoverrates(0.75–2yearsfortheleavescomparedto1–50 yearsforrootsandstem;TableA1).ThemodelestimatedR is leaf lowerforthesavanna(PDG)andthepasture(FNS)sitesthanthe f(oTraebslte s4it)e.s because of lower LAI (data not shown) and leaf carbon wFiigt.h 4r. eCspoemcptotonesonitl otyf pauesto.trophic respiration for each site in kg C m−2yr−1grouped 162 B.El-Masrietal./AgriculturalandForestMeteorology182–183 (2013) 156–167 Table4 Summ aryofISAMestimatedcarbonfluxes(KgCm−2yr−1)reportedasthemeanforthestudysitesfluxmeasurementperiod.MeasurementsforGPParefromeddyfluxtower measurements;whiletheremainingvariablesareecophysiologicalmeasurementsfromMalhietal.(2009). Km34 Km67 Km83 RJA BAN PDG FNS Km77 GPP ISAM 3.0 2.9 2.9 2.9 2.6 1.2 2.1 0.8 Measurement 2.9 3.1 2.7 3.0 2.7 1.3 2.2 0.7 NPP ISAM 1.1 1.4 1.1 1.1 1.0 0.6 1.1 0.4 Measu rement 1.0 ±0.1 1.4 ±0.1 – – – – – – Rauto MISAeaMsu rement 22..00 ±0.5 11..55 ±0.4 1–.8 1–.7 1–.5 –0.6 1–.0 0.4 Rleaf MISAeaMsu rement 10..07±0.4 00..74 ±0.4 –0.6 –0.6 –0.5 –0.2 –0.2 –0.1 Rstem MISAeaMsu rement 00..44 ±0.1 00..34 ±0.1 –0.4 –0.4 –0.4 –0.05 –– –– Rroot MISAeaMsu rement 00..45 ±0.2 00..34 ±0.8 –0.4 –0.4 –0.3 –0.1 –0.5 –0.3 Rhetro MISAeaMsu rement 11..10±0.1 11..50±0.1 –1.0 –1.0 –0.9 –0.6 1–.0 –0.6 Rtotal MISAeaMsu rement 32..19 ±0.5 23..50 ±0.4 2.8 2–.7 2–.4 1–.2 2–.0 1–.0 NEE ISAM −0.1 0.4 0.1 0 .2 0 .2 0 .0 0 .1 -0.2 Measu rement 0.5±0.2a1.4±3.8b 0.5 ±0.1a−1.1b – – – – – NPP/GPP ISAM 0.4 0.5 0.4 0.4 0.4 0.5 0.5 0.5 Measurement 0.34 0.5 – – – – – – a Ecophysiologicalmeasurements. b Gasexchangeme asurements. sitemeasurements.ItishypothesizedthattheKm67sitehasexpe- thepasture(FNSandKm77)siteshavehigherNPP/GPPratioof0.5 rienced mortality disturbance (Malhi et al., 2009; Saleska et al., (Table 4) mainly because of lower GPP and Rauto. Moreover, the 2003), but this disturbance has not been quantified in the liter- savannaandthepasturesitesexperiencethelongestdryseason ature(MarcosCosta,pers.comm.).Theinabilitytodeterminethe andplantsgrowinginsuchenvironmentalconditionshavestronger rightdisturbancehistoryoverthemeasuredtimehindersthemodel efficiencytostorecarbonastheyhavelessplantmaterialtosustain ability to estimate R , because R is expected to increase comparedtoforests(Zhangetal.,2009).Also,thetransitionfrom hetro hetro followingdisturbanceduetoincreasedmicrobialrespirationwith drytowetclimateleadstoanincreaseinplantrespirationwhich vegetationgrowth(Concilioetal.,2006;VargasandAllen,2008). maycauseadecreaseinNPP. The R for the tropical evergreen site, Km34 (n3o.1m kega Cs umre−tdo2taydlra−t1a)a ivs a vilearbyl es ifmoriltahre too tthh eer mfoereasstusrietde sR,tboutatl.t Th heemreo adreel 3.7. Leaf litter aseinsttedism th(aTetaebdpl aRes tto4ut)ar.l eiTs(h FcelN oISsSeAa tnMod tehKsemt imm7e7aa)tsesudirt eeRsdto avtaralelufoleorsw tahet reK tmsha3avn4a natnhnaed K(fPomDre6Gs7t) (tThaeTb Khleme5 6m)7.oT sdhiteeell eaedna dflel riataftn elgirteftoe frrr otihsm ec 0lpo.a2sse kt ugto rC et mhsie−t e2m(yFerNa−s1Su)tro(e0 m0.2.3ek nkgtgsC C em mx−c−e22pyytr