ebook img

Cancellation theorem for framed motives of algebraic varieties PDF

0.23 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cancellation theorem for framed motives of algebraic varieties

CANCELLATION THEOREM FOR FRAMED MOTIVES OF ALGEBRAIC VARIETIES A.ANANYEVSKIY,G.GARKUSHA,ANDI.PANIN 6 ABSTRACT. Themachineryofframed(pre)sheaveswasdevelopedbyVoevodsky[V1]. Based 1 on thetheory, framed motives of algebraic varieties areintroduced and studied in[GP1]. An 0 analogof Voevodsky’s Cancellation Theorem[V2]isprovedinthispaper forframedmotives 2 statingthatanaturalmapofframedS1-spectra n a Mfr(X)(n)→Hom(G,Mfr(X)(n+1)), n>0, J isaNisnevich local stableequivalence, whereMfr(X)(n)isthenthtwistedframed motiveof 5 X. ThisresultisreducedtotheCancellationTheoremforlinearframedmotivesstatingthatthe 2 naturalmapofcomplexesofabeliangroups ] ZF(D •×X,Y)→ZF((D •×X)∧(Gm,1),Y∧(Gm,1)), X,Y ∈Sm/k, T isaquasi-isomorphism,whereZF(X,Y)isthegroupofstablelinearframedcorrespondencesin K thesenseof[GP1,GP3]. . h t a m 1. INTRODUCTION [ 1 In [V1] Voevodsky developed the machinery of framed correspondences and framed v (pre)sheaves. Basing on this machinery, the theory of framed motives of algebraic varieties 2 was introduced and studied in [GP1]. The framed motive of X ∈ Sm/k is an explicitly con- 4 6 structedframedS1-spectrumMfr(X),whichisconnectedandanW -spectruminpositivedegrees 6 (see[GP1]fordetails). Moreover,theshiftsoftheM (X)-s,X ∈Sm/k,arecompactgenerators fr 0 oftheassociated compactlygenerated triangulated categoryofframedS1-spectraSHfr(k). The . S1 1 category SHfr(k) is the homotopy category of the category of framed S1-spectra Spfr(k) with 0 S1 S1 6 respecttothestablemotivicmodelstructure (see[GP1]fordetails). 1 Themainobjectof[GP1]isthebispectrum : v G i Mfr(X)=(Mfr(X),Mfr(X)(1),Mfr(X)(2),...), X eachtermofwhichisatwistedframedmotiveofX andexplicitlyconstructed structure maps r a M (X)(n)→Hom(G,M (X)(n+1)), n>0. fr fr Here G = Cyl(i)/(−,pt) with Cyl(i) the mapping cylinder for the map i : (−,pt) → + + (−,G ) sending pt to 1∈ G . The shifts of the MG(X)-s, X ∈ Sm/k, are compact gener- m + m fr ators of the associated compactly generated triangulated category of framed (S1,G)-bispectra SHfr(k). The category SHfr(k) is the homotopy category of the category of framed (S1,G)- fr bispectra Sp (k)withrespecttothestablemotivicmodelstructure (see[GP1]fordetails). S1,G Themainpurpose ofthepaperistoprovethefollowing(cf. Voevodsky[V2]) 2010MathematicsSubjectClassification. 