ebook img

Canonical Problems in Scattering and Potential Theory. Part I PDF

393 Pages·4.722 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Canonical Problems in Scattering and Potential Theory. Part I

CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics 122 CANONICAL PROBLEMS IN SCATTERING AND POTENTIAL THEORY PART I: Canonical Structures in Potential Theory CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics Main Editors H. Brezis, Université de Paris R.G. Douglas, Texas A&M University A. Jeffrey, University of Newcastle upon Tyne (Founding Editor) Editorial Board H. Amann, University of Zürich R. Aris, University of Minnesota G.I. Barenblatt, University of Cambridge H. Begehr, Freie Universität Berlin P. Bullen, University of British Columbia R.J. Elliott, University of Alberta R.P. Gilbert, University of Delaware R. Glowinski, University of Houston D. Jerison, Massachusetts Institute of Technology K. Kirchgässner, Universität Stuttgart B. Lawson, State University of New York B. Moodie, University of Alberta S. Mori, Kyoto University L.E. Payne, Cornell University D.B. Pearson, University of Hull I. Raeburn, University of Newcastle G.F. Roach, University of Strathclyde I. Stakgold, University of Delaware W.A. Strauss, Brown University J. van der Hoek, University of Adelaide CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics 122 CANONICAL PROBLEMS IN SCATTERING AND POTENTIAL THEORY PART I: Canonical Structures in Potential Theory S.S. VINOGRADOV P.D. SMITH E.D. VINOGRADOVA CHAPMAN & HALL/CRC Boca Raton London New York Washington, D.C. disclaimer Page 1 Tuesday, April 24, 2001 1:08 PM Library of Congress Cataloging-in-Publication Data Vinogradov, Sergey S. (Sergey Sergeyevich) Canonical problems in scattering and potential theory / Sergey S. Vinogradov, Paul D. Smith, Elena D. Vinogradova. p. cm.— (Monographis and surveys in pure and applied mathematics ; 122) Includes bibliographical references and index. Contents: pt. 1. Canonical structures in potential theory ISBN 1-58488-162-3 (v. 1 : alk. paper) 1. Potential theory (Mathematics) 2. Scattering (Mathematics) I. Smith, P.D. (Paul Denis), 1955- II. Vinogradova, Elena D. (Elena Dmitrievna) III. Title. IV. Chapman & Hall/CRC monographs and surveys in pure and applied mathematics ; 122. QA404.7 . V56 2001 515′.9—dc21 2001028226 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com © 2001 by Chapman & Hall/CRC No claim to original U.S. Government works International Standard Book Number 1-58488-162-3 Library of Congress Card Number 2001028226 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper v To our children This is page vii Printer: Opaque this Contents 1 Laplace’s Equation 1 1.1 Laplace’s equation in curvilinear coordinates . . . . . . . . 3 1.1.1 Cartesian coordinates . . . . . . . . . . . . . . . . . 7 1.1.2 Cylindricalpolar coordinates . . . . . . . . . . . . . 8 1.1.3 Spherical polar coordinates . . . . . . . . . . . . . . 8 1.1.4 Prolate spheroidal coordinates . . . . . . . . . . . . 9 1.1.5 Oblate spheroidal coordinates . . . . . . . . . . . . . 11 1.1.6 Elliptic cylinder coordinates . . . . . . . . . . . . . . 12 1.1.7 Toroidalcoordinates . . . . . . . . . . . . . . . . . . 13 1.2 Solutions of Laplace’s equation: separation of variables . . . 14 1.2.1 Cartesian coordinates . . . . . . . . . . . . . . . . . 14 1.2.2 Cylindricalpolar coordinates . . . . . . . . . . . . . 15 1.2.3 Spherical polar coordinates . . . . . . . . . . . . . . 16 1.2.4 Prolate spheroidal coordinates . . . . . . . . . . . . 17 1.2.5 Oblate spheroidal coordinates . . . . . . . . . . . . . 18 1.2.6 Elliptic cylinder coordinates . . . . . . . . . . . . . . 19 1.2.7 Toroidalcoordinates . . . . . . . . . . . . . . . . . . 19 1.3 Formulationof potential theory for structures with edges . 21 1.4 Dual equations: a classi(cid:12)cation of solution methods . . . . . 30 1.4.1 The de(cid:12)nition method . . . . . . . . . . . . . . . . . 31 1.4.2 The substitution method . . . . . . . . . . . . . . . 32 1.4.3 Noble’s multiplyingfactor method . . . . . . . . . . 33 1.4.4 The Abel integral transformmethod . . . . . . . . . 34 1.5 Abel’s integral equation and Abel integral transforms. . . . 37 viii Contents 1.6 Abel-typeintegralrepresentations ofhypergeometricfunctions 40 1.7 Dual equations and single- or double-layer surface potentials 45 2 Series and Integral Equations 55 2.1 Dual series equations involvingJacobi polynomials . . . . . 57 2.2 Dual series equations involvingtrigonometricalfunctions . . 65 2.3 Dual series equations involvingassociated Legendre functions 74 2.4 SymmetrictripleseriesequationsinvolvingJacobipolynomials 81 2.4.1 Type A triple series equations . . . . . . . . . . . . . 