1 Capacity Region of Multiple Access Channel with States Known Noncausally at One Encoder and Only Strictly Causally at the Other Encoder 2 1 0 2 Abdellatif Zaidi Pablo Piantanida Shlomo Shamai (Shitz) n a J 6 1 ] Abstract T I . s Weconsideratwo-userstate-dependentmultiaccesschannelinwhichthestatesofthechan- c [ nelareknownnon-causallytooneoftheencodersandonlystrictlycausallytotheotherencoder. 1 Both encoders transmit a common message and, in addition, the encoder that knows the states v 8 non-causallytransmitsanindividualmessage.Wefindexplicitcharacterizationsofthecapacity 7 2 region of this communication model in both discrete memoryless and memoryless Gaussian 3 . cases.Inparticularthecapacityregionanalysisdemonstratestheutilityoftheknowledgeofthe 1 0 statesonlystrictlycausallyattheencoderthatsendsonlythecommonmessageingeneral.More 2 1 specifically,inthediscretememorylesssettingweshowthatsuchaknowledgeisbeneficialand : v increasesthecapacityregioningeneral.IntheGaussiansetting,weshowthatsuchaknowledge i X doesnothelp,andthecapacityissameasifthestateswerecompletelyunknownattheencoder r a thatsendsonlythecommon message.Furthermore,wealsostudythespecialcaseinwhichthe The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Saint-Petersburg,Russia,August2011.ThisworkhasbeensupportedbytheEuropeanCommissionintheframework oftheFP7NetworkofExcellenceinWirelessCommunications(NEWCOM++).TheworkofS.Shamaihasalsobeen supported by the CORNET consortium. Abdellatif Zaidi is with Universite´ Paris-Est Marne La Valle´e, 77454 Marne la Valle´e Cedex 2, France. Email: [email protected] Pablo Piantanida is with the Department of Telecommunications, SUPELEC, 91190 Gif-sur-Yvette, France. Email: [email protected] ShlomoShamai iswiththeDepartmentofElectricalEngineering,TechnionInstitute ofTechnology,TechnionCity, Haifa 32000, Israel. Email: [email protected] January17,2012 DRAFT 2 two encoders transmit only the common message and show that the knowledge of the states onlystrictlycausallyattheencoderthatsendsonlythecommonmessageisnotbeneficialinthis case, in both discrete memoryless and memoryless Gaussian settings. The analysis also reveals optimal ways of exploiting the knowledge of the state only strictly causally at the encoder that sends only the common message when such a knowledge is beneficial. The encoders collaborateto convey tothe decodera lossy version of the state, in additionto transmitting the information messages through a generalized Gel’fand-Pinsker binning. Particularly important in this problem are the questions of 1) optimal ways of performing the state compression and 2) whether or not the compression indices should be decoded uniquely. By developing two optimal coding schemes that perform this state compression differently, we show that when used as parts of appropriately tuned encoding and decoding processes, both compression a`- la noisy network coding, i.e., with no binning, and compression using Wyner-Ziv binning are optimal. The scheme that uses Wyner-Ziv binning shares elements with Cover and El Gamal original compress-and-forward,but differs from it mainly in that backwarddecoding is employed instead of forward decoding and the compression indices are not decoded uniquely. Finally,byexploringthe propertiesofour outerbound,we showthat,although notrequiredin general,thecompressionindicescaninfactbedecodeduniquelyessentiallywithoutalteringthe capacityregion, but atthe expense of