14F42,14F05. ThefirstandthirdauthorsthankforthesupporttheRussianScienceFoundation(grantno.14-21-00035). Theorem A (Cancellation). Let k be an infinite perfect field, X ∈Sm/k and n>0. Then the followingstatements aretrue: (1) thenaturalmapofframedS1-spectra M (X)(n)→Hom(G,M (X)(n+1)) fr fr isaNisnevichlocalstableequivalence; (2) theinduced mapofframedS1-spectra M (X)(n) →Hom(G,M (X)(n+1) ) fr f fr f isaschemewisestableequivalence withM (X)(n) andM (X)(n+1) beingframed fr f fr f Nisnevichlocalfibrantreplacements M (X)(n)andM (X)(n+1)respectively. fr fr Asanapplication ofTheoremAweprovethefollowing TheoremB. Letkbeaninfiniteperfectfield,X ∈Sm/kandn>0. Thenthebispectrum G M (X) =(M (X) ,M (X)(1) ,M (X)(2) ,...) fr f fr f fr f fr f G obtained from M (X) by taking levelwise framed Nisnevich local fibrant replacements with fr structuremapsthoseofTheoremA(2)isamotivically fibrant(S1,G)-bispectrum. ThemotivicmodelcategoryofframedS1-spectraSpfr(k)hasanaturalQuillenpairofadjoint S1 functors −⊠G:Spfr(k)⇄Spfr(k):Hom(G,−) S1 S1 (see[GP1]fordetails). ThisQuillenpairinducesadjoint functorsonthehomotopycategory −⊠LG:SHfr(k)⇄SHfr(k):RHom(G,−). S1 S1 Thefunctor −⊠LGisalsoreferred toasthetwistfunctor. Wealso provethatthetwistfunctor fr onSH (k)isfullyfaithful. Moreprecisely, thefollowingtheorem istrue. S1 TheoremC. Letkbeaninfiniteperfectfield. Thenthefunctor −⊠LG:SHfr(k)→SHfr(k) S1 S1 isfullandfaithful. ThemainstrategyofprovingTheoremAistoreduceittothe“LinearCancellationTheorem”. Inordertoformulateit,recallfrom[GP1,GP3]thatthecategoryZF (k)isanadditivecategory ∗ whoseobjectsarethoseofSm/kandHom-groupsaredefinedasfollows. Wesetforeveryn>0 andX,Y ∈Sm/k, ZF (X,Y):=ZFr (X,Y)/hZ ⊔Z −Z −Z i, n n 1 2 1 2 whereZ ,Z are supports of(level n)framed correspondences inthe sense ofVoevodsky [V1]. 1 2 In other words, ZF (X,Y) is a free abelian group generated by the framed correspondences of n levelnwithconnected supports. Wethenset HomZF∗(k)(X,Y):=MZFn(X,Y). n>0 Given smooth varieties X,Y ∈Sm/k and n> 0, there is a canonical suspension morphism S :ZF (X,Y)→ZF (X,Y). We can stabilize in the S -direction to get an abelian group (see n n+1 Definition2.5) S S ZF(X,Y):=colim(ZF (k)(X,Y)−→ZF (k)(X,Y)−→···). 0 1 2 There is a canonical morphism (see Definition 2.8 for more details), functorial in both argu- ments, −⊠(idGm−e1):ZF(X,Y)→ZF(X∧(Gm,1),Y ∧(Gm,1)) with(G ,1)theschemeA1−{0}pointed at1. m TheLinearCancellation Theoremisformulated asfollows. TheoremD(LinearCancellation). LetkbeaninfiniteperfectfieldandletX andY bek-smooth schemes. Then −⊠(idGm−e1): ZF(D •×X,Y)→ZF((D •×X)∧(Gm,1),Y ∧(Gm,1)) isaquasi-isomorphism ofcomplexes ofabelian groups. Oneofthemaincomputational resultsof[GP3]saysthathomologyofthecomplexZF(D •× −,Y) locally computes homology of the framed motive M (Y) of Y ∈Sm/k. Moreover, the fr complexrepresents the“linearframedmotive”ofY (see[GP3]fordetails). Throughout the paper the base field k is infinite and perfect and Sm/k is the category of smoothseparated schemesoffinitetypeoverthefieldk. 