82 2.4.2 Type B triple series equations . . . . . . . . . . . . . 85 2.5 Relationships between series and integral equations . . . . . 86 2.6 Dual integral equations involvingBessel functions . . . . . . 96 2.7 Nonsymmetricaltriple series equations . . . . . . . . . . . . 99 2.8 Coupled series equations . . . . . . . . . . . . . . . . . . . . 104 2.9 A class of integro-series equations . . . . . . . . . . . . . . . 107 3 Electrostatic PotentialTheory for Open Spherical Shells 109 3.1 The open conducting spherical shell . . . . . . . . . . . . . 110 3.2 A symmetricalpairofopen spherical caps andthe spherical barrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.2.1 Approximateanalytical formulaefor capacitance . . 117 3.3 An asymmetricalpair of spherical caps and the asymmetric barrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.4 The method of inversion . . . . . . . . . . . . . . . . . . . . 131 3.5 Electrostatic (cid:12)elds in a spherical electronic lens . . . . . . . 141 3.6 Frozen magnetic (cid:12)elds inside superconducting shells . . . . 144 3.7 Screening number of superconducting shells . . . . . . . . . 149 4 Electrostatic Potential Theory for Open SpheroidalShells157 4.1 Formulationofmixedboundaryvalueproblemsinspheroidal geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.2 The prolate spheroidal conductor with one hole . . . . . . . 163 4.3 The prolate spheroidal conductor with a longitudinalslot . 173 4.4 The prolate spheroidal conductor with two circular holes . . 178 4.5 The oblate spheroidal conductor with a longitudinalslot . . 181 4.6 The oblate spheroidal conductor with two circular holes . . 185 4.7 Capacitance of spheroidal conductors . . . . . . . . . . . . . 187 4.7.1 Open spheroidal shells . . . . . . . . . . . . . . . . . 188 4.7.2 Spheroidal condensors . . . . . . . . . . . . . . . . . 191 5 Charged Toroidal Shells 195 5.1 Formulation of mixed boundary value problems in toroidal geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2 The open charged toroidal segment . . . . . . . . . . . . . . 198 5.3 The toroidal shell with two transversal slots . . . . . . . . . 202 Contents ix 5.4 The toroidal shell with two longitudinalslots . . . . . . . . 208 5.5 Capacitance of toroidalconductors . . . . . . . . . . . . . . 212 5.6 An open toroidal shell with azimuthalcuts . . . . . . . . . 213 5.6.1 The toroidal shell with one azimuthalcut. . . . . . . 215 5.6.2 The toroidal shell with multiplecuts . . . . . . . . . 220 5.6.3 Limitingcases . . . . . . . . . . . . . . . . . . . . . 221 6 Potential Theory for Conical Structureswith Edges 225 6.1 Non-coplanar oppositely charged in(cid:12)nite strips . . . . . . . 226 6.2 Electrostatic (cid:12)elds of a charged axisymmetric (cid:12)nite open conical conductor . . . . . . . . . . . . . . . . . . . . . . . . 235 6.3 The slotted hollowspindle . . . . . . . . . . . . . . . . . . . 246 6.4 A spherical shell with an azimuthalslot . . . . . . . . . . . 253 7 Two-dimensional Potential Theory 257 7.1 The circular arc . . . . . . . . . . . . . . . . . . . . . . . . . 258 7.2 Axiallyslotted open circular cylinders . . . . . . . . . . . . 262 7.3 Electrostatic potential of systems of charged thin strips . . 268 7.4 Axially-slotted elliptic cylinders . . . . . . . . . . . . . . . . 276 7.5 Slotted cylinders of arbitrary pro(cid:12)le . . . . . . . . . . . . . 282 8 More Complicated Structures 291 8.1 Rigorous solution methods for charged (cid:13)at plates . . . . . . 292 8.2 The charged elliptic plate . . . . . . . . . . . . . . . . . . . 296 8.2.1 The spherically-curved elliptic plate . . . . . . . . . 299 8.3 Polygonalplates . . . . . . . . . . . . . . . . . . . . . . . . 304 8.4 The (cid:12)nite strip . . . . . . . . . . . . . . . . . . . . . . . . . 310 8.5 Coupled charged conductors: the spherical cap and circular disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 A Notation 323 B Special Functions 325 B.1 The Gammafunction . . . . . . . . . . . . . . . . . . . . . 325 B.2 Hypergeometric functions . . . . . . . . . . . . . . . . . . . 326 B.3 Orthogonalpolynomials:Jacobipolynomials,Legendrepoly- nomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 B.3.1 The associated Legendre polynomials. . . . . . . . . 332 B.3.2 The Legendre polynomials. . . . . . . . . . . . . . . 332 B.4 Associated Legendre functions. . . . . . . . . . . . . . . . . 333 B.4.1 Ordinary Legendre functions . . . . . . . . . . . . . 334 B.4.2 Conical functions . . . . . . . . . . . . . . . . . . . . 338 B.4.3 Associated Legendre functions of integer order . . . 338 B.5 Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . 341 B.5.1 Spherical Bessel functions . . . . . . . . . . . . . . . 344

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.