LA-UR-05-9198 DRAFTVERSIONFEBRUARY4,2008 PreprinttypesetusingLATEXstyleemulateapjv.26/01/00 CAPTURINGHALOSATHIGHREDSHIFTS KATRINHEITMANN1,ZARIJALUKIC´2,SALMANHABIB3,ANDPAULM.RICKER2,4 1ISR-1,ISRDivision,TheUniversityofCalifornia,LosAlamosNationalLaboratory,LosAlamos,NM87545 2Dept.ofAstronomy,UniversityofIllinois,Urbana,IL61801 3T-8,TheoreticalDivision,TheUniversityofCalifornia,LosAlamosNationalLaboratory,LosAlamos,NM87545 4NationalCenterforSupercomputingApplications,Urbana,IL61801 DraftversionFebruary4,2008 ABSTRACT 6 WestudytheevolutionofthemassfunctionofdarkmatterhalosintheconcordanceΛCDMmodelathighred- 0 shift. Weemployoverlapping(multiple-realization)numericalsimulationstocoverawiderangeofhalomasses, 0 107- 1015h- 1M⊙,withredshiftcoveragebeginningatz=20. ThePress-Schechtermassfunctionissignificantly 2 discrepantfromthesimulationresultsathighredshifts.Ofthemorerecentlyproposedmassfunctions,ourresults areinbestagreementwithWarrenetal. (2005). Thestatisticsofthesimulations–alongwithgoodcontrolover n a systematics–allowforfitsaccuratetothelevelof20%atallredshifts.Weprovideaconcisediscussionofvarious J issuesindefiningandcomputingthehalomassfunction,andhowtheseareaddressedinoursimulations. 1 Subjectheadings:methods:N-bodysimulations—cosmology:halomassfunction 1 1 1. INTRODUCTION carried out over differentmass and redshiftranges. The clos- v est to the presentwork are Reed et al. (2003)and Springelet Dark matter halos occupy a central place in the paradigm 3 al. (2005);incomparisontotheirresults, ourhalomassrange of gravitationally-driven structure formation arising from the 3 goesdeeperbythreeordersofmagnitude,withgoodstatistics nonlinearevolutionofprimordialGaussiandensityfluctuations. 2 and control of systematics out to z=20, substantially higher Gascondensation,resultantstarformation,andeventualgalaxy 1 than in these papers. (We review results from other work be- 0 formation occurswithin halos. Consequently, the halo profile low.)Essentially,theearlierresultsareinverygoodagreement 6 andmassfunctionarecentralingredientsinphenomenological withtheSheth-Tormenmassfunction(Sheth&Tormen1999), 0 modelsofnonlinearclusteringofgalaxies. Thedistributionof atredshiftsz≤10.Asweshowbelow,variousfittingformulae / halomasses–thehalomassfunction–anditstimeevolution, h givenintheliterature–mosttunedtosimulationresultsatz=0 arealsosensitiveprobesofcosmology. p – can differsubstantially in their predictionsathigh redshifts, The halo mass function at the high-mass end (cluster mass - byasmuchasafactoroftwo.Therefore,itisimportanttocarry o scales)isexponentiallysensitivetotheamplitudeoftheinitial r density perturbations,the meanmatter density parameter,Ω , outsimulationsofsufficientdynamicrangeandaccuracytotest t m thesepredictions. s andtothedarkenergycontrolledlate-timeevolutionoftheden- a In order to extractthe mass function from simulations, dif- sity field. Thelastfeature,particularlyatlowredshifts,z<2, : ferentquestionshavetobeaddressed,suchas:Howisthemass v allowsclusterobservationstoconstrainthedarkenergycontent, Xi ΩΛ,andtheequationofstateparameter,w(Holderetal. 2001). fuulantciotino?ntWohbeendmefiunsetdt?heWsihmeunldatoiotnhebfierssttahrtaeldosinfoorrmdeirntoasciamp-- Thehalomassfunctionisalsoofconsiderableinterestathigh r ture these halos? What force and mass resolution is required a redshift, relating to questions such as predictions for quasar to capture halos of a certain mass at a specific redshift? We abundanceandformationsites(Haiman&Loeb2001),thefor- havederivedandtestedcertaincriteriatoensurethatoursimu- mation history of collapsed baryonic halos, and the reion- lationscapturethehalosofinterest; detailswillbegivenelse- ization history of the Universe (Furlanettoetal. 2005). Re- where(Lukic´etal. 2006). cent results from the Wilkinson Microwave Anisotropy Probe The paper is organizedas follows. In Section 2 we discuss (WMAP)(Kogutetal. 2003;Spergeletal. 2003)indicatethat popularmassfunctionformulae,previouswork,andstrategies reionization could have begun at redshifts as high as z∼20. for determiningthe halo mass function at high redshifts. The Much of the work on possible reionization scenarios is based simulations and mass function results are discussed in Sec- on the simple Press-Schechter (PS) mass function (Press & tion3.Criteriaformassandforceresolutionandinitialredshift Schechter 1974, Bond et al. 1991) the use of which can lead needed to span the desired mass and redshift range are given toimprecisepredictionsforthereionizationhistory. here.WepresentourconclusionsinSection4. Simulations play a dual role in characterization of the halo mass function. If only a few fixed sets of cosmological pa- 2. THEMASSFUNCTION rameters and a finite dynamic range are required, simulations can producevaluable results. In order to investigatea variety Overthelastthreedecadesdifferentfittingfunctionsforthe of cosmologiesanddifferentscenariosfor physicalprocesses, mass function have been suggested. The first analytic model e.g.,reionization,itisneverthelessveryconvenient,ifnotnec- for the mass function was developed by Press & Schechter essary, to have accurate analytic fitting relations. Simulations (1974). Their theoryconsidersa sphericallyoverdenseregion canbeusedtovalidatethesefitsoverawide(albeit,discretely in an otherwise smooth background density field. The over- sampled)rangeofparameters. density evolves as a Friedmann universe with positive curva- Various numerical studies of the mass function have been ture. Initially, the overdensity expands, but at a slower rate thanthebackgrounduniverse(thusenhancingthedensitycon- 1 2 CapturingHalosatHighRedshifts trast), until it reaches the ‘turnaround’ density, after which it The determination of mass functions at high redshifts is a collapses. Althoughformally this collapse ends with a singu- nontrivialtask. Highredshifthaloshaveverylowmasses,plac- larity,itisassumedthatinrealitytheoverdenseregionwillviri- ingheavydemandsonthemassandforceresolutionneededto alize. ForanEinstein-deSitteruniverse,thedensityofsuchan resolvethem.Theserequirementscanbeachievedintwoways. overdenseregionatthevirializationredshiftisρ≈180ρ (z).At First, a simulation with a very large number of particles and c thispoint,thedensitycontrastfromthelineartheoryofpertur- highforceresolutioncanbeperformed. Thisisexpensive,and bationgrowth[δ(~x,z)=D+(z)δ(~x,0)]isδ (z)≈1.686(1+z).For onlyaverylimitednumberofsuchsimulationscanbecarried c Ω <1,δ (z)evolvesdifferently(seeLacey&Cole1993),but out. Second, since determining the mass function is simply a m c the dependenceoncosmologyis weak(see e.g., Jenkinsetal. questionofstatistics, manyrelativelymodestsimulationswith 2001).Thus,weadoptδ =1.686=δ (0). moderateparticleloadingcanbeperformed:thisisthestrategy c c Followingtheabovereasoningandwiththeassumptionthat weadopthere. Assimulationscanonlybetrusteduntila red- theinitialdensityperturbationsaregivenbyaGaussianrandom shiftatwhichthelargestmodeisclosetobecomingnonlinear, field,thePSmassfunctionisgivenby: multipleoverlappingboxsizesmustbeused. Springel et al. (2005)have recently followed the evolution f (σ)= 