2. PRELIMINARIES Inthissectionwecollectbasicfactsforframedcorrespondences. Westartwithpreparations. LetV be a scheme and Z be a closed subscheme. Recall that an e´tale neighborhood of Z in V isatriple(W′,p ′:W′→V,s′ :Z →W′)satisfying thefollowingconditions: (i)p ′ isane´talemorphism; (ii)p ′◦s′ coincides withtheinclusion Z ֒→V (thuss′ isaclosedembedding). Amorphismbetweentwoe´taleneighborhoods (W′,p ′,s′)→(W′′,p ′′,s′′)ofZ inV isamor- phismr :W′→W′′suchthatp ′′◦r =p ′andr ◦s′=s′′. Notethatsuchr isautomaticallye´tale by[EGA4,VI.4.7]. Definition 2.1 (Voevodsky [V1]). (I) Let Z be a closed subset in X. A framing of Z of level n is a collection j ,...,j of regular functions on X such that ∩n {j =0}=Z. For a scheme 1 n i=1 i X over S a framing of Z over S is a framing of Z such that the closed subsets {j =0} do not i containthegenericpointsofthefibersofX →S. (II) For k-smooth schemes X,Y over S and n> 0 an explicit framed correspondence F of levelnconsistsofthefollowingdata: (1) aclosedsubsetZ inAn whichisfiniteoverX; X (2) anetaleneighborhood p:U →An ofZ; X (3) aframingj ,...,j oflevelnofZ inU overX; 1 n (4) amorphism g:U →Y. ThesubsetZ willbereferredtoasthesupportofthecorrespondence. Weshallalsowritetriples F =(U,j ,g)orquadruples F =(Z,U,j ,g)todenoteexplicitframedcorrespondences. (III) Two explicit framed correspondences F and F ′ of level n are said to be equivalent if they have the same support and there exists an etale neighborhood V of Z in U×An U′ such X that onV, the morphism g◦pr agrees with g′◦pr′ and j ◦pr agrees with j ′◦pr′. A framed correspondence oflevelnisanequivalence classofexplicitframedcorrespondences ofleveln. WeletFr (X,Y)denote theset offramed correspondences from X toY. Weconsider itas a n pointed set with the distinguished point being the class 0 of the explicit correspondence with n U =0/. 3 As an example, the set Fr (X,Y) coincides with the set of pointed morphisms X →Y . In 0 + + particular, foraconnected schemeX onehas Fr (X,Y)=Hom (X,Y)⊔{0 }. 0 Sch/S 0 If f :X′ →X is a morphism of schemes and F =(U,j ,g) an explicit correspondence from X toY then f∗(F ):=(U′=U× X′,j ◦pr,g◦pr) X isanexplicitcorrespondence fromX′ toY. Fromnowonweshallonlyworkwithframedcorrespondences oversmoothk-schemesSm/k. Remark 2.2. LetF =(Z,An ←−p U,j :U →An,g:U →Y)∈Fr (X,Y) be an explicit framed X k n correspondence ofleveln. Itcanmoreprecisely bewrittenintheform ((a ,a ,...,a ),f,Z,U,(j ,j ,...,j ),g)∈Fr (X,Y) 1 2 n 1 2 n n where ⋄ Z ⊂An isaclosedsubsetfiniteoverX, X ⋄ anetaleneighborhood (a ,a ,...,a ),f)= p:U →An×X ofZ, 1 2 n k ⋄ aframing(j ,j ,...,j )=j :U →An oflevelnofZ inU overX; 1 2 n k ⋄ amorphism g:U →Y. Weshallusuallydrop((a ,a ,...,a ),f)fromnotation andjustwrite 1 2 n (Z,U,(j ,j ,...,j ),g)=((a ,a ,...,a ),f,Z,U,(j ,j ,...,j ),g). 