ebook img

Capturing and Analyzing Internet Worms - Computer Science @ UC PDF

156 Pages·2007·1.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Capturing and Analyzing Internet Worms - Computer Science @ UC

JedidiahRichardCrandall June2007 ComputerScience CapturingandAnalyzingInternetWorms Abstract Thisdocumentisaboutmalwareanalysis,withaparticularfocusonexploit-basedInternet worms that spread from one host to another over the network by exploiting a software vulnerability in the new host being attacked. Based on our experiences analyzing real worms that use this method of worm propagation we develop a model that divides this attack into three stages: the exploit vector ((cid:15)) where the machine being attacked is still running its vulnerable code, the bogus control data (γ) that is the part of the attack that is directly involved in control flow hijacking, and the payload (π) where the worm code is beingexecutedinsteadofthe codeoftheattackedsystem. The Epsilon-Gamma-Pi model will be defined more formally in Chapter 3. In this document the particular focus will be on control data attacks, but the model general- izes to hijacking of control flow at any level of abstraction. What we will show in this dissertation is that malware analysis put into the context of the Epsilon-Gamma-Pi model can take advantage of various limitations placed on the worm at each of the stages. Re- searchers and malware analysis professionals can benefit greatly from an understanding of the differences between the stages in terms of the adversarial model, the polymorphic and metamorphic techniques to evade signature detection, and the amount of information about the threat that can be discovered in a particular stage. Three specific examples are describedindetail: Minos,anarchitecturalmechanismtocatchcontroldataattacksintheγ stage;DACODA,atooltoanalyzeattackinvariantsthatlimitpolymorphisminthe(cid:15) stage; and Temporal Search, a method to analyze the π stage anddiscovertimebomb attacks in a worm’spayload. CapturingandAnalyzingInternet Worms By JEDIDIAHRICHARDCRANDALL B.S.(Embry-Riddle AeronauticalUniversity)2002 DISSERTATION Submittedinpartial satisfactionofthe requirementsforthe degreeof DOCTOROF PHILOSOPHY in Computer Science inthe OFFICEOF GRADUATESTUDIES ofthe UNIVERSITYOFCALIFORNIA DAVIS Approved: Committeeincharge 2007 –i– CapturingandAnalyzingInternet Worms Copyright2007 by JedidiahRichardCrandall Tomydad–forcountlessconversations onthepatio abouthistory, art,creativity, politics,whatsciencemeans, andallofthethingsthatmakeascientistcomplete, and, tomymom–sincemynaturaltechnicalabilitiescouldn’t havepossiblycomefrommydad. –ii– Contents ListofFigures vi ListofTables vii 1 Introduction 1 2 Minos(γ) 3 2.1 AboutMinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.1 DiscussionofPolicyTradeoffs . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.1 HardwareEmulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.2 OperatingSystemChanges . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6.3 VirtualMemorySwapping . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6.4 WindowsandBSDImplementations . . . . . . . . . . . . . . . . . . . . . 23 2.7 ExperimentalMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.7.1 FalsePositiveRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.7.2 EffectivenessatStoppingAttacks . . . . . . . . . . . . . . . . . . . . . . 24 2.7.3 VirtualMemorySwappingOverhead . . . . . . . . . . . . . . . . . . . . 27 2.8 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.8.1 Falsepositives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.8.2 ExploitTests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.8.3 Virtualmemoryswappingoverhead . . . . . . . . . . . . . . . . . . . . . 34 2.9 SecurityAssessmentforMoreAdvancedAttacks . . . . . . . . . . . . . . . . . . 34 2.9.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.9.2 BestPractices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.9.3 IntegrityTracking: AFundamentalTradeoff . . . . . . . . . . . . . . . . . 36 2.9.4 Non-ControlDataAttacks . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.10 TheHannibalExploit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.11 Follow-onResearchfromMinos . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.12 ConclusionsfromtheMinosWork . . . . . . . . . . . . . . . . . . . . . . . . . . 41 –iii– 3 ExperienceswithMinosHoneypots 42 3.1 AbouttheMinosHoneypots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 Exploits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 Control Flow is Usually Diverted Directly to the Attacker’s Executable CodeviaaNOPSled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.2 NOPSledsareaNecessaryTechniqueforDealingwithUncertaintyAbout theLocationofthePayloadCode . . . . . . . . . . . . . . . . . . . . . . 