largeralphabetssizes for the auxiliaryrandom variables. I. Introduction The study ofchannels that arecontrolledbyrandom states has spurredmuch interest, due to itsimportance frombothinformation-theoreticandcommunicationsaspects.Forexample,state-dependentchannelsmaymodel communicationinrandomfadingenvironments[1]orinthepresenceofinterferenceimposedbyadjacentusers. Thechannel states maybeknowninastrictly-causal,causalornoncausalmanner, toalloronlyasubset ofthe encoders.Foratransmissionoflengthn,letSn =(S ,S ,...,S )denotethestatesequence,withS representingthe 1 2 n i channelstateaffectingthechannelattimeorblocki.Forthetransmissioninblocki,thestatesequenceisknown non-causallyifitisknownentirelybeforethebeginningofthetransmission.Itisknowncausallyifitisknownup toandincludingtimei;anditisknownstrictlycausallyifitisknownonlyuptotimei 1.Thewaythechannel − stateinformationisutilizedandinfluencescapacitydependsalsoonwhichoftheencoders(s)anddecoder(s)are aware of it. In single user channels, the concept of channel state available at only the transmitter dates back to Shannon[2]forthecausalchannelstatecase,andtoGel’fandandPinsker[3]forthenon-causalchannelstatecase. Inmultiuserenvironments,agrowingbodyofworkstudiesmulti-userstate-dependentmodels.Recentadvances in this regard can be found in [4]–[27], and many other works. For acomprehensive review of state-dependent channelsandrelatedwork,thereadermayreferto[4]. There is a connection between the role of states known strictly causally at an encoder and that of output feedbackgiventothatencoder.Insingle-userchannels,itisnowwellknownthatstrictlycausalfeedbackdoesnot January17,2012 DRAFT 3 increasethecapacity[28].Inmultiuserchannelsornetworks,however,thesituationchangesdrastically,andoutput feedbackcanbebeneficial—butitsroleisstillhighlymissunderstood.Onehasasimilarpicturewithstrictlycausal states at the encoder. In single-user channels, independent and identically distributed states available only in a strictlycausalmannerattheencoderhavenoeffectonthecapacity.Inmultiuserchannelsornetworks,however, likefeedback,strictlycausalstatesingeneralincreasethecapacity. Advances in the study of the effect of strictly causal states in multiuser channels are rather very recent and concern mainly multiple access scenarios. In [15], Lapidothand Steinberg study a two-encoder multiple access channelwithindependentmessagesandstatesknowncausallyattheencoders.Theyshowthatthestrictlycausal statesequencecanbebeneficial,inthesensethatitincreasesthecapacityforthismodel.Thisresultisreminiscent of Dueck’s proof [29] that feedback can increase the capacity region of some broadcastchannels. In accordance with[29],themainideaoftheachievabilityresultin[15]isablockMarkovcodingschemeinwhichthetwousers collaboratetodescribethestatetothedecoderbysendingcooperativelyacompressedversionofit.Asnoticedin [15],althoughsomenon-zeroratethatotherwisecouldbeusedtotransmitpureinformationisspentindescribing the state to the decoder, the net effect can be an increase in the capacity. In [16], they show that strictly causal state information is beneficial even if the channel is controlled by two independent states each known to one encoderstrictlycausally.Inthiscase,eachencodercanhelptheotherencodertransmitatahigherratebysending acompressedversionofitsstatetothedecoder.In[18],Li,SimeoneandYenerimprovetheresultsof[15],[16]and extend themtothecaseofmultipleencoders.Theachievabilityresultsin[18]areinspiredbythenoisynetwork