2δcexp - δc2 , (1) of 21603 particles in a 500h- 1Mpc box. The high mass and PS rπ σ (cid:20) 2σ2(cid:21) forceresolutionallowthemtostudythemassfunctionreliably where σ is the variance of the linear density field, f(σ,z) ≡ out to a redshift of z=10, covering a mass range of roughly (MU/ρsibn)g(denm/pdilrnicσa-l1a)r,gaunmdeρnbtsisSthheethba&ckTgorromunend(d1e9n9s9it,yh.ereafter l1a0ti1o0hn-s1iMnc⊙lutdoe1J0a1n6gh--C1Mon⊙d.elElx&amHperlensqoufissti(n2g0l0e1s)m(a1lhl-- b1Moxpscimboux- ST)proposedanimprovedfitofthefollowingform: with 1283 particles evolved to z=10) and Cen et al. (2004) (4h- 1Mpc box, 5123 particles, evolved to z = 6). Results in f (σ)=0.3222 2aδcexp - aδc2 1+ σ2 p , (2) both papers are claimed to be consistent with PS but without ST rπ σ (cid:20) 2σ2(cid:21)(cid:20) (cid:18)aδ2(cid:19) (cid:21) detailed quantification. The simulation of Reed et al. (2003) c is a compromise between the two extremes: a box size of witha=0.707,and p=0.3. Shethetal. (2001)interpretedthis 50h- 1Mpc with 4323 particles and a concomitant halo mass fittheoreticallybyextendingthePSapproachtoanellipsoidal rangeof roughly1010h- 1M to 1014.5h- 1M . Reed etal. find collapsemodel.Inthismodel,thecollapseofaregiondepends ⊙ ⊙ goodagreement(betterthan20%)withtheSTfituptoz≃10. notonlyon its initialoverdensity,butalso on the surrounding For higher redshifts they find that the ST fit overpredicts the shearfield.ThedependenceischosentorecovertheZel’dovich number of halos, at z=15 up to 50%. At this high redshift, approximation(Zel’dovich1970) in the linear regime. A halo however,theirresultsbecomestatistics-limited,themassreso- isconsideredvirializedwhenthethirdaxiscollapses(seealso lutionbeinginsufficienttoresolvetheverysmallhalos. Lee&Shandarin1997). In this paper we analyze a suite of 50 N-body simulations Jenkins et al. (2001, hereafter Jenkins) combine high res- withvaryingboxsizesbetween4h- 1Mpcand126h- 1Mpcwith olutionsimulationsfordifferentcosmologiesspanninga mass rangeofoverthreeordersofmagnitude[∼(1012- 1015)h- 1M⊙], multiplerealizationsofallboxestostudythemassfunctionat and includingseveralredshiftsbetween z=5 and z=0. They findthatthefollowingfittingformulaworksexceptionallywell 0.2 Warren et al. (within20%),independentoftheunderlyingcosmology: Jenkins et al. 0 fJenkins(σ)=0.315exp - |lnσ- 1+0.61|3.8 . (3) -0.2 PSrheestsh--STcohremchenter z=0 Theaboveformulaisveryclose(cid:2)tothenominalST(cid:3)fit. 9 10 11 12 13 14 15 By performing 16 nested-volume simulations Warren et al. 0.4 0.2 (2005,hereafterWarren)obtainsignificanthalostatisticsspan- 0 ning a mass range of five orders of magnitude [∼ (1010- -0.2 z=5 1015)h- 1M⊙]. Theirbestfitemploysafunctionalformsimilar uals-0.49 10 11 12 13 toanimprovedversionofST(Sheth&Tormen2002): d si 0 e fWarren(σ)=0.7234 σ- 1.625+0.2538 exp(cid:20)- 1.1σ9282(cid:21). (4) ve R--00..48 z=10 (cid:0) (cid:1) ati 7 8 9 10 11 12 ThediscrepancybetweenPSandthemoreaccuratefitsisev- el R identinFigure1wheretheredshiftevolutionofthemassfunc- 0 tion is shown. The redshift dependence in the analytic mass -0.4 z=15 functionsentersonlythroughσ(z)=σ(0)d(z),whered(z)isthe -0.8 growthfactornormalizedsuchthatd(0)=1. Asthefunctional 7 8 9 10 11 dependenceon σ is differentin the differentfits, this leads to 0 substantialvariationacrossthefitsasafunctionofredshift.For -0.4 z=0 the Warren fit agrees – especially in the low mass range z=20 -0.8 below1013M –tobetterthan5%withtheSTfit. Atthehigh ⊙ 7 8 9 10 mass end the difference increases up to 20%. The Jenkins fit log(M [M./h]) O leads to similar results over the considered mass range. Note FIG. 1.