1 2 n 1 2 n 1 2 n Thefollowingdefinition istodescribe compositions offramedcorrespondences. Definition2.3. LetX,Y andSbek-smoothschemesandlet a=((a ,a ,...,a ),f,Z,U,(j ,j ,...,j ),g) 1 2 n 1 2 n beanexplicitcorrespondence oflevelnfromX toY andlet b=((b ,b ,...,b ),f′,Z′,U′,(y ,y ,...,y ),g′)∈Fr (Y,S) 1 2 m 1 2 m m beanexplicitcorrespondence oflevelmfromY toS. Wedefinetheircompositionasanexplicit correspondence ofleveln+mfromX toSby ((a ,a ,...,a ,b ,b ,...,b ),f,Z× Z′,U× U′,(j ,j ,...,j ,y ,y ,...,y ),g′). 1 2 n 1 2 m Y Y 1 2 n 1 2 m Clearly, the composition of explicit correspondences respects the equivalence relation on them anddefinesassociative maps Fr (X,Y)×Fr (Y,S)→Fr (X,S). n m n+m Given X,Y ∈Sm/k, denote by Fr (X,Y) the set Fr (X,Y). The composition of framed ∗ n n F correspondences defined above gives a category Fr (k). Its objects are those of Sm/k and the ∗ morphismsaregivenbythesetsFr (X,Y),X,Y ∈Sm/k. Sincethenaivemorphismsofschemes ∗ canbeidentifiedwithcertainframedcorrespondences oflevelzero,wegetacanonical functor Sm/k→Fr (k). ∗ One can easily see that for a framed correspondence F :X →Y and a morphism f :X′ →X, onehas f∗(F )=F ◦ f. 4 Definition2.4. LetX,Y,SandT besmoothschemes. Thereisanexternal product −⊠− Fr (X,Y)×Fr (S,T)−−−→Fr (X×S,Y×T) n m n+m givenby ((a ,a ,...,a ),f,Z,U,(j ,j ,...,j ),g)⊠((b ,b ,...,b ),f′,Z′,U′,(y ,y ,...,y ),g′)= 1 2 n 1 2 n 1 2 m 1 2 m ((a ,a ,...,a ,b ,b ,...,b ),f × f′,Z×Z′,U×U′,(j ,j ,...,j ,y ,y ,...,y ),g×g′). 1 2 n 1 2 m 1 2 n 1 2 m Fortheconstant morphismc: A1→pt,weset(followingVoevodsky [V1]) S =−⊠(t,c,{0},A1,t,c): Fr (X,Y)→Fr (X,Y) n n+1 andrefertoitasthesuspension. Also,followingVoevodsky[V1],oneputs S S S S Fr(X,Y)=colim(Fr (X,Y)−→Fr (X,Y)−→...−→Fr (X,Y)−→...) 0 1 n and refer to it as the set stable framed correspondences. The above external product induces externalproducts −⊠− Fr (X,Y)×Fr(S,T)−−−→Fr(X×S,Y×T), n −⊠− Fr(X,Y)×Fr (S,T)−−−→Fr(X×S,Y×T). 0 Recallnowthedefinitionofthecategory oflinearframedcorrespondences ZF (k). ∗ Definition2.5. (see[GP1,p.23])LetX andY besmoothschemes. Denoteby ⋄ ZFr (X,Y):=Z[Fr (X,Y)]=Z[Fr (X,Y)]/Z·0 , i.e the free abelian group generated n n n n bythesetFrn(Xe,Y)moduloZ·0n; ⋄ ZF (X,Y):=ZFr (X,Y)/A,whereAisasubgroup generated bytheelementts n n (Z⊔Z′,U,(j ,j ,...,j ),g)− 1 2 n −(Z,U\Z′,(j ,j ,...,j )| ,g| )−(Z′,U\Z,(j ,j ,...,j )| ,g| ). 1 2 n U\Z′ U\Z′ 1 2 n U\Z U\Z Weshallalsorefertothelatterrelationastheadditivitypropertyforsupports. Inotherwords,it saysthataframedcorrespondence inZF (X,Y)whosesupportisadisjointunionZ⊔Z′ equals n thesumoftheframedcorrespondenceswithsupportsZandZ′respectively. NotethatZF (X,Y) n isZ[Fr (X,Y)]modulothesubgroup generated bytheelementsasabove,because 0 =0 +0 n n n n inthisquotient group, hence 0 equals zero. Indeed, itisenough toobserve that thesupport of n 0 equals0/⊔0/ andthenapplytheaboverelationtothissupport. n TheelementsofZF (X,Y)arecalledlinearframedcorrespondences oflevelnorjustlinear n framedcorrespondences. Denote by ZF (k) an additive category whose objects are those of Sm/k with Hom-groups ∗ definedas HomZF∗(k)(X,Y)=MZFn(X,Y). n>0 Thecomposition isinduced bythecomposition inthecategoryFr (k). ∗ ThereisafunctorSm/k→ZF (k)whichistheidentityonobjectsandwhichtakesaregular ∗ morphism f :X →Y tothelinearframedcorrespondence1·(X,X×A0,prA0,f◦prX)∈ZF0(k). 5 Definition2.6. LetX,Y,SandT beschemes. TheexternalproductfromDefinition2.4induces auniqueexternalproduct ZF (X,Y)×ZF (S,T)−−−⊠−→− ZF (X×S,Y×T) n m n+m such that for any elements a∈Fr (X,Y) and b∈Fr (S,T) one has 1·a⊠1·b =1·(a⊠b)∈ n m ZF (X×S,Y×T). n+m Fortheconstant morphismc: A1→pt,weset S :=−⊠1·(t,c,{0},A1,t,c): ZF (X,Y)→ZF (X,Y) n n+1 andrefertoitasthesuspension. Definition2.7. Foranyk-smoothvarietyX thereisapresheafZF (−,Y)onthecategoryZF (k) ∗ ∗ represented byY. ThemainZF (k)-presheaf ofthispaperweareinterested inisdefinedas ∗ S S S S ZF(−,Y)=colim(ZF (−,Y)−→ZF (−,Y)−→...−→ZF (−,Y)−→...). 0 1 n Forak-smoothvarietyX,elementsofZF(X,Y)arealsocalledstablelinearframedcorrespon- dences. Stablelinearframedcorrespondences donotformmorphismsofacategory. The main ZF (k)-presheaf of simplicial abelian groups we are interested in is defined as ∗ ZF(D •×X×−,Y). Definition2.8. LetX andY bek-smoothschemesandlet(S,s)and(S′,s′)bek-smoothpointed schemes. s ⋄ Denotebye : S−→pt−→Stheidempotentgivenbythecompositionoftheconstantmap s andtheembedding ofsintoS. ⋄ Define ZF(X∧(S,s),Y ∧(S,s)) as a subgroup of ZF(X×S,Y ×S) consisting of all a suchthata◦(id ×e )=(id ×e )◦a=0. Notethattheseequalities areequivalent to X s Y s a◦(id ⊠(id −e ))=(id ⊠(id −e ))◦a=a. X S s Y S s ⋄ DefineZF(X∧(S,s)∧(S′,s′),Y ∧(S,s)∧(S′,s′))asasubgroup of ZF(X×S×S′,Y ×S×S′)consisting ofallasuchthat a◦(id ⊠(id −e )⊠(id −e ))=(id ⊠(id −e )⊠(id −e ))◦a=a. X S s S′ s′ Y S s S′ s′ We should mention that the preceding definition is necessary for the formulation of Theo- remD(“LinearCancellation”). TheoremD. LetX andY bek-smoothschemes. Then −⊠(idGm−e1): ZF(D •×X,Y)→ZF((D •×X)∧(Gm,1),Y ∧(Gm,1)) isaquasi-isomorphism ofcomplexes abeliangroups. Thetheorem willbeprovedinSection7. 3. THEOREM A, THEOREM B AND THEOREM C BeforeprovingTheoremAwerecallsomedefinitionsandconstructions forframedmotives. Weadhereto[GP1]. fr Recall that the category sPre (k) of pointed simplicial framed presheaves consists of con- • travariant functors F from Fr (k) to pointed simplicial sets S such that F(0/)= pt. The cat- ∗ • egory of S1-spectra associated with sPrefr(k) is denoted by Spfr(k). It has a stable motivic • S1 6 fr projective modelcategory structure whosehomotopy category isdenoted bySH (k). Thereis S1 acanonical Quillenpair F :Sp (k)⇄Spfr(k):Y , S1 S1 where Sp (k) is the category of presheaves of S1-spectra equipped with the stable projective S1 motivicmodelstructure. TheQuillenpairinducesanadjointpairoftriangulated functors F :SH (k)⇄SHfr(k):Y S1 S1 betweentriangulated categories. Givenafinitepointed set(K,∗)andaschemeX,wedenote byX⊗K theunpointed scheme X⊔...⊔X,where thecoproduct isindexed bythe non-based elements inK. BytheAdditivity Theoremof[GP1]theG -spaceinthesenseofSegal[Seg] K ∈G op7→C Fr(U,X⊗K):=Fr(U×D •,X⊗K) ∗ isspecial. Definition3.1(see[GP1]). TheframedmotiveM (X)ofasmoothalgebraicvarietyX ∈Sm/k fr is the Segal S1-spectrum (C Fr(−,X),C Fr(−,X⊗S1),C Fr(−,X⊗S2),...) associated with ∗ ∗ ∗ thespecialG -spaceK ∈G op7→C Fr(−,X⊗K). ∗ fr The framed motive M (X)∈Sp (k)is functorial inframed correspondences of level zero. fr S1 fr Moreover, {M (X)} are compact generators of SH (k). By the Resolution Theorem fr X∈Sm/k S1 fr of[GP1]everymotivicfibrantreplacementM (X)→M (X) ofM (X)inSp (k)isastable fr fr f fr S1 Nisnevichlocalequivalence inSp (k)(overperfect fields). S1 DenotebyGthepointed simplicialpresheaf whichistermwise (−,G ) ,(−,G ) ∨(−,pt) ,(−,G ) ∨(−,pt) ∨(−,pt) ,... m + m + + m + + + Asapointed motivicspaceGisCyl(i)/(−,pt) withCyl(i)themappingcylinderforthemap + i :(−,pt) →(−,G ) sending pt to1∈G . ByG∧1 wemeanthesimplicialobjectinFr (k) + m + m m 0 whichistermwise G ,G ⊔pt,G ⊔pt⊔pt,... m m m ApplyingM (X×−)toG∧1 andrealizing bytakingdiagonals, onegetsaframedS1-spectrum fr m M (X×G∧1). We shall also denote it by M (X)(1). The nth iteration gives the spectrum fr m fr M (X×G∧n),alsodenotedbyM (X)(n). Thenearestaimistodefinethe(S1,G)-bispectrum fr m fr MG(X). Anotherwayofdefiningthe(S1,G)-bispectrum MG(X)isgiveninAppendixB. fr fr fr Weconstruct amapinSp (k) S1 a :M (X)→Hom(G,M (X×G∧1)) 0 fr fr m asfollows. Itisuniquely determined byamap b :M (X)→M (X×G∧1)(−×G ) fr fr m m andahomotopy h:M (X)→M (X×G∧1)(−×pt)I (1) fr fr m suchthatd h= f∗b andd hfactorstroughthedistinguished pointlevelwise. Here f : pt →G 0 1 m isamorphism ofschemessuchthat f(pt)=1. Wesetthemapb tobethecomposition M (X)−−−⊠−G−→m M (X×G )(−×G )→p M (X×G∧1)(−×G ), fr fr m m fr m m 7 where p is a natural map, induced by the simplicial map of simplicial objects G → G∧1 in m m Fr (k)(weconsider G asasimplicialschemeinatrivialway). 0 m OnehasacommutativesquareforanyW ∈Sm/k C∗Fr(W×Gm,X×Gm) C∗Fr(1W×f,1X×Gm) //C∗Fr(W×pt,X×Gm) OO OO −⊠Gm C∗Fr(1W×pt,1X×f) −⊠pt C Fr(W,X) //C Fr(W×pt,X×pt). ∗ ∗ Ontheotherhand,thereisacommutativediagram p C∗Fr(W×pt,X×Gm) //C∗Fr(W×pt,X×G∧m1) OO OO f∗ f∗ p′ C Fr(W×pt,X×pt) // P(C Fr(W×pt,(X×pt)⊗S1)) ∗ ∗ Heretheright lowercorner standsforthesimplicial pathspaceofC Fr(W×pt,(X×pt)⊗S1) ∗ (see[GP1,Section7]fordetails). RecallthatthepathspacePX ofasimplicialobjectX :D op→ D inacategoryD isdefinedasthecomposition ofX withtheshiftfunctorP:D →D thattakes [n] to [n+1] (by mapping i to i+1). By [Wal, 1.5.1] there is a canonical contraction of this spaceintothesetofitszerosimplicesregardedasaconstantsimplicial set. SinceP(C Fr(W× ∗ pt,(X ×pt)⊗S1)) has only one zero simplex, it follows that there is a canonical simplicial homotopy H :P(C Fr(W×pt,(X×pt)⊗S1))→P(C Fr(W×pt,(X×pt)⊗S1))I ∗ ∗ suchthatd H =1andd H =const. 