46 3.2.3 HackersHaveNotYetDemonstratedtheNeededTechniquestoWritePoly- morphicWormCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 TheEpsilon-Gamma-PiModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.1 Epsilon((cid:15))=Exploit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.2 Gamma(γ)=BogusControlData . . . . . . . . . . . . . . . . . . . . . . 56 3.3.3 Pi(π)=Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.4 OnRowSpacesandRanges . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.5 PolymorphismintheEpsilon-Gamma-PiModel. . . . . . . . . . . . . . . 58 3.4 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 DACODA((cid:15)) 61 4.1 AboutDACODA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2.1 TheNeedtoBeVulnerability-Specific . . . . . . . . . . . . . . . . . . . . 62 4.2.2 DACODA:TheDavisMalcodeAnalyzer . . . . . . . . . . . . . . . . . . 63 4.2.3 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.4 StructureoftheChapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 TheEpsilon-Gamma-PiModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3.1 PolymorphismandMetamorphism . . . . . . . . . . . . . . . . . . . . . . 69 4.3.2 MotivationfortheModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.3 TheNeedforanOracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4 HowDACODAWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.5 ExploitsAnalyzedbyDACODA . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.5.2 CodeRedIIasaConcreteExample . . . . . . . . . . . . . . . . . . . . . 77 4.5.3 ComplexitiesandChallenges . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.6 Poly/Metamorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.6.1 WhatarePoly-andMetamorphism? . . . . . . . . . . . . . . . . . . . . . 85 4.6.2 Whatisavulnerability? . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.6.3 ThePD-Requires-ProvidesModel . . . . . . . . . . . . . . . . . . . . . . 88 4.7 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.8 ConclusionoftheChapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5 TemporalSearch(π) 92 5.1 AboutTemporalSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2.1 ProposedApproachandContributionsofthisChapter . . . . . . . . . . . 94 5.2.2 StructureoftheChapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3 Automated,Behavior-Based Analysis . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4 TemporalSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.4.1 HowTimeisMeasuredbyaSystem . . . . . . . . . . . . . . . . . . . . . 98 –iv– 5.4.2 SymbolicExecution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4.3 TheBasicIdea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.4.4 LinuxExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.4.5 TimePerturbationinWindows . . . . . . . . . . . . . . . . . . . . . . . . 106 5.4.6 ComparingHowTimersareUsed . . . . . . . . . . . . . . . . . . . . . . 106 5.4.7 WhyMustPerceivedTimebePerturbed? . . . . . . . . . . . . . . . . . . 108 5.5 DiscoveringPredicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.5.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.5.2 CodeRedv1(noCME[173]assigned) . . . . . . . . . . . . . . . . . . . 110 5.5.3 Blaster.E(noCMEassigned) . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.5.4 Klez.A(noCMEassigned) . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.5.5 MyParty.A(noCMEassigned) . . . . . . . . . . . . . . . . . . . . . . . . 111 5.5.6 KamaSutra(CME-24)andSober.X(CME-681) . . . . . . . . . . . . . . 112 5.5.7 SummaryofResultsonDiscoveringPredicates . . . . . . . . . . . . . . . 113 5.6 RecoveringtheTimetable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.6.2 DiscoveringTimetableEntries . . . . . . . . . . . . . . . . . . . . . . . . 116 5.6.3 AnIllustratingExample . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.6.4 CompletingtheTimetable . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.7 ChallengesforFutureWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.7.1 RegularMalware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.7.2 EvasiveMalware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.8 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.8.1 VirtualMachines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.8.2 TimePerturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.8.3 IntrusionDetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.8.4 MalwareAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.9 ConclusionsaboutTemporalSearch . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 ConcludingRemarksandFutureWork 125 6.1 QuestionsforFutureResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.1.1 Whatisaninstanceofmalware? . . . . . . . . . . . . . . . . . . . . . . . 125 6.1.2 Whatisthecontextofmalwareanalysis? . . . . . . . . . . . . . . . . . . 129 6.1.3 Howtokeephumansintheloop? . . . . . . . . . . . . . . . . . . . . . . 