r−f−o11r) sites ma inlybec ause oflo werRau to for the setwo sites (Ta ble4). isatth eh igh ere ndof the rep ortedm eas urem ents ,w h ileforthe teEhvxeea rmIgS rAineMienn ges stti hitmees actoaenmdd Rp aoaunbto eonuistt a(hbRoaa luuftto ftowarnodt th hRe ihredstar oov)fa tnohnfe at Ro t(toPatDla lGrfe o)srp atinrrodaptii tochnael, lotoht wheeem rr opedna esdtl uoerfs ett hisme it areet ep( Kdomrlt ee7ad7f )m litthetaeesr uvfaroelrum eteh (ne0t.st1.w kTogh eCp admsif−tfu2erryee rn−sc1ite)e bsis e ctaawtn etehbnee pasture(F NSan dKm 77)si tes(F ig.5 ),w hichare consist entw ith themeasurementdata. 3.5. NPP The ISAM NPP estimates for tropical evergreen forest varies betwee n1.0a nd1 .4kgCm−2 yr− 1 which fallswithin thera ngeof reportedNPPvaluesforthesamebiome(Table4).Themodelesti- matedNPPfordeciduousforest(BAN),savanna(PDG)andthetwo pastur esite s(F NSandKm 77)are 1.0,0. 6,1.1,and 0.4kg Cm −2y r−1, respectively(Table4). 3.6. NPP:GPPratio The model estimated forest carbon use efficiency (NPP/GPP ratio)variesfrom0.4to0.5forthetropicalevergreensites,which issimilartothemeasuredNPP/GPPratioof0.34(fortheKm34)and 0.5(fortheKm67).TheKm67sitehasahighermeasuredNPP/GPP ratio(0.5)comparedtoothertropicalevergreensites,whichsug- gestthatthistropicalevergreensiteisaccumulatingmorecarbon thantheotherLBAtropicalevergreensites.Malhietal.(2009)sug- gestthattheenhancedNPPfortheKm67siteisduetoashiftin cthaerbootnh earllotrcoaptiiocanl teov ewrgoroede nprfoodreuscttisointe sb.eTchauessea vGaPnPn ais (sPiDmGil)ara ntdo rFeigsp. e5c. tCtoomsopiolntyepnets o.f total respiration for each site in kg C m−2yr−1grouped with B.El-Masrietal./AgriculturalandForestMeteorology182–183 (2013) 156–167 163 Table5 fortheKm67sitecouldberelatedtothemortalityhypothesisfor ISAM estimated leaf litter (Kg C m−2yr−1) for the LBA sites reported as the mean for the Km 67site ass ociate dw ithdrou gh tst ressandt hatcouldh ave thestudysitesfluxmeasurementperiod. causedanincreaseintheobservedleaflitter. Leaflitter The measurement for the Km67 site suggests that this site is netsourceforcarbon(Malhietal.,2009),whileourmodelresults ISAM measurements sho wtheo pp ositebe causet he mo delun derest ima tedsoi lrespi- Km34 0.3 0.25±0.35a KKmm6873 00..33 00..34bc sraintikofno.r Tchaerb mono.dOeul rremsuodlte sluregsguelsttssa tghraete twheit hKtmh3e4s isteiteec aocpthedys aiosl onge-t RJA 0.3 – icalmeasurements,butdisagreewiththesitefluxmeasurements BAN 0.3 – (Ma lhietal.,2009) (Tab le2).Bec ause ofth ela rgeu ncertaintiesin PDG 0.2 – FNS 0.2 0.1–0.2d the site measurements, particularly for Rleafand Rhetro(Malhi et al., 2009; Ryan and Law, 2005; Suseela et al., 2012), and the differ- Km77 0.1 – encein them eas urem entsre sultsbas ed on thetwo mea sure ments a MeasurementistheaverageofthethreeestimatesfromLuizãoetal.(2004). bc MMeeaassuurreemmeenntt ttaa kkeenn ffrroomm RHiic resc eht eatl . a(l2.0(20 040).4). tmoectohrordesc t(leycoepvahlyusaiotelotghiecaml aondde ledNdEyE fleusxti mcoavtaersiaanncde)t,h ite rise fdoirfefictuhlet d Measurement taken from Trumb ore et al.