ebook img

CAPTURE TIME IN VARIANTS OF COPS & ROBBERS GAMES A Thesis Submitted to the Faculty ... PDF

144 Pages·2013·0.8 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CAPTURE TIME IN VARIANTS OF COPS & ROBBERS GAMES A Thesis Submitted to the Faculty ...

CAPTURE TIME IN VARIANTS OF COPS & ROBBERS GAMES A Thesis Submitted to the Faculty in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics by Natasha Komarov DARTMOUTH COLLEGE Hanover, New Hampshire July 30, 2013 Examining Committee: Peter Winkler, Chair Richard Nowakowski Sergi Elizalde Peter Doyle F. Jon Kull, Ph.D. Dean of Graduate Studies Copyright by Natasha Komarov 2013 Abstract We examine variations of cops and robbers games on graphs. Our goals are to intro- duce some randomness into their study, and to estimate (expected) capture time. We show that a cop chasing a random walker can capture him in expected time n+o(n). We also discuss games in which the players move in the dark (showing that a cop can capture an immobile hider in time n on any graph and any robber in time n on K ) n and in which the players suffer various restrictions on their movements. Finally, we consider open problems, including the idea of a patrolling scheme—that is, a plan for the “beat” a cop ought to walk on a graph in order to maximize the danger for the robber of committing a crime at any given location. ii Acknowledgements I want to thank all of the people that made it possible for me to get through graduate school. Firstofall, thankyoutomyparents: withoutyourlifelongsupportIprobably wouldn’t have been in graduate school to begin with (an obvious understatement—I would not have been here in many senses of the phrase without you). Thank you Asa: you have always kept things running so smoothly while I worried about this thesis and the work it contains that it’s taken me a few years to understand how amazing of a partner you actually are; you’ve also changed for the better my entire mental layout about life, math, and everything. Thank you Misha and Oliver, for being there. Thank you to my advisor, Peter Winkler: you’ve been a great advisor, and I don’t think there’s anything more for which I could have asked. Thank you also to the rest of my thesis defense committee: Richard Nowakowski, Peter Doyle, and Sergi Elizalde. And finally, thank you to all of the people I’ve spoken with over the years who have given me ideas, directly or indirectly, that have fed into my work. In particular, the work in Chapter 2 benefited from conversations at Microsoft Research inRedmond, WashingtonwithOmerAngel, AnderHolroyd, RussLyons, YuvalPeres, and David Wilson. iii Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 1 Introduction 1 1.1 History of Pursuit and Evasion Games . . . . . . . . . . . . . . . . . 3 1.2 Assumptions and Notation . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 General assumptions . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Cops & Drunks 6 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The Smarter Cop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Gross Progress . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Fine Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Generalizations and Variations . . . . . . . . . . . . . . . . . . . . . . 24 3 Cops in the Dark: Depth First Pursuit 26 3.1 Cops & Sitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 iv 3.1.1 Player Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Value of the Cop vs. Sitter Game . . . . . . . . . . . . . . . . 33 3.2 Cops & Robbers on K . . . . . . . . . . . . . . . . . . . . . . . . . . 42 n 3.2.1 Expected Capture Time . . . . . . . . . . . . . . . . . . . . . 43 3.3 Depth First Pursuit on a Binary Tree . . . . . . . . . . . . . . . . . . 47 4 Hunters & Moles 52 4.1 A Characterization of Hunter-Win Graphs . . . . . . . . . . . . . . . 52 4.1.1 Some Hunter-Win Graphs . . . . . . . . . . . . . . . . . . . . 53 4.1.2 Mole-win Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.3 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Optimality of the Hunter Strategy . . . . . . . . . . . . . . . . . . . . 63 4.3 Hunter vs. Sneakier Mole . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4 Appendix to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4.1 Huntervs.Mole: AnAlgebraicApproachandHunter-WinStrat- egy Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4.2 Hunter vs. Mole: Winning Strategy Generating Code . . . . . 78 5 Cops & Gamblers 81 5.1 Cop vs. gambler on P . . . . . . . . . . . . . . . . . . . . . . . . . . 82 n 5.2 Cop vs. gambler on a tree . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3 Cop vs. gambler on a general graph . . . . . . . . . . . . . . . . . . . 84 5.4 Cop vs. unknown gambler . . . . . . . . . . . . . . . . . . . . . . . . 86 6 Capture Time in (Traditional) Cops & Robbers 96 6.1 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 v 6.2 Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3 Graph Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7 Speculation and Future Directions 106 7.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.2 Further Investigations into Capture Time . . . . . . . . . . . . . . . . 109 7.2.1 Cop vs. Visible Robber . . . . . . . . . . . . . . . . . . . . . . 109 7.2.2 Cop vs. Invisible Robber . . . . . . . . . . . . . . . . . . . . . 110 7.3 Patrolling Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.3.1 Example: α-momentum cop on C . . . . . . . . . . . . . . . 113 4 7.3.2 Topology on the space of legal walks . . . . . . . . . . . . . . 117 7.3.3 Patrolling schemes . . . . . . . . . . . . . . . . . . . . . . . . 118 7.3.4 Optimal patrolling schemes . . . . . . . . . . . . . . . . . . . 122 7.3.5 Example: Optimal patrolling scheme on K . . . . . . . . . . 127 3 References 130 vi List of Tables 3.1 A table of the cop’s and robber’s heights during the first half of a DFP on a tree of height 4 (where p = P(capture at t)). . . . . . . . . . . . 50 t 6.1 A table of the robber’s moves . . . . . . . . . . . . . . . . . . . . . . 101 vii List of Figures 2.1 The Ladder to the Basement . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 At least 4 steps are required to secure a useful bound on a random walk’s progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Our (alleged) counterexample G . . . . . . . . . . . . . . . . . . . . . 19 4.1 A diagram of the mole’s choices on C given any hunter move sequence 58 n 4.2 The graph S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3 A diagram of the mole’s choices given any hunter move sequence . . . 61 4.4 A diagram of the mole’s choices after the hunter’s first arrival at the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.5 An example of a lobster with a loop, separated into L and R . . . . . 69 4.6 The graphs G , G , and G . . . . . . . . . . . . . . . . . . . . . . . 72 1 2 3 4.7 A diagram of the mole’s choices in G given any hunter move sequence 74 1 4.8 A diagram of the mole’s choices in G given any hunter move sequence 75 2 4.9 A diagram of the mole’s choices in G given any hunter move sequence 75 3 6.1 H: A cop-win graph with a unique corner . . . . . . . . . . . . . . . 99 6.2 H(11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 viii 6.3 The ring digraph R(7) . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4 A digraph with one cop edge . . . . . . . . . . . . . . . . . . . . . . . 104 7.1 The Ladder to the Basement . . . . . . . . . . . . . . . . . . . . . . . 109 7.2 The graph B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 12,4 7.3 The cycle C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4 7.4 Graph of the functions W (α), W (α), and W (α). . . . . . . . . . . . 116 1 2 3 ix

Description:
We examine variations of cops and robbers games on graphs. homicidal chauffeur problem [30], the Apollonius pursuit problem [31], and many.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.