codingschemeof[30]and,unlike[15],[16],donotuseWyner-Zivbinning[31]forthecompressionofthestate.In averyrecentcontribution[32],LapidothandSteinbergderiveanewinnerboundonthecapacityregionforthe caseofasinglestategoverningthemultiaccesschannel.Theyalsoprovethattheinnerboundof[18]forthecase oftwoindependentstateseachknownstrictlycausallytooneencodercanindeedbestrictlybetterthanprevious boundsin[15],[16]–aresultwhichisconjecturedpreviouslybyLi,SimeoneandYenerin[18]. A. Studied Model Inthispaper,whichgeneralizesaformerconferenceversion[33],westudyatwo-userstate-dependentmultiple accesschannelwiththechannelstatesknownnon-causallyatoneencoderandonlystrictlycausallyattheother encoder.Thedecoderisnotawareofthechannelstates.AsshowninFigure1,bothencoderstransmitacommon messageand,inaddition,theencoderthatknowsthestatesnon-causallytransmitsanindividualmessage.This modelgeneralizes onewhosecapacityregionisestablished in[5]and inwhichtheencoder that sendsonlythe commonmessagedoesnotknowthestatesatall.Moreprecisely,letW andW denotethecommonmessageandthe c 1 individualmessagetobetransmittedin,say,nusesofthechannel;andSn =(S ,...,S )denotethestatesequence 1 n affectingthechannelduringthistime.Attimei,Encoder1knowsthecompletesequenceSn =(S ,...,S ,S,...,S ) 1 i 1 i n − andsendsX =φ (W ,W ,Sn),andEncoder2knowsonlySi 1 = (S ,...,S )andsendsX =φ (W ,Si 1)–the 1i 1 c 1 − 1 i 1 2i 2,i c − − functionsφ andφ aresomeencodingfunctions.Inthispaper,westudythecapacityregionofthisstate-dependent 1 2,i MACmodel.Asouranalysiswillshow,thisrequires,amongothers,understandingtheroleofthestrictlycausal partofthestatethatisrevealedtoEncoder2. January17,2012 DRAFT 4 Si−1 Encoder 2 X2n Wc WMAC Yn Decoder (Wˆc,Wˆ1) Y|X1,X2,S Encoder 1 X1n W1 Sn Fig.1. State-dependentMACwithdegradedmessagesetsand states knownnoncausallyatthe encoderthat sends both messages and only strictly causally at the other encoder. B. Main Contributions Inthediscretememorylesscase,wecharacterizethecapacityregionforthegeneralfinite-alphabetcasewitha single-letter expression.Theproofoftheachievabilitypartisbasedonablock-Markovcodingschemeinwhich thetwoencoderscollaboratetoconveyalossyversionofthe statetothedecoder,inthespiritof[15],[16],[32], inadditiontoageneralizedGel’fand-Pinskerbinningforthetransmissionoftheinformationmessages[3].From theangleofthestatecompression,codingschemesthatperformthestatecompressionforourmodeltiewithvery recentworksoncompressionsincompress-and-forwardtyperelayingnetworks[30],[34]–[36].Wefirstdevelopa codingschemeinwhichthestatecompressionisperformeda`-laKimetal.noisynetworkcodingschemeandshow thatitisoptimal,i.e.,achievesanouterboundthatweestablishforthestudiedmodel.Inthiscodingscheme,unlike [15],[16],[32]whereeveryinformationmessageisdividedintoblocksanddifferentsubmessagesaresentoverthese blocksandthendecodedoneatatimeusingthesamecodebookasintheoriginalcompress-and-forwardschemeby CoverandElGamal[37],heretheentirecommonmessageandtheentireindividualmessagearetransmittedover allblocksusingcodebooksthataregenerated independently, oneforeachblock,andthedecodingisperformed simultaneouslyusingallblocksasinthe noisynetwork codingschemeof [30].Also,like[30],ateachblockthe compressionindexofthestateofthepreviousblockissentusingstandardratedistortion,notWyner-Zivbinning. Atthe end ofthe transmission, the receiver uses the outputs ofall blocksto performsimultaneous decodingof theinformationcommonandindividualmessages,withoutuniquelydecodingthecompressionindices.Fromthis angle,ourcodingschemeconnectsmorewith[18],thanwith[15],[16]and[32]. Twoofthemostimportantfeaturesofourcodingschemethatisbasedonnoisynetworkcodingarei)standard compressionwithoutWyner-Zivbinningandii)non-explicitdecodingofthecompressionindices.Investigating whetherthesefeaturesarepivotalforoptimalityinourproblem,asarguedin[30]forsomerelatedmodels,wealso explorebinning-basedcompressions.Weshowthatthecapacityregionofourmodelcanalsobeachievedusing January17,2012 DRAFT 5 analternate codingschemeinwhichthe state compressionisrealizedusingWyner-Zivbinning. Theemployed optimalalternatecodingschemeshareselementswithCoverandElGamalcompress-and-forward[37],butdiffers fromitintwoaspects:1)backwarddecodingisutilizedinsteadoftheforwarddecodingof[37],and2)unlike[37], the compression indices are not decoded uniquely. Decoding backwardly instead of forwardly seems essential forthe optimalityofthis alternate codingscheme here. Atthislevel, wenote that the finding inthis paper that backwarddecodingwithnon-uniquedecodingofthecompressionindicesisbeneficial,mayholdmoregenerally in other scenarios that involve Wyner-Ziv binning. In the fading setting, this is also observed in [38]. Next, by exploringourouterbound further, weshowthat, althoughnotrequired,onecanmodifythiscodingschemein amannertogetthecompressionindicesdecodedatthereceiveressentiallywithoutalteringthecapacityregion but at the expense of larger alphabets sizes of the involved auxiliary random variables. The decoding of the compressionindicesintroducesanadditionalrateconstraint;butweshowthatthisconstraintissatisfiedbythe auxiliaryrandomvariablesoftheouterbound.Finally,wenotethatthefindinginthispaperthatinthecontext of Wyner-Ziv binning backward decoding with non-unique decoding of the compression indices improves the transmissionratemaybebeneficialinotherscenarios.Inthefadingsetting,thiswasalsoobservedin[38]. Thesingle-letter characterizationofthecapacityregionofourmodelremainsintactifoneallowsfeedbackto the encoder that sends both messages. Also, the capacity region of our model contains that of the model of [5] inwhichtheencoderthatsendsonlythecommonmessageisunawareofthechannelstates;andthisshowsthat revealingthestatesevenonlystrictlycausallytothisencoderpotentiallyincreasesthecapacityregion.Next,by investigating a discrete memoryless example, we show that this inclusioncan be strict, thus demonstrating the utilityofconveyingacompressedversionofthestatetothedecodercooperativelybytheencoders. Wealsospecializeourresultstothecaseinwhichthetwoencoderssendonlythecommonmessage.Werefer tothecapacityinthiscaseascommon-messagecapacity.Weshowthat,whenoneofthetwoencodersisinformed noncausally,theknowledgeofthestatesonlystrictlycausallyattheotherencoderdoesnotincreasethecommon- messagecapacity.Itshouldbenotedthatthisresultisnotadirectconsequenceofthatfeedbackdoesnotincrease thecapacityinamultiaccesschannelinwhichtheencoderssendonlyacommonmessage;andourconverseproof isneededhere. Next,weconsiderthememorylessGaussiansettinginwhichthechannelstateandthenoiseareadditiveand Gaussian.Weestablishanoperativeouterboundontheachievableratepairs.Then,weshowthatthisouterbound is achievable, yielding a closed-form expression of the capacity region. The resulting capacity region coincides withthatofthe modelof[5]inwhichthe encoderthatsendsonlythe commonmessageiscompletelyunaware ofthestates,thusdemonstratingthat,byoppositiontothediscretememorylesscase,revealingthestatesstrictly causallyto this encoder isnotbeneficial inthe Gaussiancase,inthe sense that itdoesnotincreasethe capacity region. Finally,wenotethatincontrasttotherelatedMACmodelsin[5],[7],ourconverseproofsinthispaperdonot followdirectlyfromtheconversepartproofofthecapacityformulaforthestandardGel’fand-Pinskerchannel[3]. Thisisbecause,attimei,theencoderthattransmitsonlythecommonmessagesendsinputswhicharefunctionof notonlythatmessage,butalsotheobservedpaststatesequence. January17,2012 DRAFT 6 C. Outline and Notation Anoutlineoftheremainderofthispaperisasfollows.SectionIIdescribesinmoredetailthecommunication modelthatweconsiderinthiswork.SectionIIIprovidesthecapacityregionofthediscretememorylessmodel.In thissectionwealsoestablishanalternativeouterboundonthecapacityregionthatwillturntobeusefulinthe Gaussiancase, provideanexample demonstrating the utility ofrevealing the states onlystrictly causallyto the encoderthatsendsonlythecommonmessage,andderivethecommon-messagecapacity.SectionIVcharacterizes thecapacityregionaswellasthecommon-messagecapacityoftheGaussianmodel.Finally,SectionVconcludes thepaper. Weusethefollowingnotationsthroughoutthepaper.Uppercaselettersareusedtodenoterandomvariables, e.g., X; lower case letters are used to denote realizations of random variables, e.g., x; and calligraphic letters designatealphabets,i.e.,X.TheprobabilitydistributionofarandomvariableXisdenotedbyP (x).Sometimes, X forconvenience,wewriteitasP .WeusethenotationE []todenotetheexpectationofrandomvariableX.A X X · probabilitydistribution of a random variable Y given X is denoted by P . The set of probabilitydistributions YX | defined on an alphabet X isdenoted by P(X).The cardinalityof a set X isdenoted by X. For convenience, the | | lengthnvectorxnwilloccasionallybedenotedinboldfacenotationx.TheGaussiandistributionwithmeanµand varianceσ2isdenotedbyN(µ,σ2).Forintegersi j,wedefine[i: j]:= i,i+1,...,j .Finally,throughoutthepaper, ≤ { } logarithmsaretakentobase2,andthecomplementtounityofascalaru [0,1]isdenotedbyu¯,i.e.,u¯ =1 u. ∈ − II. SystemModelandDefinitions Weconsiderastationarymemorylessstate-dependentMACW whoseoutputY Yiscontrolledbythe Y|X1,X2,S ∈ channelinputsX X andX X fromtheencodersandthechannelstateS Swhichisdrawnaccordingto 1 1 2 2 ∈ ∈ ∈ amemorylessprobabilitylawQ .Weassumethatthe channel stateSn isknownnon-causallyatEncoder1,i.e., S beforehand,atthebeginningofthetransmissionblock.Encoder2knowsthechannelstatesonlystrictly-causally; thatis,attimei,itknowsthestatesonlyuptotimei 1,Si 1 =(S ,...,S ). − 1 i 1 − − Encoder2wantstosendacommonmessageW andEncoder1wantstosendanindependentindividualmessage c W alongwiththe commonmessage W .Weassumethat the commonmessage W andthe individualmessage 1 c c W are independent random variables drawn uniformly from the sets W = 1, ,M and W = 1, ,M , 1 c c 1 1 { ··· } { ··· } respectively.ThesequencesXnandXnfromtheencodersaresentacrossastate-dependentmultipleaccesschannel 1 2 modeled as a memoryless conditional probabilitydistribution W . The joint probability mass function on Y|X1,X2,S W W Sn Xn Xn Ynisgivenby c× 1× × 1× 2× n P(wc,w1,sn,xn1,xn2,yn)=P(wc)P(w1) QS(si)P(x1,i|wc,w1,sn)P(x2,i|wc,si−1) Yi=1 W (y x ,x ,s). (1) · Y|X1,X2,S i| 1,i 2,i i Thereceiverguessesthepair(Wˆ ,Wˆ )fromthechanneloutputYn. c 1 Definition1: For positive integers n, M and M , an (M ,M ,n,ǫ) code for the multiple access channel with c 1 c 1 