—RelativeresidualsofthePS,Jenkins,andWarrenmassfunction that at higher redshifts and intermediate mass ranges around fitswithrespecttoSTforfivedifferentredshifts. Notethattherangesofthe 109M⊙ the disagreement between the Warren and ST fits in- axesaredifferentinthedifferentpanels.WedonotshowtheJenkinsfitbelow creasesupto40%. massesof1011h- 1M⊙sinceitisnotvalidinthismassrange. Heitmann,Lukic´,Habib,Ricker 3 redshiftsuptoz=20andtocoveralargemassrangebetween 16h- 1Mpcboxes.Thehalogrowthfunctionisparticularlyvalu- 107h- 1M and1015h- 1M evenathighredshifts.Significantly, able for determining when the halos at a certain mass should ⊙ ⊙ atz=20,gasinhaloswithamassscaleabove∼107h- 1M⊙can firstform. Thisisagoodtestforproblemsinsimulationsaim- coolviaatomiclinecooling(Tegmarketal. 1997). ingto capturehaloswitha givenminimummassatsome red- shift. Anexampleofthisisinsufficientforceresolutioninthe 3. SIMULATIONSANDMASSFUNCTIONRESULTS base-gridsofadaptive-mesh-refinement(AMR)codes. Allsimulationsinthispaperarecarriedoutwiththeparticle- Oncethenumberofparticlesforasimulationanda desired mesh code MC2 (Mesh-based Cosmology Code). MC2 has massforthesmallesthaloaredecided,therequiredboxsizeis been extensively tested against other cosmologicalsimulation fixed.Theforceresolutionneededtoresolvethesmallesthalos codes(Heitmannetal. 2005).Thechosenvaluesofcosmolog- has then to be determined. Our aim here is not to precisely icalparametersare: measurethe haloprofilebutsimply to becertain thatthe total Ω =1.0, Ω =0.253, Ω =0.048, halomass is correct. As shownin Heitmannet al. (2005)the tot m baryon halomassisarelativelyrobustquantityanda simpleestimate σ =0.9, H =70km/s/Mpc, (5) 8 0 oftheforceresolutionisallthatisneeded.Theforceresolution as set by the latest cosmic microwave background and large mustbesmallcomparedtothecomovinghalovirialradiusr∆ scalestructureobservations(MacTavishetal. 2005). Themass (withtheoverdensityrelativetothecriticaldensity,∆∼200)at transferfunctionsaregeneratedwithCMBFAST(Seljak&Zal- allredshifts.Theresultinginequalitycanbestatedintheform darriaga 1996). We summarize the different runs, including δ n Ω(z) 1/3 theirforceandmassresolutioninTable1. f <0.62 h , (6) Weidentifyhaloswiththefriends-of-friendsalgorithm(FOF), ∆p (cid:18) ∆ (cid:19) basedonfindingneighborsofparticlesatacertaindistance(see whereδ istheforceresolutionandn isthenumberofparticles f h e.g., Einasto et al. 1984; Davis et al. 1985). The halo mass per halo. In the simulations performedhere we use a ratio of is defined simply by the sum of particles which are members oneparticleper64gridcells,whichallowshaloswithroughly of the halo. (For connections between differentdefinitions of 50particlestobe captured. Ithasbeenshownin Heitmannet halo masses, see White 2001.) Despite several shortcomings al. (2005)thatthisratiodoesnotcausecollisionaleffectsand of the FOF halo finder, e.g., halo-bridging (see, e.g., Gelb & leadstoconsistentresultsincomparisonwithothercodes.Mass Bertschinger 1994, Summers et al. 1995) or statistical biases functionconvergencetests with differentforce resolutionsare foundbyWarrenetal.(2005),theFOFalgorithmitselfiswell- nicely consistent with the above estimate as shown in Lukic´ definedandveryfast. etal. (2006); time-stepcriteria andconvergencetests are also There are two sourcesof possible biases in determiningin- describedthere. dividual halo masses using FOF. First, the halo may be sam- Thelargesetofsimulationswehavecarriedoutallowsusto pledwithaninsufficientnumberofparticles(seeWarrenetal. study the mass functionat redshiftsbetween z=20 and z=0. 