131 6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 A TokensDiscoveredbyDACODAforSelectedExploits 133 Bibliography 134 –v– List of Figures 2.1 DefinitionsoftrustfordifferentMinosimplementations. . . . . . . . . . . . . 5 2.2 Minos in an out-of-order execution microprocessor core. *Based on size and compatibilitysettings. **Ignoredfor32-bitloadsandstores. . . . . . . . . . . 16 2.3 Thegccstresstest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Linuxwebserveroveronemonth . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 gccVirtualMemorySwappingPerformance . . . . . . . . . . . . . . . . . . . 32 2.6 vprVirtualMemorySwappingPerformance . . . . . . . . . . . . . . . . . . . 32 2.7 mcfVirtualMemorySwappingPerformance . . . . . . . . . . . . . . . . . . . 33 2.8 bzip2VirtualMemorySwappingPerformance . . . . . . . . . . . . . . . . . . 33 3.1 AnOverly-SimpleModelofBufferOverflowExploits . . . . . . . . . . . . . . 43 3.2 TheEpsilon-Gamma-PiModelforControlDataExploits . . . . . . . . . . . . 54 4.1 TheEpsilon-Gamma-PiModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1 Howtimersareused. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2 Grammarforpredicatesandexpressions,whereeip ∈ EIP,n ∈N. . . . . . . 115 5.3 Excerptfromctime()’ssourcecode. . . . . . . . . . . . . . . . . . . . . . . . 117 5.4 Annotated trace with weakest preconditions (shaded). The post-assertion is shownonthelastline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 –vi– List of Tables 2.1 TheexploitsthatweattackedMinoswith. . . . . . . . . . . . . . . . . . . . . . 28 2.2 TheexploitsthatothersactuallyattackedMinoswith. . . . . . . . . . . . . . . 28 3.1 ActualExploitsMinoshasStopped. . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 CharacteristicsoftheExploits . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 RegisterSpringsPresentinPhysicalMemoryfortheDCOMexploit . . . . . . 44 3.4 CharacteristicsoftheProjections . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1 HowQuadExpressionsareHandled. . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 SpecialRulesandExampleInstructions. . . . . . . . . . . . . . . . . . . . . . 72 4.3 ExploitsAnalyzedbyDACODA. . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Whereexploitsarediscovered. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.5 SignatureTokens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 –vii– Acknowledgments I would first like to thank my three advisors, who are also my committee members: Fred Chong, for teaching me all of the things I didn’t know about being an effective researcher and member of a research community–especially all of the things I didn’t know that I didn’t know; Felix Wu, who imparted to me a sense of what’s really important in academia–namely the people you work with;andZhendongSu–ifIcancarrywithmeevenhalfoftheenthusiasmthatProfessorSuhasfor workingwithstudentsanddiscussingtheirideasIknowI’lldoverywellasajuniorfacultymember. AlmosttheentirerestoftheComputerSciencedepartmentfaculty, andafewE.C.E.pro- fessorsas well, helped me out along theway in one way or another (coming to practice talks, dis- cussingresearchproblems,etc.). Justtonameafew: MattBishop,HaoChen,PremDevanbu,Matt Farrens, Matt Franklin, Karl Levitt, Chip Martel, Norm Matloff, Ron Olsson, Phil Rogaway, and VenkateshAkella. Helen Wangat MSRhelped me out in a lotof different ways, Mark Oskin, Di- anaFranklin,andTimSherwoodneverhesitatedtosharetheirexperiencewiththeiracademiclittle brother,andNickWeaverwasalwaysveryencouraging. I’vehadthepleasureofworkingalongside some wonderful fellow students, including Daniela Alvim Seabra de Oliveira, Gary Wassermann, everyone in PL reading group, and my labmates: Deen Copsey, Ravishankar Rao, John Oliver, Paul Sultana, Darshan Thaker, Erik Czernikowski, Susmit Biswas and the others at UCSB, and SetsoMetodi. TheworkinSection5.6ismore-soGaryWassermann’s workthanmyown,butwas includedinChapter5forcompleteness. I thank the department’s wonderful administrative staff, especially the graduate coordi- nators Kim Reinking and Mary Reid. Also, none of the work I’ve done would have been possible withoutopensourcesoftwaresoIthanktheopensourcedevelopers. It has been very important to me to have my family (my parents, sisters, grandparents, aunts, uncles, and nieces and nephews) with me during the past 22 years of education. My dad especially has shared his graduate school experience, and also his father’s, with me–a gratuitous quotefromDante’sInfernoisnotquiteaslunaticallyoutlandishasapictureoftwofliesprocreating orapotterywheelmountedupsidedownonagarageceiling,buthopefullytheworkpresentedhere hastheCrandallmarkonit. –viii–

Description:
searchers and malware analysis professionals can benefit greatly from an .. Windows or Linux Workstation, can take on infinite complexity when placed in a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.