statesknownnoncausallyatoneencoderandonlystrictlycausallyattheotherencoderconsistsofamapping φ :W W Sn Xn (2) 1 c× 1× −→ 1 January17,2012 DRAFT 7 atEncoder1,asequenceofmappings φ2,i :Wc Si−1 X2, i=1,...,n (3) × −→ atEncoder2,andadecodermap ψ:Yn W W (4) c 1 −→ × suchthattheaverageprobabilityoferrorisboundedbyǫ, Pn=E Pr ψ(Yn),(W ,W )Sn =sn ǫ. (5) e S c 1 | ≤ h (cid:16) (cid:17)i Therateofthecommonmessageandtherateoftheindividualmessagearedefinedas 1 1 R = logM and R = logM , (6) c n c 1 n 1 respectively. Aratepair(Rc,R1)issaidtobeachievableifforeveryǫ>0thereexistsan(2nRc,2nR1,n,ǫ)codeforthechannel W . The capacity region of the considered state-dependent MAC is defined as the closure of the set of Y|X1,X2,S achievableratepairs. III. DiscreteMemorylessCase Inthissection,itisassumedthatthealphabetsS,X ,X arefinite. 1 2 A. Capacity Region LetPstandforthecollectionofallrandomvariables(S,U,V,X ,X ,Y)suchthatU,V,X andX takevaluesin 1 2 1 2 finitealphabetsU,V,X andX ,respectively,and 1 2 P (s,u,v,x ,x ,y)=P (s,u,v,x ,x )W (yx ,x ,s) (7a) S,U,V,X1,X2,Y 1 2 S,U,V,X1X2 1 2 Y|X1,X2,S | 1 2 P (s,u,v,x ,x )=Q (s)P (x )P (vs,x )P (u,x s,v,x ) (7b) S,U,V,X1,X2 1 2 S X2 2 V|S,X2 | 2 U,X1|S,V,X2 1| 2 P (s,u,v,x ,x )=Q (s). (7c) S,U,V,X1,X2 1 2 S u,vX,x1,x2 Therelationsin(7)implythat(U,V) (S,X ,X ) YisaMarkovchain,andX isindependentofS. 1 2 2 ↔ ↔ DefineCtobethesetofallratepairs(R ,R )suchthat c 1 R I(U;YV,X ) I(U;SV,X ) 1 2 2 ≤ | − | R +R I(U,V,X ;Y) I(U,V,X ;S) c 1 2 2 ≤ − forsome (S,U,V,X ,X ,Y) P. (8) 1 2 ∈ ThefollowingpropositionstatessomepropertiesofC. Proposition1: (propertiesofcapacityregion) 1. ThesetCisconvex. January17,2012 DRAFT 8 2. ToexhaustC,itisenoughtorestrictVandUtosatisfy V S X X +1 (9a) 1 2 | |≤| || || | U S X X +1 S X X . (9b) 1 2 1 2 | |≤ | || || | | || || | (cid:16) (cid:17) Proof:TheproofofProposition1appearsinAppendixA. As stated in the following theorem, the set C characterizes the capacity region of the state-dependent discrete memorylessMACmodelthatwestudy. Theorem1: Thecapacityregionofthemultipleaccesschannel withstatesknownonlystrictlycausallyatthe encoderthatsendsthecommonmessageandnon-causallyattheencoderthatsendsbothmessagesisgivenbyC. Proof: Anoutlineproofofthecodingschemethat weuseforthedirectpartwillfollow.Theassociatederror analysisandtheproofoftheconverseappearinAppendixB. Theorem1continuestoholdifin(7)wereplaceP byP .Also,itshouldbenotedthatsettingV= in U|S,V,X2 U|S,V ∅ (8),thecapacityregionCreducestotheunionofallrate-pairs(R ,R )satisfying c 1 R I(U;YX ) I(U;SX ) 1 2 2 ≤ | − | R +R I(U,X ;Y) I(U,X ;S) (10) c 1 2 2 ≤ − forsomemeasureonS U X X Yoftheform 1 2 × × × × P =Q P P W . (11) S,U,X1,X2,Y S X2 U,X1|S,X2 Y|X1,X2,S LetC denotetheregiondefinedby(10)and(11)intheremainingofthispaper.Ithasbeenshownin[5]thatthe ′ regionC isthecapacityregionoftheMACmodelofFigure1butwiththestatescompletelyunknownatEncoder ′ 2,i.e.,whiletheencodingatEncoder1isgivenby(3),theencodingatEncoder2isdefinedbythemapping φ :W Xn. (12) 2 c −→ 2 ObservingthatC CshowsthattheknowledgeofthestatesonlystrictlycausallyatEncoder2inourmodelin ′ ⊆ generalincreasesthecapacityregion.InSectionIII-Bwewillshowthattheinclusioncanbestrict,i.e.,C (C. ′ Furthermore,onecaneasilycheckthatinthecaseofachannelthatdoesnotdependonthestates,i.e.,W = Y|X1,X2,S W ,thecapacityregionCreducestotheclosureoftheunionofallrate-pairs(R ,R )satisfying Y|X1,X2 c 1 R I(X ;YZ,X ) 1 1 2 ≤ | R +R I(X ,X ;Y) (13) c 1 1 2 ≤ forsome P =P P P W . (14) Z,X1,X2,Y Z X1|Z