(1995). ro leofthee cosystem asa carbon sink orsource . Thetotalecosystemrespiration,R ,forthetropicalevergreen total sitesdecreaseswithdecreasingprecipitationduringthedryseason relatedtothedifferenceintheLAI(maximumLAIfortheFNSis 5.7m2m − 2co mparedto 3.2 m2 m−2 fortheKm 77s ite) (da tapr o- because soil respiration is constrained by desiccation (Saleska et al., 2003).BothKm34andRJAsiteshavethesamedryseasonlength(3 videdbytheLBAcoreteam),whichisrelatedtothenutrientand months),butthedryseasonprecipitationfortheKm34site(35cm) soilmoistureavailability(Sakaietal.,2004).Forthesiteswithno repo rtedmea surements (RJA,B AN ,an dPDG site s), weco uldn ot is 40% larger than the RJA site (25 cm). Rtotal for the Km34 is 15% drawany conclusionsas towh ether them ode lisove rest imatin gor higher than the RJA site, which indicates that Rtotalis driven by dry seasonprecipitationamountandnotbydryseasonlength.There- underestimatingleaflitter. fore, the respond of Rtotalto climate change will be dependent on theseverityofthedryseasonandthewetseasonlength. 4. Discussion While land surface models suffers from the inability to accu- rately estimate soil carbon, ISAM soil carbon estimates for the WeusetheISAMtosimulatethecarbonfluxesandcarbonpools Amazoniansitesareincloseagreementwiththesitemeasurements inthevegetationandthesoilsforeightLBAsitesrepresentativeof (within4.5%).Indeed,thestrengthoftheISAMisinitsabilityto threedifferentbiometypes(forest,savanna,andpasture).TheISAM accuratelycalculatesoilcarbondynamics,whichisimportantfor estimatesforGPParewellwithintheuncertaintyrangeofthesite predictingitsroleinclimatechangeassoilrespirationisexpectedto measurements. increaseduetoincreaseinsoiltemperature(RaichandSchlesinger, GPPfortheFNSpasturesiteishigherthantheKm77pasture 1992;Rustardetal.,2002).Itwillbeadvantageoustohavelong site.OneexplanationforthisdifferenceisthatthesoilintheEast- termmeasurementsofsoilcarbontohaveabetterinsightofthe ernAmazon,theregionwhereKm77islocated,isbelievedtohave interannual dynamics of this carbon pool since tropical soils are lower soil nutrients than the soils in the Western Amazon, the suggestedtohaveapotentialtosequesteranadditionalamountof regionsforFNSlocation(Asneretal.,1999).Moreover,deMoraes carbon(Lal,2002,2004). etal.(1996)andDias-Filhoetal.(2001)studiessuggestthatpasture TheannualtotalmagnitudeoftheISAMleaflitterestimatesare growthislimitedbynutrientavailability,suchasphosphorus,cal- closetothesiteestimates.However,whencomparedwithleaflit- ciumandpotassium.Studiesalsosuggestthatsoilmoisturestress terestimatesfromRiceetal.