3.1:CAPM 3.2:Arbitrage 3.3:APT 3.4:Summary CAPM, Arbitrage, and Linear Factor Models George Pennacchi University ofIllinois GeorgePennacchi UniversityofIllinois CAPM,Arbitrage,LinearFactorModels 1/41 3.1:CAPM 3.2:Arbitrage 3.3:APT 3.4:Summary Introduction We now assume all investors actually choose mean-variance e¢ cient portfolios. By equating these investors(cid:146)aggregate asset demands to aggregate asset supply, an equilibrium single risk factor pricing model (CAPM) can be derived. Relaxing CAPM assumptions may allow for multiple risk factors. Arbitrage arguments can be used to derive a multifactor pricing model (APT) Multifactor models are very popular in empirical asset pricing GeorgePennacchi UniversityofIllinois CAPM,Arbitrage,LinearFactorModels 2/41 3.1:CAPM 3.2:Arbitrage 3.3:APT 3.4:Summary Review of Mean-Variance Portfolio Choice Recall that for n risky assets and a risk-free asset, the optimal portfolio weights for the n risky assets are ! = (cid:21)V 1 R(cid:22) R e (1) (cid:3) (cid:0) f (cid:0) (cid:0) (cid:1) R R p f where (cid:21) (cid:0) . (cid:17) R(cid:22) Rfe 0V(cid:0)1 R(cid:22) Rfe (cid:0) (cid:0) The amount invested in the risk-free asset is then 1 e ! . (cid:0) (cid:1) (cid:0) (cid:1) 0 (cid:3) (cid:0) R is determined by where the particular investor(cid:146)s p indi⁄erence curve is tangent to the e¢ cient frontier. All investors, no matter what their risk aversion, choose the risky assets in the same relative proportions. GeorgePennacchi UniversityofIllinois CAPM,Arbitrage,LinearFactorModels 3/41 3.1:CAPM 3.2:Arbitrage 3.3:APT 3.4:Summary Tangency Portfolio Also recall that the e¢ cient frontier is linear in (cid:27) and R : p p 1 Rp = Rf + R(cid:22) Rfe 0V(cid:0)1 R(cid:22) Rfe 2 (cid:27)p (2) (cid:0) (cid:0) (cid:16) (cid:17) (cid:0) (cid:1) (cid:0) (cid:1) This frontier is tangent to the (cid:147)risky asset only(cid:148)frontier, where the following graph denotes this tangency portfolio as !m located at point (cid:27) , R . m m GeorgePennacchi UniversityofIllinois CAPM,Arbitrage,LinearFactorModels 4/41 3.1:CAPM 3.2:Arbitrage 3.3:APT 3.4:Summary Graph of E¢ cient Frontier GeorgePennacchi UniversityofIllinois CAPM,Arbitrage,LinearFactorModels 5/41 3.1:CAPM 3.2:Arbitrage 3.3:APT 3.4:Summary The Tangency Portfolio Note that the tangency portfolio satis(cid:133)es e !m = 1. Thus 0 e (cid:21)V 1 R(cid:22) R e = 1 (3) 0 (cid:0) f (cid:0) (cid:0) (cid:1) or 1 (cid:21) = m R Rfe 0V(cid:0)1e (cid:0) (4) (cid:17) (cid:0) h i so that (cid:0) (cid:1) !m = mV 1(R(cid:22) R e) (5) (cid:0) f (cid:0) GeorgePennacchi UniversityofIllinois CAPM,Arbitrage,LinearFactorModels 6/41 3.1:CAPM 3.2:Arbitrage 3.3:APT 3.4:Summary Asset Covariances with the Tangency Portfolio Now de(cid:133)ne (cid:27) as the n 1 vector of covariances of the M (cid:2) tangency portfolio with each of the n risky assets. It equals (cid:27) = V!m = m(R(cid:22) R e) (6) M f (cid:0) By pre-multiplying equation (6) by !m , we also obtain the 0 variance of the tangency portfolio: (cid:27)2 = !m V!m = !m (cid:27) = m!m (R(cid:22) R e) (7) m 0 0 M 0 f (cid:0) = m(R(cid:22) R ) m f (cid:0) where R(cid:22) !m R(cid:22) is the expected return on the tangency m 0 (cid:17) portfolio. GeorgePennacchi UniversityofIllinois CAPM,Arbitrage,LinearFactorModels 7/41 3.1:CAPM 3.2:Arbitrage 3.3:APT 3.4:Summary Expected Excess Returns Rearranging (6) and substituting in for 1 = 1 (R R ) m (cid:27)2m m (cid:0) f from (7), we have 1 (cid:27) (R(cid:22) R e) = (cid:27) = M(R(cid:22) R ) = (cid:12)(R(cid:22) R ) (8) (cid:0) f m M (cid:27)2 m (cid:0) f m (cid:0) f m where (cid:12) (cid:27)M is the n 1 vector whose ith element is (cid:17) (cid:27)2m (cid:2) Cov(R~m;Ri). Var(R~m) Equatioen (8) links the excess expected return on the tangency portfolio, (R(cid:22) R ), to the excess expected returns on the m f individual risky(cid:0)assets, (R(cid:22) R e). f (cid:0) GeorgePennacchi UniversityofIllinois CAPM,Arbitrage,LinearFactorModels 8/41 3.1:CAPM 3.2:Arbitrage 3.3:APT 3.4:Summary CAPM The Capital Asset Pricing Model is completed by noting that the tangency portfolio, !m, chosen by all investors must be the equilibrium market portfolio. Hence, R and (cid:27)2 are the mean and variance of the market m m portfolio returns and (cid:27) is its covariance with the individual M assets. Aggregate supply can be modeled in di⁄erent ways (endowment economy, production economy), but in equilibrium it will equal aggregate demands for the risky assets in proportions given by !m. Also R < R for assets to be held in positive amounts f mv (!m > 0). i GeorgePennacchi UniversityofIllinois CAPM,Arbitrage,LinearFactorModels 9/41 3.1:CAPM 3.2:Arbitrage 3.3:APT 3.4:Summary CAPM: Realized Returns De(cid:133)ne asset i(cid:146)s and the market(cid:146)s realized returns as R~ = R(cid:22) +(cid:23)~ and R~ = R(cid:22) +(cid:23)~ where (cid:23)~ and (cid:23)~ are the i i i m m m i m unexpected components. Substitute these into (8): R~ = R +(cid:12) (R~ (cid:23)~ R )+(cid:23)~ (9) i f i m m f i (cid:0) (cid:0) = R +(cid:12) (R~ R )+(cid:23)~ (cid:12) (cid:23)~ f i m f i i m (cid:0) (cid:0) = R +(cid:12) (R~ R )+" f i m f i (cid:0) where " (cid:23)~ (cid:12) (cid:23)~ . Note that i i i m (cid:17) (cid:0) e Cov(R~ ;" ) = Cov(R~ ;(cid:23)~ ) (cid:12) Cov(R~ ;(cid:23)~ ) (10) em i m i (cid:0) i m m Cov(R~ ;R~ ) = Cov(R~ ;R~ ) m i Cov(R~ ;R~ ) e m i (cid:0) Var(R~ ) m m m = Cov(R~ ;R~ ) Cov(R~ ;R~ ) = 0 m i m i (cid:0) GeorgePennacchi UniversityofIllinois CAPM,Arbitrage,LinearFactorModels 10/41
Description: