Mon.Not.R.Astron.Soc.000,000–000(0000) Printed18January2017 (MNLATEXstylefilev2.2) Can the removal of molecular cloud envelopes by external feedback affect the efficiency of star formation? William E. Lucas1(cid:63), Ian A. Bonnell1 and Duncan H. Forgan1 1SUPA,SchoolofPhysics&Astronomy,UniversityofStAndrews,NorthHaugh,StAndrews,FifeKY169SS,UnitedKingdom 7 1 0 18January2017 2 n a ABSTRACT J We investigate how star formation efficiency can be significantly decreased by the removal 6 of a molecular cloud’s envelope by feedback from an external source. Feedback from star 1 formationhasdifficultieshaltingtheprocessindensegasbutcaneasilyremovethelessdense andwarmerenvelopeswherestarformationdoesnotoccur.However,theenvelopescanplay ] A an important role keeping their host clouds bound by deepening the gravitational potential andprovidingaconstrainingpressureboundary.Weusenumericalsimulationstoshowthat G removal of the cloud envelopes results in all cases in a fall in the star formation efficiency . (SFE).At1.38free-falltimesour4pccloudsimulationexperiencedadropintheSFEfrom h p 16tosixpercent,whileour5pccloudfellfrom27to16percent.Atthesametime,our3pc - cloud(theleastbound)fellfromanSFEof5.67percenttozerowhentheenvelopewaslost. o The star formation efficiency per free-fall time varied from zero to ≈ 0.25 according to α, r t definedtobetheratioofthekineticplusthermaltogravitationalenergy,andirrespectiveof s theabsolutestarformingmassavailable.FurthermorethefallinSFEassociatedwiththeloss a oftheenvelopeisfoundtoevenoccuratlatertimes.WeconcludethattheSFEwillalwaysfall [ shouldastarformingcloudloseitsenvelopeduetostellarfeedback,withlessboundclouds 1 sufferingthegreatestdecrease. v 4 Keywords: stars:formation–ISM:clouds–accretion,accretiondiscs–hydrodynamics 1 4 4 0 . 1 INTRODUCTION Bonnell&Whitworth2007andotherpapersinthisseries;Daleet 1 al.2014;MacLachlanetal.2015).Theeffectismuchmoresignif- 0 Star formation is a complex process governed by several inter- icantinlowerdensitygas,butitisinsteadinthehigherdensitygas 7 twinedphysicalprocesses(Evansetal.1999;Dobbsetal.2014). that star formation takes place. This would seem to indicate that 1 Thecoremechanismisthecollapseundergravityofdenseregions : feedbackcannotgreatlyimpacttheefficiencyofstarformation. v of gas into stars, with this for the most part taking place in giant Inrealitystarformationtakesplaceindenseandcoldmolec- i molecular clouds with only around ten per cent of stars forming X ularhydrogengasatthecentreoftheseclouds.Theopticaldepth inisolation(Lada&Lada2003;Evansetal.2009).Opposingthis hereishighenoughthattheyareshieldedfromtheexternalGalactic r arethermalpressurealongwithturbulentkineticmotions(Heyer& a radiationfield,whiletheouterlayersofthecloudareexposedand Brunt2004;MacLow&Klessen2004)andmagneticfields(Price formanenvelopeofatomichydrogen(Abgralletal.1992;LeBour- &Bate2009;Padoan&Nordlund2011).Theconfluenceofthese lot et al. 1993). Observations of star forming clouds have found processesgovernsthepropertiesofanewstellarpopulationsuch themtotypicallybemarginallybound,thoughthevirialparame- asthenumberofstars,theirmasses,locations,multiplicityanddy- terforindividualcloudsvariesfrom0.1to10(Bolattoetal.2008; namics(Shu,Adams&Lizano1987;Bonnell,Larson&Zinnecker Heyeretal.2009;Wongetal.2011;Dobbsetal.2011;Dobbset 2007). al.2014). One of the most important questions concerning star forma- tion is why it is so inefficient, with of order a few percent of the Restricting a cloud rather than allowing it to freely expand gasavailableonlargescalesbeingtransformedintostars(Kenni- intoavacuumwouldkeepitsaveragevolumedensityhigherthan cutt&Evans2012;Krumholz2014;Heyeretal.2016).Feedback otherwise.Krumholz&Tan(2007)arguedusingobservationsthat fromyoungstars,intheformofionizingradiation,stellarwindsor acloud’sstarformationefficiency(SFE)perfree-falltimeisinde- supernova explosions, is often invoked as a solution, but numeri- pendentofitsdensity,allowingKrumholz,Dekel&McKee(2012), calsimulationshaverepeatedlyshownthatfeedbackhasatmosta Federrath(2013)andSalim,Federrath&Kewley(2015)toformu- moderateeffectonthestarformationefficiencyofdensegas(Dale, latestarformationlawsbasedonturbulence.SimulationsbyClark, Bonnell&Klessen(2008)foundthattheSFEincreasesformore tightlyboundclouds.NewersimulationsbyBonnelletal.(2011) (cid:63) E-mail:[email protected] and observations by Louvet et al. (2014) found a positive corre- (cid:13)c 0000RAS 2 W.E.Lucasetal. lationbetweenSFEanddensity.Elmegreen&Lada(1977)intro- Table1.Thesimulationnamesandmeanings.Thenamereflectsthecloud ducedtheconceptofsequentialstarformationtakingplaceasion- radius in parsecs and the resolution of the simulation (very low, low, izing feedback from young stellar clusters repeatedly sweeps up mediumorhigh).Thesecondcolumngivesthegasparticlemassinsolar materialtoformnewclusters.AssuchweaskhowtheSFEmight units.Thefinaltwocolumnsprovidethemassofthecloudandenvelope. change with the loss of a cloud’s envelope due to feedback in a Eachrunhadtwovariations–oneinwhichthewarmenveloperemained similarscenario,thoughwiththefeedbackheretakinganegative forthewholesimulation’sduration(indicatedbyprefixingthenamegiven ratherthanpositiveform. herewithan‘E’)andanotherinwhichitwasremovedafteraquarterofthe cloud’scrossingtime(indicatedby‘X’). Observationsandmodelsagreethatthetransitionfromwarm lowdensitygastocoldhighdensitygasisgradualandthatthere isamixtureofphasespresent(Goldsmith&Li2005).Totestthe Runname mpart/M(cid:12) Mcloud/M(cid:12) Menvelope/M(cid:12) envelope’seffectonstarformationefficiency,weenvisionasim- 3pc–medres 0.01 2,160.72 7,786.59 plifiedgeometrywithawarmerlowdensityenvelopesurrounding 4pc–vlowres 0.04 5,114.44 7,479.88 thecold,denseandturbulentgaswherestarformationcanoccur. 4pc–lowres 0.02 5,116.08 7,482.26 Theextragravityandpressurefromtheenvelopekeepsthesuper- 4pc–medres 0.01 5,119.46 7,487.21 virialcloudfromexpanding.Twoscenariosfollow:oneinwhich 4pc–highres 2×10−3 5,115.294 7,481.118 5pc–vlowres 0.04 10,000.00 7,000.00 theenveloperemainsinplace,andoneinwhichitislaterremoved 5pc–lowres 0.02 10,000.00 7,000.00 asafirstorderapproximationtoitsstrippingbystellarfeedback. 5pc–medres 0.01 10,000.00 7,000.00 In this paper we report on simulations of such a cloud within a 5pc–highres 2×10−3 10,000.00 7,000.00 transientwarmenvelopeinordertoaskwhethersuchfeedbackcan contributetoasignificantreductioninthestarformationefficiency inthedensegas. a value slightly above the 3 to 4kms−1 that might be expected foracloudofthissizeandmassfromtheLarsonrelations(Larson 1981;Rosolowskyetal.2003). Theenvelopeontheotherhandwasallowedtoremainwithno 2 NUMERICALMETHOD internalmotions.Eitherthermalorrampressurefromtheenvelope Smoothedparticlehydrodynamics(SPH)isaLagrangiantechnique couldhavebeenusedtoconstrainthecloud,sowhileitwassetto used to model a fluid as a set of particles. Each particle’s mass a temperature of 103K, a lower value could have been used and is spread throughout a volume with the use of a smoothing ker- theenvelopealsomadeturbulent.Forsimplicity,weusedthermal nel. The fluid equations may then be reformulated as sums over pressurealone. the particles by treating the density, internal energy and so on as Thesamesimulationwasrunwithalessboundcloudbytak- interpolated quantities. The simulations shown later in this paper ingtheoriginalcloudofradius5pcandremovingthelayerfrom4 wereperformedwiththeSPHcodeSPHNG(Bate,Bonnell&Price to5pc,thenrecreatingtheenvelopebypopulatingtheregionfrom 1995;Price&Monaghan2007).Thiscodeallowsforthecreation 4to10pcwithlowdensitywarmgasasbefore.Thisleftthecold of sink particles which represent stars. As a Lagrangian method, cloudwithamassof5120M ,andassuchinisolationα=3.15. (cid:12) SPHalsoallowsformasstobetracedthroughoutasimulation.This The 4 and 5pc setups were created at four resolution levels of makesthemethodwidelyusedinastrophysics,andassuchmany 0.04M ,0.02M ,0.01M ,and2×10−3M perparticle.Dueto (cid:12) (cid:12) (cid:12) (cid:12) papersprovidein-depthdescriptions.Somerecommendationsare theinitialrandomparticleplacement,thetotalcloudmassdidvary Benz(1990)andMonaghan(1992)forbasicoverviews,andPrice veryslightlybetweendifferentresolutionsimulationswhenderiv- &Monaghan(2004)fordetailsofthegrad-hformalismwhichwas ingthe4pcclouds.Asinglesimulationwassimilarlysetuptorun usedhere. with a cloud size of 3pc at the 0.01M resolution level. With a (cid:12) The basic simulation setup is as follows. Firstly, a spherical massof2160M ,thiscloudwasmostunboundwithα=5.59. (cid:12) cloud of radius 5pc and