(2004),theseasonalvariationsdonot atKm77ishigherduringthedryseasonduetoshallowroots(Sakai match(notshown).TheISAMlitterproductiondonotshowsea- etal.,2004).ItisinterestingtonotethattheISAMisabletotrack sonalvariabilityfortheKm67sitebecauseleaflitteriscontrolled down productivity for these two diverse pasture sites (FNS and by cold temperature and water stress and the cold temperature Km77),becausetheISAMisabletoaccountforwaterandnutrient stresswillnothaveaneffectonleaflitterfortropicalsites(Arora limitationsunderthevariableenvironmentalconditions. andBoer,2005).BasedontheISAM,thewaterstressfactorforthe ToinvestigatewhethertheLBAsitesactedasanetsourceorsink Km67siteisalmostuniformthroughouttheseasonandthecurrent foratmosphericCO ,NEEiscalculatedasthedifferencebetween litterproductionschemehasfailedtocapturetheseasonalityofleaf 2 NPPandR .Themodelresultsindicatethatalltheforestsites litterfortropicalevergreensites(thisisthecaseofthemajorityof hetro arenetsinkofcarbon,whilethesavanna(PDG)andpasture(FNS) landsurfacemodels).Wewilladdressthisissueinthefuturestud- sitesareneutralandonlyKm77isnetsourceofcarbon.Basedonthe iesbymodifyingtheISAMlitterproductionmodeltoaccountfor modelresults,theKm67hasaccumulatedmorecarbonandhence theseasonalvariationinLAIwhenestimatingleaflitter,insucha thissiteactedascarbonsink,whichisevidentfromthefactthatthe waythatleaflittershouldincreasewithadecreaseinLAIandvice estimatedandmeasuredNPPforthissitearehighercomparedto versa. theotherLBAforestsites.Pyleetal.(2008)suggeststhatthissitehas The improvement introduced to the carbon allocation and possiblyexperiencedmortalityinthe1990sandre-growingthin autotrophicrespirationschemesareinterconnected,becauseRauto youngerforesthaveabsorbedmorecarbon(Figueiraetal.,2008). is dependent on the vegetation carbon pool size. By adjusting Basedonourmodelresultsandmeasurements,ourassumptionis the parameters for the vegetation turnover rates, we are able to thatthissitehasbeenoccupiedbytheyoungerorsmallertreeswith improvethemodelestimatedtotalvegetationbiomass(Table2). higherNPP/GPPratio(Deluciaetal.,2007)andlowerRauto com- Furthermore, model assumes different maintenance respiration paredtotheotherforestsites.Weaccountforthedisturbancesfor rates for the different vegetation pools and for different biomes. Km67sitebyreducingthemodeledvegetationcarbonby20%atthe Thesemodificationsareintroducedtobeconsistentwithstudies beginningofthemodelsimulationyear.TheNPPforthedisturbed showingthatleafmaintenancerespirationrateishigherthanthe case is 1.4 Kg Cm −2yr− 1 (Table 4) , whic h is com pa red well with stem and the roo ts (Ryan et al ., 1996). To our kn owled ge, th ese themeasureddataandabout50%higherthanwithoutdisturbance implementations are unique to ISAM and help to improve the case. In addition, the underestimation of the modeled leaf litter modelperformanceasevidentfromthemodelresults(Table4). 164 B.El-Masrietal./AgriculturalandForestMeteorology182–183 (2013) 156–167 5. Conclusion foreststobettercapturetheseasonalvariabilityintheleaflitter. Furthermore,leaflitterseasonalitycanbeimprovedbyadjusting WeshowthatbycalibratingtheISAMusingsitedatafortheLBA the seasonali ty of the l eaf carbon p ool th rough the mo dification sites, t he res ults co mpare wel l wi th the site mea sure me nts and oft hecarbonal loc atio npar ameter sand accounti ngt heimpactsof withi nth eirunce rtaintyra nge. TheI SAM isc alibratedusing data lig hts tresson thesepa rameters,sp ecifi callyforin tro picaleve r- forthe Km34 tropicalfor estsite and tested fo rtheothe rfour topi- green fores ts, Finall y, LAI is the main drive r fo r the leaf litter cal fore stsite sinclude dinth eLB Apr oject.A lso ,ISA Mis calib rated season ality,an dwepla nto int rodu cedyn amicLA Isc hem esto ISAM for theon epa sturesite (F NS) and validate dfor theo th erpasture toimprovet heL AIs easo na lity. site (Km 77) .TheISA Mis calibr ated forthesa van nas ite(PD G),but couldnotbefurthervalidatedduetolackofdataavailability.The Acknowledgments ISAMestimatedresultsforthemeasuredsitescomparewellwith thesitemeasurementsthusvalidatingourcalibrationtechniques. Wethankthescientistswhocollectedtowerobservationsdur- Despite the limitation in the site measurements and data avail- ing field campaigns under the LBA project, funded by NASA, ability,itcanbeconcludedthatgloballandsurfacemodelscanbe the Brazilian Ministry of Science and Technology and European improvedsubstantiallybyintegratingsiteleveldata. Agencies. We also thank the LBA-Data-Model-Intercomparison In this application of the ISAM, we revise and modify the project funded by NASA’s Terrestrial Ecology Program (grant autotrophicrespirationandthecarbonallocationschemes,which NNX09AL52G),whichprovidedthedatasetsthatmadethiswork provedsuccessfulasevidentfrommodelresults.Webelievethat possible.TheISAMdevelopmentworkpresentedhereissupported thesemodifiedschemesandcalibratedparameterscanbeimple- by the National Aeronautics and Space Administration (NASA) mented in other land surface models depending on their model LandCoverandLandUseChangeProgram(No.NNX08AK75G)and structure to improve their estimates. We learn from this anal- theOfficeofScience(BER),U.S.DepartmentofEnergy(DOE-DE- ysis that several improvement for ISAM are needed to enhance SC0006706). the model capability for the global simulations, such as adding morebiometorepresentheterogeneityinlandscapes(e.g.woody AppendixA. savanna),andimprovingthelitterproductionschemesfortropical TableA1 Modelparametervaluesusedinthisstudy. Function Units Tropicalevergreenforest Savanna Pasture Reference Structure Vegfrct – 1 0.80a 0.85a Thisstudy cnleaf – 42 25 50 White et al. (2000) cnstem – 300 200 200 White et al. (2000) Photosynthesis cVncmroaoxt –(cid:2) mole m−2s−1 5985 5904 5804 WDohmitien egtu aels. e(2t 0a0l.0 ()2007) Plant respiration kkkknlsreoteaofmt –gggCCC ggg NNN−−−111ddd−−−111 0000....5000914 aaa 0000....5000446 aaa 0000a...50066 aa ATTThhhroiiisssr asss tttauuunddddyyy Boer (2005) Phenology daylen h 12 12 12 Thisstudy biotr ◦C 12 12 11 This study Biotrmin ◦C 7 2 2 This study LAI max m− 2m–1−2 6 4 .50 3 .29 This study Allocation ω – 0.6 0.8 0.5 Thisstudy εεεlsre oteaofmt ––– 000...5040a 919aa 000 ..46 0 000 ..46 0 TTThhhiiisss ssstttuuudddyyy k – 1.6 1.6 1.6 AroraandBoer(2005) Litter production rrYwtlmemaafaxx ydde−−a11rs 200.. 02005 000...7030505 100.. 