0 1 Nowthemaph(1)isinducedbythecompositemap C Fr(W×pt,X×G∧1)I ∗ m OO fI ∗ P(C Fr(W×pt,(X×pt)⊗S1)) H // P(C Fr(W×pt,(X×pt)⊗S1))I ∗ ∗ OO p′ −⊠pt C Fr(W,X) //C Fr(W×pt,X×pt) ∗ ∗ (the same composite map is similarly defined on each space of the spectrum M (X)). The fr desiredmapa :M (X)→Hom(G,M (X×G∧1))isconstructed. Notethata isfunctorialin 0 fr fr m 0 framedcorrespondences oflevelzero. Eachmapofspectra a :M (X)(n)→Hom(G,M (X)(n+1)), n>0, (2) n fr fr isconstructed similartoa ifwereplaceX withX×G∧n andrealizebytakingdiagonals. 0 m Definition3.2. The(S1,G)-bispectrum MG(X)isdefinedas fr (M (X),M (X×G∧1),M (X×G∧2),...) fr fr m fr m together with the structure morphisms a -s. Another way of defining the a -s is given in Ap- n n pendixB. 8 We shall prove below (see the proof of Theorem A) that each a is a Nisnevich local stable n equivalence ofspectra,butfirstletusdiscussfurtherusefulspectra. Denote by ZFrS1(X) X ∈ Sm/k the Segal S1-spectrum (ZFr (−,X),ZFr (−,X ⊗S1),...). ∗ ∗ ∗ DenotebyEM(ZF (−,X))theSegalS1-spectrum(ZF (−,X),ZF (−,X⊗S1),...). Theequal- ∗ ∗ ∗ itiesZF (−,X⊔X′)=ZF (−,X)⊕ZF (−,X′)showthattheG -space(K,∗)7→ZF (U,X⊗K) ∗ ∗ ∗ ∗ corresponds to the abelian group ZF (U,X). Hence EM(ZF (−,X)) is the the Eilenberg– ∗ ∗ Mac Lane spectrum for ZF (−,X). The G -space morphism [(K,∗) 7→ ZFr (−,X ⊗K)] → ∗ ∗ [(K,∗)7→ZF (−,X⊗K)]inducesamorphismsofframedS1-spectra ∗ l :ZFrS1(X)→EM(ZF (−,X)) X ∗ ∗ Also, denote by ZM (X), X ∈Sm/k, the Segal S1-spectrum (C ZFr(−,X),C ZFr(−,X⊗ fr ∗ ∗ S1),...). Denote by LM (X) the Segal S1-spectrum EM(ZF(D • ×−,X)) = (ZF(D • × fr −,X),ZF(D •×−,X ⊗S1),...). The above arguments show that LM (X) is the Eilenberg– fr MacLanespectrum forZF(D •×−,X)andonehasanatural morphism l :ZM (X)→LM (X) X fr fr offramedS1-spectra. Note that homotopy groups of LM (X) = EM(ZF(D •×−,X)) are equal to homology fr groups of the complex ZF(D •×−,X). By [Sch, §II.6.2] homotopy groups p (ZM (X)(U)) ∗ fr ofZM (X)evaluated atU ∈Sm/karehomology groupsH (M (X)(U))ofM (X)(U). fr ∗ fr fr As above we can define S1-spectra LM (X ×G∧n)-s together with morphisms of framed fr m spectra c :LM (X×G∧n)→Hom(G,M (X×G∧n+1)), n>0. n fr m fr m WealsoreferthereadertoAppendixBforanotherwayofdefiningthec -s. n Though ZM (X)(U)isalinearS1-spectrum, itshomotopy groups arehardtocompute. But fr ifU is smooth local Henselian, then p (ZM (X)(U))=H (ZF(D •×U,X)). More precisely, ∗ fr ∗ thefollowingresultistrue. Theorem3.3(see[GP3]). Thenatural morphismsofframedS1-spectra l :ZFrS1(X)→EM(ZF (−,X)) and l :ZM (X)→LM (X) X ∗ ∗ X fr fr are Nisnevich local stable equivalences. In particular, if U is smooth local Henselian, then p (ZM (X)(U))=H (ZF(D •×U,X)). ∗ fr ∗ Definition 3.4. (I) Following [GP1] X ∈Spfr(k) is BCD-local if it is A1-invariant, takes the S1 leveloneframedcorrespondences =({0},A1 −→id A1,pr ):X →X withX ∈Sm/ktoastable X X X X weakequivalence andthenatural mapofspectra X(U⊔V)→X(U)×X(V) isastableweakequivalence ofspectraforallU,V ∈Sm/k. (II) A framed presheaf ofabelian groups F is quasi-stable ifF(s )is anisomorphism for X everyX ∈Sm/k. F isradditiveifthenatural homomorphism F(U⊔V)→F(U)×F(V) isanisomorphism forallU,V ∈Sm/kandF(0/)=0. Note that X ∈Spfr(k) is BCD-local if and only if each homotopy presheaf p (X), n∈Z, S1 n isA1-invariant, quasi-stable andradditive. 9 Belowweshallneedthefollowing Lemma 3.5. Suppose r : X → Y is a stable Nisnevich local weak equivalence of framed BCD-local S1-spectra. Then r : Hom(G ,X) → Hom(G ,Y ) is a stable Nisnevich local ∗ m m weakequivalence. Proof. Wehavetoshowthat r U⊠Gm :X(U⊠Gm)→Y (U⊠Gm) is a stable weak equivalence of spectra for every local smooth Henselian U. Consider the presheafofS1-spectra U ∈Sm/k7→cone(r U⊠Gm). ThespectraX(−⊠G ),Y (−⊠G )areBCD-local. Thereforetheirpresheaves ofhomotopy m m groupsarequasi-stable, radditiveA1-invariantframedpresheaves. Itfollowsthatthepresheaves ofhomotopygroupsofcone(r −⊠Gm)arequasi-stable,radditiveA1-invariantframedpresheaves. Thusthepresheavesofhomotopygroupsofcone(r −⊠Gm),X(−⊠Gm),Y (−⊠Gm)arequasi- stable,A1-invariant ZF (k)-presheaves (see[GP2,Introduction]). ∗ By [GP2, 2.15(3’)] for any quasi-stable, A1-invariant ZF (k)-presheaf F and every smooth ∗ localHenselianU thepull-back mapF(U)→F(Speck(U))isinjective. By[GP2,2.15(1)-(2)] thepresheafF| isaZariskisheaf. Using[GP2,2.15(5)]appliedtoX =A1,oneshowsthatfor A1 k k anyopenW inA1 onehasFnis(W)=F(W). Inparticular, Fnis(G )=F(G ). k m,k m,k Hence for every smooth local HenselianU, the homotopy groups p ∗(cone(r U⊠Gm)) are em- beddedintop ∗(cone(r Speck(U)⊠Gm))andforanyk-smoothirreducible varietyV onehas p (X)(Speck(V)⊠G )=p nis(X)(Speck(V)⊠G )= ∗ m ∗ m p nis(Y )(Speck(V)⊠G )=p (Y )(Speck(V)⊠G ). ∗ m ∗ m Thus for every smooth local Henselian U, p ∗(cone(r Speck(U)⊠Gm)) = 0, and hence p ∗(cone(r U⊠Gm))=0. Therefore r U⊠Gm is a stable equivalence whenever U is local smooth Henselian. (cid:3) By the Resolution Theorem of [GP1] one can find for every framed BCD-local S1-spectrum G aNisnevichlocalfibrantreplacement a :G →G f suchthata isamapinSpfr(k)whichinduces anisomorphism p nis(a )ontheNisnevich stable S1 ∗ homotopy sheaves. Moreover, a is functorial in G. In particular, we can find M (X)(n) for fr f everyn>0. Eachmap(2)induces amapofframedspectra b :M (X)(n) →Hom(G,M (X)(n+1) ), n>0, n fr f fr f suchthatthesquare Mfr(X)(n) an // Hom(G,Mfr(X)(n+1)) (3) a Hom(G,a ) Mfr(X(cid:15)(cid:15))(n)f bn // Hom(G,Mfr((cid:15)(cid:15) X)(n+1)f) iscommutative. Wearenowinaposition toproveTheoremA. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.