X2|Z Y|X1,X2 January17,2012 DRAFT 9 Also,itis noted that Theorem 1 remainsintact if we allowfeedback to Encoder 1,i.e.,before producingthe ith channel input symbol, Encoder 1 also observes the past channel output sequence Yi 1. That is, the encoding at − Encoder2isstillgivenby(3)andthatatEncoder1isreplacedbyasequenceofmappings φ n ,with { 1,i}i=1 φ1,i :Wc W1 Sn Yi−1 X1. (15) × × × −→ WenowturntotheproofofachievabilityofTheorem1.Thefollowingremarkisusefulforabetterunderstanding ofthecodingschemethatweusetoestablishtheachievabilityofTheorem1. Remark1: TheproofofachievabilityofTheorem1isbasedonablock-Markovcodingschemeinwhichalossy versionofthestateisconveyedtothedecoder,inthespiritof[15],[16],[32],inadditiontoageneralizedGel’fand- Pinsker binningforthetransmissionoftheinformationmessages[3].However,unlike[15],[16]and[32]where Wyner-Zivcompression[31]isutilizedforthetransmissionofthelossyversionofthestate,here,inspiredbythe noisynetworkcodingschemeof[30],ateachblockthecompressionindexofthestateofthepreviousblockissent using standard ratedistortion, notWyner-Ziv binning. Also,unlike [15], [16] and [32] where every information message isdividedintoblocksanddifferent submessages aresent over these blocksand then decodedoneata timeusingthesamecodebookasintheoriginalcompress-and-forwardschemebyCoverandElGamal[37],here theentirecommonmessageandtheentireindividualmessagearetransmittedoverallblocksusingcodebooksthat aregeneratedindependently,oneforeachblock,andthedecodingisperformedsimultaneouslyusingallblocksas in[30].Attheendofthetransmission,thereceiverusestheoutputsofallblockstoperformsimultaneousdecoding oftheinformationcommonandindividualmessages,withoutuniquelydecodingthecompressionindices. (cid:3) ProofofAchievability: ThetransmissiontakesplaceinBblocks.ThecommonmessageW andtheindividualmessageW aresentover c 1 allblocks.WethushaveB =nBR ,B =nBR ,N=nB,R =B /N=R andR =B /N =R ,whereB is Wc c W1 1 Wc Wc c W1 W1 1 Wc thenumberofcommonmessagebits,B isthenumberofindividualmessagebits,N isthenumberofchannel W1 usesandR andR aretheoverallratesofthecommonandindividualmessages,respectively. Wc W1 Codebook Generation: Fix a measure P P. Fix ǫ > 0, η > 0, η > 0, ηˆ > 0, δ > 1 and denote S,U,V,X1,X2,Y ∈ c 1 Mc =2nB[Rc−ηcǫ],M1=2nB[R1−η1ǫ],Mˆ =2n[Rˆ+ηˆǫ]andJ=2n[I(U;S|V,X2)+δǫ]. Werandomlyandindependentlygenerateacodebookforeachblock. 1) For each block i, i = 1,...,B, we generate M Mˆ independent and identically distributed (i.i.d.)codewords c x (w ,t)indexedbyw =1,...,R ,t =1,...,Mˆ,eachwithi.i.d.componentsdrawnaccordingtoP . 2,i c ′i c c ′i X2 2) For each block i, for each codeword x (w ,t), we generate Mˆ i.i.d.codewordsv(w ,t,t) indexed by t = 2,i c ′i i c ′i i i 1,...,Mˆ,eachwithi.i.d.componentsdrawnaccordingtoP . V|X2 3) Foreachblocki,foreachcodewordx (w ,t),foreachcodewordv(w ,t,t),wegenerateacollectionofJM 2,i c ′i i c ′i i 1 i.i.d.codewords u(w ,t,t,w ,j) indexedbyw =1,...,M , j =1,...,J,eachwithi.i.d.componentsdraw { i c ′i i 1 i } 1 1 i accordingtoP . U|V,X2 Encoding:SupposethatacommonmessageW =w andanindividualmessageW =w aretobetransmitted. c c 1 1 Aswementionedpreviously,w andw willbesentoverallblocks.Wedenotebys[i]thestateaffectingthechannel c 1 in block i, i = 1,...,B. For convenience, we let s[0] = and t = t = 1 (a default value). The encoding at the 1 0 ∅ − beginningofblocki,i=1,...,B,isasfollows. January17,2012 DRAFT 10 Encoder2,whichhaslearnedthestatesequences[i 1],knowst andlooksforacompressionindext [1:Mˆ] i 2 i 1 − − − ∈ suchthatv (w ,t ,t )isstronglyjointlytypicalwiths[i 1]andx (w ,t ).Ifthereisnosuchindexorthe i 1 c i 2 i 1 2,i 1 c i 2 − − − − − − observedstates[i 1]isnottypical,t issetto1andanerrorisdeclared.Ifthereismorethanonesuchindext , i 1 i 1 − − − choosethesmallest.Encoder2thentransmitsthevectorx (w ,t ). 2,i c i 1 − Encoder 1 obtains x (w ,t ) similarly. It then finds the smallest compression index t [1 : Mˆ] such that 2,i c i 1 i − ∈ v(w ,t ,t) is strongly jointly typical with s[i] and x (w ,t ). Again, if there is no such index or the ob- i c i i i 2,i c i 1 − − served state s[i] is not typical, t is set to 1 and an error is declared. Next, Encoder 1 looks for the smallest j i i such that u(w ,t ,t,w ,j) is jointly typical with s[i] given (x (w ,t ),v(w ,t ,t)). Denote this j by j⋆ = i c i−1 i 1 i 2,i c i−1 i c i−1 i i i j(s[i],w,t ,t,w ). If such j⋆ is not found, an error is declared and j(s[i],w ,t ,t,w ) is set to j = J. Encoder c i−1 i 1 i c i−1 i 1 i 1thentransmitsavectorx [i]whichisdrawni.i.d.conditionallygivenu(w ,t ,t,w ,j⋆),s[i],v(w ,t ,t)and 1 i c i−1 i 1 i i c i−1 i x (w ,t )(usingtheconditionalmeasureP inducedby(7)). 2,i c i−1 X1|U,S,V,X2 Decoding:Attheendofthetransmission,thedecoderhascollectedalltheblocksofchanneloutputsy[1],...,y[B]. Step(a):Thedecoderestimatesmessagew usingallblocksi=1,...,B,i.e.,simultaneousdecoding.Itdeclaresthat c wˆ issentifthereexisttB =(t ,...,t ) [1:Mˆ]B,w [1:M ]and jB =(j ,...,j ) [1: J]Bsuchthatx (wˆ ,t ), c 1 B 1 1 1 B 2,i c i 1 ∈ ∈ ∈ − u(wˆ ,t ,t,w ,j),v(wˆ ,t ,t)andy[i]arejointlytypicalforalli=1,...,B.Onecanshowthatthedecoderobtains i c i 1 i 1 i i c i 1 i − − thecorrectw aslongasnandBarelargeand c R +R I(U,V,X ;Y) I(U,V,X ;S). (16) c 1 2 2 ≤ − Step(b): Next, the decoderestimates message w using againallblocksi = 1,...,B,i.e.,simultaneousdecoding. 1 Itdeclaresthat wˆ issentifthereexisttB = (t ,...,t ) [1 : Mˆ]B, jB = (j ,...,j ) [1 : J]B suchthat x (wˆ ,t ), 1 1 B 1 B 2,i c i 1 ∈ ∈ − u(wˆ ,t ,t,wˆ ,j),v(wˆ ,t ,t)andy[i]arejointlytypicalforalli=1,...,B.Onecanshowthatthedecoderobtains i c i 1 i 1 i i c i 1 i − − thecorrectw aslongasnandBarelargeand 1 R I(U;YV,X ) I(U;SV,X ) (17a) 1 2 2 ≤ | − | R I(U,V,X ;Y) I(U,V,X ;S). (17b) 1 2 2 ≤ − (cid:3) InthecodingschemeofTheorem1,thestatecompressionisstandard,i.e.,usesnoWyner-Zivbinning,thesame messageissentineveryblock,andthedecodingofthesentmessageisperformedjointlyusingallblocks.Although ofnobenefitinthecaseofonerelay,thecombinationofthesethreefeatureswasshowntobeessentialinachieving rates that are strictlylarger than those offered by schemes based onCover and El Gamalclassic compress-and- forwardscheme[37]forcertainnetworkswithmultiplerelaysin[30].Thatis,thecodingschemeof[30]outperforms CoverandElGamalclassiccompress-and-forwardforsomemulti-relaynetworksin[30].Onecanwonderwhether thesameholdsforourmodel,i.e.,whetherschemesbasedonCoverandElGamalclassiccompress-and-forward, i.e.,blockMarkovencodingcombinedwithWyner-Zivbinning,fallshortofachievingoptimalityforourmodel.In thispaper,weshowthatthecapacityregionCasgivenby(8)canbeachievedalternativelywithacodingscheme thatweobtainbybuildinguponandmodifyingCoverandElGamaloriginalcompress-and-forwardscheme.The modificationconsistsessentially in1) decodingblock-by-blockbackwardlyinstead of block-by-blockforwardly and2)non-uniquedecodingofthecompressionindices.(Infact,byinvestigatingmorecloselytheconverseproof January17,2012 DRAFT