01055 TAThhroiissr ass ttauundddyy Boer (2005) bw – 3.0 3.0 3.0 Arora and Boer (2005) Turnover rate YbTYctsfrotoeldomt/Ycroot –yy◦Cee aarrss 3552..0.000a /8.0a 3522....0050 / 5.0 3511....0000 /2.0 AATThhrrooiissrr aass ttaauunnddddyy BBooeerr ((22000055)) a Calibratedparameters. TableA2 ISAMequationsforthecarbonmodules. Function Equations Reference Plant autotrophic respiration Rleaf= kleaf×cCnleleaaff × ∅ × gt (S1) Sitch et al. (2003), Arora (2003) Rstem= kstem×cCnsstteemm × gt (S2) Rroot= kroot×cCnrroooott × ∅ × gt (S3) QQgt1100===Q 33(T..v22eg22− −−20 )00/..10004466fo ××r lTTevsaoeigvlesffooarrn lrdeoaosvttees ms asnd stems (((SSS456))) 10 B.El-Masrietal./AgriculturalandForestMeteorology182–183 (2013) 156–167 165 TableA2(Continued) Function Equations Reference gt=Q(Tsoil−20)/10 forroots (S7) Phenology FRRRomGa rutt=doo te a=0lc1.0=i 2dR 5muR otl×eouat afm⎧sl++tar xR eR(seGt0es,m: G +P PR r−oo Rtmtotal) (S((1SS980))) ⎪⎨ julian day > 200 daylength>daylen leaf onset=⎪⎩ Tr> b io tr (S11) normalgr⎧owth={GLAPIP≥ −( R0l.e5af×>L A0I(cid:6)max) (S1⎫2) ⎪⎨ j ul iand ay >2 00 (cid:6)(cid:6) ⎪⎬ dayleng th> d aylen(cid:6) leaf fall =⎪⎩ T r< boior tr min (cid:6)(cid:6)(cid:6)or LAI< (0.4 × LAI max)⎪⎭ GPP(cid:10) − Rleaf> 0 daylength<daylen dormant.noleaf= (S14) Forherbaceo u(cid:11)s: Tr< bio trmin lea fonset= GPP − Rleaf> 0 (S15) norm algr o⎧wth={TLrA>I> 27(05.5×LAI max) (S16) ⎨GP P − Rle af < 0 leaf fall =⎩ Tr< 275 (S17) ws<0.4 Allocation NPP = GPP − Rmtotal − RG (S18) Arora Fortropicalevergreenforest: and IfNPP>0: Boer CCC lsreoteaofmts= == N NNPPPPPP × ×× A AAllllolloo f affaacctclttesratofeomts (((SSS122910))) (Fe2rt i0ae0ld.5li)n,gstein IfNPP<0: (1999) CCC lsreoteaofmts= == G GGPPPPPP × ×× A AAllllolloo f affaacctclttesratofeom−t− −R l ReRarsoftoetm (((SSS222234))) Forsavannaandpasture: Maximumgrowth: Cleaf= NPP (S25) Normalgrowth: Sameastropicalforest Leafoff CCClsreoteaofm t=== ( (G(GGPPPPPP −− − RR RGGG−−− RR Rlresoatofe)tm) × )× ×A A lAllollol o faf afcacttclertaosfotet−m− R− Rle raRofosttem (((SSS222678))) Allocationfactorfortrees: Allofactst em=1 ε+steωm (+2 −ω(L1− −w Ls)) (S29) Allo factroot=1εr+ ooωt +(2 ω− (1L −− ww ss)) (S30) Allo factleaf= 1 − A llo fac t ste m− allo factroot (S31) Allocationfactorforherbaceous: Allo factro ot=1ε r+ooωt +(1 ω+(1L −− wwss)) (S32) Allo(cid:12) factleaf=1 + ωεl(e1af ++ Lω −L ws) (S33) exp(−kn × LAI) f or tr ees and crops L = max(0,1 − LAI) forgrasses (S34) 4.5 Litter production ˇrrrLnwttit===t=e r(cid:12)r r(t Ywpml rmae(oxaTafdx×a×1ilr×e (a−31 f(6 1=(−5T − 5 )Ccˇ1.o l0wtl ed)absf−t)×b 5w (.r0n)+) rwTc+old rt>) TTaaiirr>> (TTcocoldld− 5.0) ((((SSSS33335786)))) AaB(2nor0ode0rra5) Forstemsandroo0t s: (cid:13) Tair≤ (cid:14)(Tcold− 5.0) 1 Litter prodstem= Cstem×(cid:13) Ystem× 365(cid:14) (S40) 1 Litter prodroot= Croot× Yroot× 365 (S41)

Description:
variability, the Amazon basin is a net source during the drier and .. site (PDG) is at the lower end of the site measurement. Croot cnroot. × ∅ × gt. (S3). Q10 = 3.22 − 0.046 × Tveg for leaves and stems. (S4) day length > daylen.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.