2005). Second, the effective slope of the halo density profile The main results are shown in Figure 3, where the simulation close to the virialradiusr , atfixed particlenumber,also in- data for the mass function are shown along with the Warren, vir fluences the FOF mass. If the force resolution of the N-body PS,andSTfitsatdifferentredshifts.AtallredshiftstheWarren code affectsthe profile, this too, addsa systematic bias. Here fithasthebestagreementwiththesimulationswithascatterof werecordthemassfunctionforthelinkinglengthb=0.2FOF approximately 20% and is a numerically significant improve- massincludingonlythecorrectionofWarrenetal. (2005).Ina mentoverST.Suchaclosematchisquitegratifyinggiventhe follow-uppaper(Lukic´etal.2006)wewilladdresssystematics overalldynamicrangeoftheinvestigation.ThePSfit,overthe issuesindetermininghalomassesindetail. massrangeconsidered,isapoorfitatz≥10,deviatingbymore Wenowdiscusscriteriafoundtobeveryimportantfordemon- thanafactoroftwofromthenumericalresults. stratingtheconvergenceandrobustnessofourresults. Details willbepresentedinLukic´ etal. (2006). Thefirstissuerelates totheinitialredshiftofthesimulation. Twoconditionsareim- 10000 portant:(i)thesimulationmustbeginsufficientlyearlythatthe 109 - 1010MO./h initialZel’dovichdisplacementisasmallenoughfractionofthe 1010 - 1011MO./h meaninterparticleseparation∆p; onaverageaparticleshould 1000 1011 - 1012MO./h notmovemorethan∼∆ /3;(ii)thehighestredshiftwherethe p mass functionis to be evaluatedmust be sufficiently removed halos 100 fifrrosmt cthhaenrceedstohifftoormffihrsatl-ocsr.osTsihnegsztcrrionssgewnhceyreopfatrhteicsleescrhiatevreiathies ber of m such that the small boxes require very high starting redshifts, Nu 10 e.g.,the4h- 1Mpcboxhadaninitialredshiftz =500.Thisisa in muchearlierstartingredshiftthanthoseusedinprevioussimu- lations;theconventionalrequirementthatallmodesinthebox 1 be linear at the initial redshiftprovesto be much weaker, and thereforeinadequate,asaconvergencecriterion. 0.1 A simple test of how well the simulations track the mass 5 10 15 20 Redshift function formulae is to follow the number of halos in a spec- ified mass bin at a given redshift. For this purpose we con- FIG. 2.—Halogrowthfunctionforthreemassbinsforthe16h- 1Mpcbox. TheWarren(solid),ST(long-dashed),andPS(short-dashed)fitsarecompared vertthemassfunctionfitintoafunctionofz,definingthehalo tosimulationdatawithPoissonerrorbars. Notethequalityoftheagreement growth functionas shown in Figure 2. The evolution of three withtheWarrenfit. massbinsisshownasafunctionofzalongwithresultsfromthe 4 CapturingHalosatHighRedshifts TABLE1 SUMMARYOFTHEPERFORMEDRUNS Mesh BoxSize Resolution z z ParticleMass SmallestHalo #ofRealizations in final 10243 126h- 1Mpc 120h- 1kpc 50 0 9.94×109h- 1M⊙ 3.98×1011h- 1M⊙ 10 10243 64h- 1Mpc 62.5h- 1kpc 80 0 1.30×109h- 1M⊙ 5.2×1010h- 1M⊙ 5 10243 32h- 1Mpc 31.25h- 1kpc 150 5 1.63×108h- 1M⊙ 6.52×109h- 1M⊙ 5 10243 16h- 1Mpc 15.63h- 1kpc 200 5 2.04×107h- 1M⊙ 8.16×108h- 1M⊙ 5 10243 8h- 1Mpc 7.81h- 1kpc 250 10 2.55×106h- 1M⊙ 1.02×108h- 1M⊙ 20 10243 4h- 1Mpc 3.91h- 1kpc 500 10 3.19×105h- 1M⊙ 1.27×107h- 1M⊙ 5 Note.—Massandforceresolutionsofthedifferentruns.Thesmallesthalosweconsidercontain40particles.Allsimulationsarerunwith2563particles. 3 quired,asWhite(2002)pointsout,“itmaynotbesufficientto useasimpleparametrizedform”inconstrainingcosmological Warren fit 2 4 Mpc/h parameterswiththemassfunction. 8 Mpc/h Theerrorcontrolcriteriadevelopedinthisworkhaveanat- 1 16 Mpc/h uralapplicationinhigh-resolutionAMRsimulationsintheset- -3h)]) 0 3624 MMppcc//hh ttiinognoisfirnefipnroegmreesnst.anderrorcontrolcriteria.Workinthisdirec- c/ 126 Mpc/h p M PS fit M[( -1 ST fit WethankKevAbazajian,DanHolz,LamHui,GerardJung- man,SavvasKoushiappas,AdamLidz,SergeiShandarin,Ravi g o dl-2 Sheth, and Mike Warren for useful discussions. The authors dn/ acknowledge support from IGPP, LANL. S.H. and K.H. ac- log( -3 knowledge support from the DOE via the LDRD program at LANL. P.M.R. and Z.L. acknowledge UIUC, NCSA, and a DOE/NNSA PECASE award (LLNL B532720). S.H., K.H., -4 and P.M.R. acknowledge the hospitality of the Aspen Center forPhysicswherepartofthisworkwascarriedout. We espe- -5 z=20 z=15 z=10 z=5 z=0 cially acknowledge supercomputing support under the LANL InstitutionalComputingInitiative. 7 8 9 10 11 12 13 14 15 log(M./h])) O FIG.3.—Themassfunctionat5differentredshiftswithPoissonerrorbars. REFERENCES The red line is the Warren fit, blue is Press-Schechter, and black is Sheth- Bond,J.R,Cole,S.,Efstathiou,G,Kaiser,N. 1991,ApJ,379,440 Tormen. Cen, R., Dong, F., Bode, P., & Ostriker, J.P. 2004, astro-ph/0403352, ApJ, submitted Davis,M.,Efstathiou,G.,Frenk,C.S.1985,ApJ,292,371 4. CONCLUSIONSANDDISCUSSION Einasto,J.,Klypin,A.A.,Saar,E.,Shandarin,S.F. 1984,MNRAS,206,529 Furlanetto,S.R.,McQuinn,M.,Hernquist,L., 2005astro-ph/0507524 Inthispaperwehavestudiedtheevolutionofthemassfunc- Gelb,J.M.&Bertschinger,E. 1994,ApJ,436,467 Haiman,Z.,Loeb,A. 2001,ApJ,552,459 tion starting at a redshift of z=20 and covering a halo mass Heitmann,K.,Ricker,P.M.,Warren,M.S.,&Habib,S.2005,ApJS,160,28 rangeof107 to1015h- 1M⊙. Ourresultsincorporatenewhalo- Holder,G,Haiman,Z.,&Mohr,J. ApJ,560,L111 based N-bodyerrorcontrolcriteria that are describedin more Jang-Condell,H.&Hernquist,L. 2001,ApJ,548,68 Jenkins,A.etal. 2001,MNRAS,321,372 detailin Lukic´ etal. (2006). We findthatthePress-Schechter Kogut,A.etal.2003,ApJS,148,161 massfunctiondeviatessignificantlyfromourresults. Morere- Lacey,C.G.&Cole,S. 1993,MNRAS,262,627 Lukic´,Z.,Heitmann,K.,Habib,S.,&Ricker,P.M.2006,inpreparation cent mass function fits are in better agreement; in particular, MacTavish,C.J.etal.2005,astro-ph/0507503,ApJ,submitted therecentlyintroducedfittingfunctionofWarrenetal. (2005) O’Shea, B.W., Nagamine, K., Springel, V., Hernquist L., & Norman, M.L. agreesatthe20%levelovertheentireredshiftrange. 2005,ApJS,160,1 Press,W.H.&Schechter,P. 1974,ApJ,187,425 Thepreciseagreementofthenumericallyobtainedhalogrowth Reed,D.etal. 2003,MNRAS,346,565 functionaswellastheevolutionofthemassfunctionwiththe Seljak,U.&Zaldarriga,M. 1996,ApJ,469,437 Sheth,R.K.&Tormen,G. 1999,MNRAS,308,119 (evolved z=0) Warren fit demonstrates the remarkable result Sheth,R.K.&Tormen,G. 2002,MNRAS,329,61 thattheevolutionofthemassfunctioniscompletelycontrolled Sheth,R.K.,Mo,H.J.,&Tormen,G. 2001,MNRAS,323,1 bythelineargrowthofthevarianceofthelineardensityfield. Spergel,D.N.etal.2003,ApJS,148,175 Springel,V.etal. 2005,Nature,435,629 In order to find a mass function fit relevant to observa- Summers,F.J.,Davis,M.&Evrard,A.E.1995,ApJ,454,1 tions,severalhurdlesremaintobeovercome,includingreach- Tegmark,M.etal. 1997,ApJ,474,1 ingagreementonanappropriatedefinitionofhalomass(White Warren, M.S., Abazajian, K., Holz, D.E., and Teodoro, L. 2005, ApJL, submitted 2001) and improving the precision and accuracy of N-body White,M. 2001,A&A,367,27 codes beyondthe currentstate of the art (O’Shea et al. 2005; White,M. 2002,ApJS,143,241 Zel’dovich,Y.B.1970,A&A,5,84 Heitmannetal. 2005). Dependingonthelevelofprecisionre-