mass 104M was created. The original Dynamicsinkparticlecreationwasenabledinallsimulations. (cid:12) densitywasuniformwithavalueofρ = 1.29×10−21gcm−3, The criteria for creation are as described in Bate et al. (1995); a 0 giving a free-fall time of 1.85×106years. Its temperature was brief description follows here. A gas particle being tested had to set to 10K. The region from 5 to 10pc was then filled with gas exceed a critical density set to 108ρ = 1.29×10−13gcm−3, 0 at103Kandadensityafactoroftenlowerthentheinnercloud. and all its neighbours (gas particles within the kernel) had to be Thesoundspeedinthecoldinnercloudwas0.253kms−1 while withinadistanceof0.01pc.Thisclumpofparticlesalsohadtobe inthewarmouterenvelopeitwas2.53kms−1.Notethatthegasin bound and collapsing. The SPH code aimed to give each particle bothstructureshasameanmolecularweightof1.29,thatforamix around 50 neighbours and so the minimum sink mass was 2M (cid:12) of atomic hydrogen and helium, and differs only in temperature. inthe‘vlowres’simulations,1M in‘lowres’simulations,0.5M (cid:12) (cid:12) Allowingittochangewithphasewouldbedesirablefora‘com- in‘medres’runs,and0.1M in‘highres’.Aftersinkcreation,gas (cid:12) plete’simulation,buthereitiskeptconstantbothasanumerical particleswithinthesamedistanceof0.01pccouldbeaccretedif convenienceandinordertokeepthemodelsimple.Fromthispoint ittheypassedaboundednesstest.Particleswithin2.5×10−3pc theterms‘cloud’and‘envelope’willrefertotheinnerandouter wereaccretedwithouttesting. structuresrespectively. After setup, the simulations were evolved isothermally un- A turbulent velocity field following an approximately Kol- derself-gravityforaslongaspossiblebeforebeinghaltedbythe mogorov power spectrum of (cid:104)|v |2(cid:105) ∝ k−3.5 was applied to the smalltimestepsrequiredinthehighdensityregionsformingsinks. k cloud.Theαvalue(Boss&Bodenheimer1979)istheratioofthe Foreach,splitsimulationswerecreatedafteraquarterofthetur- kineticplusthermalenergytothegravitationalbindingenergy.The bulent crossing time in the cloud (evaluating to 0.32Myr for the velocitieswerescaledsuchthat,whenconsideringthecloudiniso- 3pccloud,0.43Myrforthe4pccloudand0.54Myrforthe5pc lation,itwouldbeunboundwithα=2.00.Assuchtherootmean cloud)inwhichtheentiretyofthewarmenvelopewasremovedas square(RMS)speedwas4.53kms−1(MachnumberM=17.9), anapproximationtotheeffectsoffeedback.Inalatersetofsimu- (cid:13)c 0000RAS,MNRAS000,000–000 SFEaftercloudenvelopeloss 3 Figure1.Simulationmethod.Insubfigurea),acoldturbulentcloud(blue)isembeddedwithinawarmnonturbulentenvelope(red).Thiswasthenevolved forwardsintime,showninsubfiguresb)andthenc).Partofthewaythroughthesimulation,usuallyataquarteroftheturbulentcrossingtimeandhereshown inb),aseparatesimulationwascreatedbyremovingthewarmenvelopetocreatethesetupseeninsubfigured).Thecloudwasthenevolvedinisolationtoa latertimeshownine)toallowadirectcomparisonwiththeoriginalruninwhichtheenvelopewasretainedfortheentiredurationofthesimulation.Itwas expectedthatthelossoftheenvelopewouldleadtomorestarformationtakingplaceinc)thanine).(Acolourversionofthisplotisavailableintheonline version.) lationstheenvelopewasremovedfromthemediumresolution4pc density translates to a decrease in the importance of self-gravity cloudatlatertimesofupto1.50t .Theprocessofevolutionand andhenceadecreaseinthelocalstarformationrate.Assuchpar- ff creationofaparallelsimulationwithouttheenvelopeisshownin allelsinstructurecanbeseenwiththecorrespondingE-runs,but Figure1. thesmalldenseclumpsseenpreviouslydidnotforminthesesim- ThesimulationsandnamingconventionsaregiveninTable1. ulations. Thecloudradiusinparsecsisprovided,alongwithanindication Figure 3 shows column densities and sink locations for the of the resolution level of the simulation: very low, low, medium medium resolution simulations at all three cloud sizes (3, 4 and orhigh.Whenreferringtoaspecificsimulation,an‘E’isprefixed 5pc) and both with and without the envelope, at 1.38t = ff tothistoindicatethattheenveloperemainedthroughoutthewhole 2.54Myr.Acrossthethreecloudsizes,themostapparentchange simulation,whilean‘X’prefixindicatesthatitwasremovedduring is the correlation of the original cloud size with the extent of theevolution. dense structured gas after evolution. Much of this takes the form ofcometaryblobsofcoldgaslaunchedoutwardsthroughtheen- velope.Itisalsoimmediatelyapparentthatwiththeremovalofthe envelopeintheE-runs,theabilityofthecloudtoformdensestruc- 3 EVOLUTIONARYOVERVIEW tureingeneralalongwithsinkparticlesdroppeddramatically.At Asmightbeexpected,thecoldinnercloud’sevolutionwaschar- thesametime,whilethe5pccloud(themostboundoftheset)was acterised by the growth of overdensities throughout its evolution. able to form stars in the absence of the envelope, the 3pc cloud Theseinitiallycameaboutthroughthegenerationofstructurevia hadfailedtoformany.Indeednosinkshadbeenformedevenby turbulence. Self-gravity was then able to take hold in the densest theendofE3pc–medresat2.54tff =4.71Myr.E4pc–medresand regionsandbringthemtothepointwherestarscouldbeformed. X4pc–medreslaybetweentheextremaofthe3and5pcruns. Thewarmenvelope,retainedintheE-simulations,maintained ExaminingthedensityPDFsrevealsinmoredetailthequanti- aroughlysphericalsymmetryasitgainedlittlekineticenergyfrom tativedifferencesbetweenthesimulations.TheseareshowninFig- the turbulent central cloud, and thus lacked significant internal ure4forthecoldgasintheE-andX-variationsofthe3pc–medres, motions.Incontrasttheclouditselfdevelopedstrongfilamentary 4pc–medresand5pc–medressimulationsat1.38tff. structurealongwithanumberofsub-parsecscaleclumpscontain- ThedensityPDFsforbothvariationsofthe3pc–medresand ingdynamicallyformingsinkparticles.Asthecloudwasbydesign 4pc–medresrunsaswellasE5pc–medresfollowedapproximately unbound,itexpandedandpartiallydisplacedtheenvelope. lognormaldistributions.ThedistributionsfortheE-runswerelo- TheX-simulations,inwhichtheenvelopewasremoved,ex- catedathigherdensities,withexcessesattheveryhighestdensities hibitquitedifferentevolution.AswasnotedinSection2,theywere representing the self-gravitating gas moving towards sink forma- removed at 0.25t once the turbulence had already started to tion.ThisnoticeablydoesnotoccurinX3pc–medres.Intermsof cross generate the internal filamentary structure. In the absence of the shape the density PDF for X5pc–medres is the exception, seem- envelopethecoldcloudwasfreetoexpand.Thefilamentsformed inglyspreadingbetweentheE-andX-groups.Itisclearfromex- fromtheturbulenceweremorediffuseincomparisonwiththesim- aminationofthecolumndensitiesinFigure3thattheremovalof ulationsinwhichtheenvelopewaspresentthroughout.Thislower thewarmenvelopeledtothecloud’sexpansionintothevacuum.In (cid:13)c 0000RAS,MNRAS000,000–000 4 W.E.Lucasetal. Figure 2. Evolution of simulation E4pc–medres. Shown are the column densities and sink particles (as white points) at four times. For reference, 844300years=0.46tff,1693000years=0.92tffand2542000years=1.38tff.Turbulenceinthecloudgeneratedstructure,withsinkparticlesforming inthedensestregionsbythefinaltimeshown.Enoughkineticenergyhadbeenplacedwithintheinitialcloudtolaunchsmallblobsoutwards,butwiththe presenceoftheenvelopethecloudonthewholeremainedroughlythesamesizethroughout.(Acolourversionofthisplotisavailableintheonlineversion.) X5pc–medres,thesameexpansionisseeningasmovingtolower afactorof55forthe4pc–medresrunsand139forthe3pc–medres densities–atthesametime,thecloudinthissimulationwascloser runs.Thatistosay,thedensityinthecloudwasincreasedmoreby tobeinggloballybound,andexaminationofthesimulationsdoes retaining the envelope than by making it larger and more bound. showthatthecentralregionwasundergoingcollapse.Thisresulted Thuswecansaythattheeffectofthewarmenvelopecontributed in the ‘flat-top’ of the density PDF for X5pc–medres, represent- greatlytowardsmaintaininghigherdensitiesinthecloud. ingthedenseinnerregionsofthecloudaswellasanewenvelope Approaching 1t , sink particles began to form in all simu- ff formedfromtheexpansionofitsouterlayers. lations with the exception of X3pc–medres, concentrated in the AtthetimeofthePDFsshowninFigure4,themediandensity cold and dense filaments and clumps. In no simulation did enve- inE3pc–medreswas1.97×10−20gcm−3,whileremovingtheen- lopeparticlestakepartinaccretiontosinkparticles.Overtimethe velopeledtothemediandensityinX3pc–medresfallingto1.42× proto-clusterscoalescedtoformlargerstructuresfollowingapro- 10−22gcm−3.InE4pc–medresitwas2.19×10−20gcm−3,while cesssimilartothatseeninBonnell,Bate&Vine(2003),thelargest itsimilarlyfellinX4pc–medresto4.00×10−22gcm−3.Finally formingfromthedensecentralregionsofthecloudthatcanbeseen the respective values for E5pc–medres and X5pc–medres were justabovetheorigininFigure3.Isolatedsinksalsoformedfrom 2.58×10−20gcm−3and1.29×10−21gcm−3. thesmallerclumpsatlargerdistancesfromtheorigin,butdueto Twoobservationsmaybemadehere.Firstly,changingthesize theclumps’absence,atamuchlowerrateintheX-simulationsin ofthecloudfrom3to5pcledtoonlyasmallchangeinthemedian whichtheenvelopehadbeenremoved. densityintheE-simulations,whileintheX-simulationsitfellby An isothermal equation of state was used in all the simu- almostafactoroften.Secondly,removingtheenvelopedroppedthe lations. Because of this, the gas may easily fragment as seen in mediandensitybyafactorof20inthe5pc–medressimulationsbut Dobbs,Bonnell&Clark(2005)andLarson(2005)andthenumber (cid:13)c 0000RAS,MNRAS000,000–000 SFEaftercloudenvelopeloss 5 Figure3.Columndensitiesforallmediumresolutionsimulationsat1.38tff = 2.54Myr,withdotsshowingthelocationsofsinkparticles.Theplotsare arrangedwithincreasingcloudradiusfromtoptobottom,andwiththeleft-handcolumnshowingtheE-simulationswhichretainedtheenvelopewhileinthe X-simulationsshownontherighttheenvelopewasremovedafteraquarterofacrossingtime.GasreachedhigherdensitiesintheE-simulationsandformed morecomplexstructure,whilethecloudexpandedtobecomemuchmorediffuseintheX-simulations.Sinkformationisgenerallyassociatedwiththedensest regions.Increasingstructure,densityandstarformationcanalsobeseenasthecloudradius(andthusboundedness)increased.(Acolourversionofthisplot isavailableintheonlineversion.) (cid:13)c 0000RAS,MNRAS000,000–000 6 W.E.Lucasetal. Figure5.Starformationefficiencyforthe4pcradiusclouds.Thelowres- Figure 4. Mass-weighted density PDF of cold (10 K) gas in the 3pc– olutionsimulationsactuallybeganformingsinkparticlesearlierthanthe medres,4pc–medresand5pc–medressimulationsat1.38tff =2.54Myr. mediumresolutionruns,butatsuchlowratesthattheSFEwasoforder The dotted vertical line shows the original mean density ρ0 = 1.29× 0.01.OncetheSFEreachedanappreciablefractionofunity,therunsat 10−21gcm−3inthecoldgas.Asidefromthedifferenceindensitiesbe- variousresolutionshadessentiallydivergedtogivetwogroups:theE-runs tweenthethreesetscausedbytheincreaseofmasswithcloudsize,itis inwhichtheenveloperemainedinplacethroughout,andtheX-inwhichit apparentthatdensitieswereenhancedwhenthewarmenveloperemained wasremoved.Bytheendpointsoftheseruns,theE-simulationshadanSFE inplacethroughoutthesimulation.(Acolourversionofthisplotisavailable afactorofalmostfourgreater.(Acolourversionofthisplotisavailablein intheonlineversion.) theonlineversion.) formationproceededbutveryslowly.AfterthatpointtheSFEin- ofsinksformedislikelyanupperlimit,withthetruevaluebeing creasedmuchmorequicklytosizeablefractionsofunity,withthe lower.Howeverthesimulationsshouldstillprovideagoodestimate efficiencies for the E- and X- simulations beginning to diverge ofthetotalmassinstars,anditiswiththisquantityweinvestigate shortlyafterwardsat≈1.1t .AfterthispointthetwosetsofSFEs thestarformationefficiencyinthenextsection. ff continued to increase at roughly linear rates. The divergence ap- pearsmorenoticeableforthe4pccloudthankstothelongerrun- timesthatcouldbeachievedforthesesimulations. 4 STARFORMATIONEFFICIENCY ItisclearfrombothfiguresthattheX-runsinwhichthewarm envelope was removed were less efficient at forming stars when Thestarformationefficiency(SFE)wasfoundtobeverydifferent compared to the E- simulations in which the envelope remained betweenthevarioussimulations.TheSFEwasdefinedinrelation throughout the simulation. Taking a fiducial point at 1.38t , the tothemassofcold(10K)gasinthecloud,M ,avaluediffer- ff cloud SFE in E4pc–medres was 0.16 while it fell to 0.06 in X4pc– ingbetweenthevariously-sizedcloudsused.Itmaythenbesimply medres.Atthesametimeforthe5pc,E5pc–medreshadanSFEof calculatedatanytimeby 0.27andX5pc–medreshad0.16.Bythelatesttimesavailablefor M the 4pc cloud, after 1.8t , the difference was even greater, with SFE = sinks , (1) ff M +M the SFE ≈ 0.15 in the X- runs increasing to over 0.5 in the E- cloud sinks runs. whereM isthetotalmassinsinkparticles.Asnoenvelopepar- sinks Thoughthevaluesaretoolowtobeseeninthefigures,star ticleswentintoanysinks,thesumonthebottomalwaysequalled formation began in the 4pc cloud at different times, from 0.7 to the original cloud mass. Although the sink particles are only nu- just over 1t depending on the level of resolution and whether mericalrepresentationsofstars,theyareasuitableproxytoallow ff theenvelopewaspresentornot.Conversely,starformationinthe thecalculationoftheSFE:whileeachonemaynottrulyrepresent 5pccloudbeganbetween0.7and0.8t inallcases.Anobserva- astar,itdoesstillcontaingasthatwasdeterminedtobedenseand ff tionmaybemadeinthatallthesimulationsinwhichtheenvelope gravitationally bound. As such, the SFEs reported here do repre- wasretainedbegantoformsinkparticlesearlierthanthevariants sent the star forming capability of the cloud, within the limits of inwhichtheenvelopewaslost.Furthermore,thediscrepancywas theresolution,whichiscoveredinSection4.2. greaterforthe4pcclouds(wheresinkformationwasdelayedby upto≈0.1t )thanthe5pcclouds(whereitwas≈0.01t ).Since ff ff theSFEatthesetimeswasgenerallyoforder10−3,theendeffect 4.1 Originalsimulations isnegligible. TheSFEsofthe4pccloudsareplottedagainsttimeinFigure5for The3pccloudisnotshownontheseplots,beingmuchmore boththeE-andX-variantsandatallfourresolutionsusedforthat extremethantheothers.InE3pc–medres,by1.38t =2.54Myr, ff setup.Asimilarplotisshownforthe5pccloudsinFigure6. 22sinkshadformedwithanSFEof5.67×10−2.Bytheendofthe TheprofilesoftheSFEforthetwocloudsizesshowninFig- simulationat2.55t =4.71×106Myr,therewere103sinkswith ff ures 5 and 6 both follow a similar pattern. Before ≈ 1.0t star an SFE of 0.59. In contrast to all other runs, no sinks formed at ff (cid:13)c 0000RAS,MNRAS000,000–000 SFEaftercloudenvelopeloss 7 Figure6.Starformationefficiencyforthe5pcradiusclouds,plottedinthe samewayasFigure5.AtearliertimestheseparationbetweentheE-and Figure7.Thestarformationefficiencyperfree-falltime,SFEff,calculated theX-runsisnotasclearasitwaswiththe4pccloud,butasthesimulation at1.38tffforallthesimulationswhichhaddataaslateasthat,plottedhere progressedthedivergencebetweenthetwosetsgrewsothattheincreased againstα=T/|W|.Thesearebothdimensionlessquantities.Thearrows SFEwiththeenvelope’spresenceisclearlyvisible.(Acolourversionof showthechangewhenremovingtheenvelopefromacloudofagivenra- thisplotisavailableintheonlineversion.) dius.Thesimulationresolutionisreflectedbypointsize;thelargestpoints herearethemediumresolutionsimulations.Itcanbeseenthatforeach cloudofagivenradius,theSFEff fellwhentheenvelopewasremoved. allrightupuntilthesameendpointforthesimulation.Thelower Atthesametimetheincreaseinαbringsthetwodatasetsroughlyinline densities in the cloud that resulted from the envelope’s removal, withoneanother.ThepointforE3pc–medresliesalmostontopofthose forX4pc–vlowres,–lowresand–medres.(Acolourversionofthisplotis seeninthedensityPDFsinFigure4,ledtothecompleteinability availableintheonlineversion.) ofthecloudtoformstarsatall. account that for a cloud to be in virial equilibrium it must have 4.2 Resolutioneffects T/|W|=0.5.Thuscalculatingthevalue ItcanbeseeninFigures5and6thatalthoughtherewerevariations 2T α ≡ (3) betweenthestarformationefficienciesforsimulationsofdifferent vir |W| resolutionlevels,onthewholetheyfollowedoneanotherclosely andfindingα = 1impliesvirialequilibrium,whileforbound- and allowed us to confirm the effect of the envelope. This can in vir ednessα (cid:54)2.Thevalueitselfonlydiffersfromαbyafactorof particularbeseenwiththelongerruntimesforthe4pccloudsim- vir two.Notethatintheliteraturethesetwoparametersareoftenboth ulations. giventhesymbol‘α’,andsotodifferentiatethemweusethe‘vir’ AsnotedinSection4.1,the4pccloudinparticularbeganto subscriptwiththesecond.(SeeBallesteros-Paredes2006forsome formsinkparticlesatdifferenttimesdependingonthelevelofres- ofthevirialparameter’sshortcomings,includingitsneglectingto olution.Webelievethatthisisduetothelowerlevelsbeingunable take into account that turbulence not only hinders star formation toresolvetheturbulenceimposedintheinitialconditions,causing butcanalsohelpitthroughtheformationofdensestructure.) moreenergytobedepositedinlargerscalemotionsandmakingit Ofinterestisthestarformationefficiencyperfree-falltime, easiertoformsinksonsmallscales.Thesevariationsweresosmall SFE ,whichwecalculatedattimetby howeverthattheyhadnorealbearingontheultimateoutcome. ff SFE(t)−SFE(t ) SFE (t)= 0 (4) ff t−t 0 4.3 Variationofthestarformationefficiencywith (see e.g. Dale et al. 2014). For t we used the time at which the boundedness 0 envelopewasremovedfromthe5pccloud,0.29t .Atthispoint ff Theabilityofacloudtoholditselftogethercanbequantifiedby structurehadbeengeneratedandthusthecloudscanbeconsidered consideringtheαparameter(Boss&Bodenheimer1979;Tohline tohavebeeninastarformingconfiguration.WecalculatedSFEff 1980). We may take the sum of the cloud’s kinetic and thermal for each simulation at t = 1.38tff. This was far enough into the energytobethetotalenergyopposingcollapseT.Withthegravi- runsthatareasonablefractionofmasshadbeenallowedtoconvert tationalbindingenergyofthecloudW theratio tosinkparticles,butstillearlyenoughthatdataformostsimula- tionswasavailable.Furthermore,theperiodt−t isalmostexactly T 0 α≡ (2) 2Myr,astellarageoftenassumedinobservationalanalysisofstar |W| formation(e.g.Evansetal.2009;Heidermanetal.2010;Parmen- indicatesthecloud’sboundedness,withavalueofα(cid:54)1meaning tier&Pfalzner2013).ThevaluesofSFE areshownalongwith ff that the cloud is bound. Note that the clouds used in all simula- α and α for all simulations in Table 2. The runs which ended vir tions here were unbound. Alternatively, the virial parameter α before1.38t aregivenwithSFE forthelatesttimeavailable. vir ff ff (Bertoldi & McKee 1992; McKee & Zweibel 1992) takes into In Figure 7 we show these data in a plot of SFE against ff (cid:13)c 0000RAS,MNRAS000,000–000 8 W.E.Lucasetal. Table2.Starformationefficiencyperfree-falltimealongwiththeratio ofkineticplusthermaltogravitationalenergy,α,andthevirialparameter, αvir.ThevaluesgivenforSFEff werecalculatedusingEquation(4)with t0 =0.29tff andt=1.38tff andarethedatashowninFigure7;theruns indicatedwithadaggerdidnotproceedthatfar,andsohavevaluesofSFEff givenforthelatesttimetheyeachreached. Runbasename Envelope? α αvir SFEff X 5.59 11.2 0.00 3pc–medres E 3.18 6.36 0.05 X 3.15 6.31 0.05 4pc–vlowres E 2.28 4.56 0.18 X 3.15 6.31 0.05 4pc–lowres E 2.28 4.56 0.17 X 3.15 6.31 0.05 4pc–medres E 2.28 4.56 0.15 X† 3.15 6.31 0.03 Figure8.StarformationefficiencyofE4pc–medresandallderivativesim- 4pc–highres E† 2.28 4.56 0.08 ulationsinwhichtheenvelopewasremovedattimeslaterthan0.23tff(the original). Whether it took place before or after star formation had com- X 2.00 4.00 0.13 5pc–vlowres menced,thelossoftheenvelopealwayscausedadropintheSFE.Those E 1.66 3.32 0.28 clouds which lost their envelopes afterwards typically followed E4pc– X 2.00 4.00 0.15 medresforashortwhilebeforepeelingaway. 5pc–lowres E† 1.66 3.32 0.15 X 2.00 4.00 0.14 StarformationinE4pc–medrescommencedat0.93t .Exam- 5pc–medres ff E 1.66 3.32 0.25 ination of Figure 8 shows that the two simulations in which the X† 2.00 4.00 0.08 envelopewasremovedbeforethefirstfreefalltimebeganforming 5pc–highres E† 1.66 3.32 0.12 stars only after that time. The simulations in which the envelope wasremovedfrom1.00t onwardsgenerallyfollowedtheE4pc– ff medrescurveforashortperiodofatmost≈ 0.2t afterthesplit ff thevirialparameter.AsnotedinSection2,the5pccloudwasthe andthenfellawayafterabriefperiodduringwhichthecloudre- most bound. The cloud alone was set up to have twice as much actedtothesuddenlossoftheenvelope.Thiswasnotimmediate: kineticasgravitationalenergy,andsoisfoundwithα = 2.00as thegradientsoftheSFEin‘lateloss’((cid:62)1.00tff)runsbeganhigh, thethermalenergyinthecloudwasnegligiblewhencomparedto andslowlytendeddownovertimetowardsvaluesmorecloselyre- kinetic energy. While the envelope was warm and so provided a semblingthegradientsofthetwo‘earlyloss’(<1.00tff)runs.This greatamountofthermalenergy,theextramassprovidedevenmore caninparticularbeseenforthetwolongestrunningsimulations, gravitationalenergy,resultingintheoveralleffectoftheenvelope thosewhichlosttheirenvelopesat0.50tffand1.50tff.Itispossible beingincreasetheα.Thiswasthecasewithallruns. howeverthatthedownturnintheSFEasitapproached0.7inthe Withtheshiftinαprovidedbytheenvelope,itcanbeseenin latterrunactuallyoccurredduetostarformingmaterialbecoming Figure7that,withsomescatter,arelationexistsbetweenbound- morescarce. ednessandSFE .ThisisparticularlyseenwithE3pc–medresand Figure 8 makes it clear that a removal of the envelope in- ff theX4pcrunswhichlaynearlyontopofoneanotherdespitethere evitablyledtoareductionintheSFE,thoughalaterremovalbrings beingafactorof2.37differenceinstarformingcloudmass.X3pc– itclosertothatofthesimulationwhichretainedit.Thusnocritical medresformednostarsandthushadSFE =0.Ifonedoesform pointforitseffectwouldappeartoexist,atleastwithinthesimula- ff arelationbetweentheplottedquantities,thenitmaybethatSFE tionruntimesachieved. ff wouldgotozeroforallvaluesofαaboveperhapsfourorfive.To demonstrablyshowthiswouldhoweverrequiremoresimulations tofillthisregion. 5 CONCLUSIONS Starformationprincipallyoccursinthecoldanddensegasofgiant molecularclouds.Yetthesecloudswillthemselvesbeenshrouded 4.4 Removingtheenvelopeatlatertimes withawarmatomicenvelope,whichcanhelptobindthecloudand Itisapparentthatremovingtheenvelopeearlyonledtoverydif- thus keep it contained. It is possible however that feedback from ferent star formation efficiencies. We decided to run an extra set nearbymassivestars,whetherintheformofionisation,windsor of simulations derived from E4pc–medres in which the envelope supernovae,couldblowawaytheenvelope.Astheenvelopealters was removed at several times before and after1t , in an attempt thecloud’sboundedness,weaskedhowitslosswouldchangethe ff todetermineiftheremightbeacriticalpointbeyondwhichthere- starformationefficiencyoftheremainingdensemolecularcloud. movalnolongeraffectedtheSFE.TheSFEisplottedagainsttime Using smoothed particle hydrodynamics we ran isothermal forthesesimulationsinFigure8,whichshowstheoriginalE4pc– starformingsimulationsofthreedense,coldandturbulentclouds, medressimulationandothersinwhichtheenvelopewasremoved initiallyspherical,withradiiof3,4and5pc.Thesmallerclouds at0.23(theoriginalX4pc–medres),0.50,1.00,1.20and1.50t . werethemselvesderivedfromthe5pccloud.Inisolationallthree ff (cid:13)c 0000RAS,MNRAS000,000–000 SFEaftercloudenvelopeloss 9 clouds would have been unbound with α, the ratio of the kinetic gratefullyacknowledgesupportfromtheECOGALproject,grant plusthermaltogravitationalenergy,of5.59,3.15and2.00respec- agreement 291227, funded by the European Research Council tively.Thecloudswerenotevolvedinisolationhowever,butrather under ERC-2011-ADG. This work used the compute resources they were placed within a warm envelope which provided a con- of the St Andrews MHD Cluster. This work used the DiRAC finingpressureboundary.Theenvelopeshadadensityafactorof Complexity system, operated by the University of Leicester IT tenlower,extendingoutwardsinallcasesto10pc.Withtheirpres- Services, which forms part of the STFC DiRAC HPC Facility ence the values of α were lowered to 3.18, 2.28 and 1.66, again (www.dirac.ac.uk).ThisequipmentisfundedbyBISNationalE- respectivelywiththe3,4and5pcclouds. InfrastructurecapitalgrantST/K000373/1andSTFCDiRACOp- These simulations were evolved through to the point where erations grant ST/K0003259/1. DiRAC is part of the National E- starscouldform,numericallyrepresentedbysinkparticles.How- Infrastructure. ever, aparallel simulation wascreated from eachof the originals after0.25t ofevolution.Intheseruns,thewarmenvelopewas cross instantaneouslyremovedtoleaveonlythecoldcentralcloud.This REFERENCES was our first order approximation to the envelope’s removal by feedback. AbgrallH.,LeBourlotJ.,PineaudesForeˆtsG.,RoueffE.,Flower Wefoundforallthreecloudsthattheremovaloftheenvelope D.R.,HeckL.,1992,A&A,253,525 ledtodrasticallylowerlevelsofstructureformingwithinthecloud Ballesteros-ParedesJ.,2006,MNRAS,372,443 whiletheexternallayersexpanded.Thisnaturallyalsocausedthe BateM.R.,BonnellI.A.,PriceN.M.,1995,MNRAS,227,362 average densities to fall. As such it became harder for gas to be- Benz W., 1990, in Buchler R. J., ed., Proceedings of the NATO comeselfgravitatingandthelevelsofstarformationfell. AdvancedResearchWorkshoponTheNumericalModellingof The star formation efficiencies (SFEs) were calculated as a Nonlinear Stellar Pulsations: Problems and Prospects, Kluwer functionoftime.Forallpairsofsimulations(withandwithoutthe AcademicPublishers,Dordrecht,p.269 envelope),thosewhichretainedtheenvelopeshowedhigherlevels BertoldiF.,McKeeC.F.,1992,ApJ,395,140 ofstarformation.Atafiducialtimeof1.38tff,the4and5pcclouds Bolatto A. D., Leroy A. K., Rosolowsky E., Walter F., Blitz L., retainingtheenvelopeshowedSFEshigherbyfactorsof1.7to2.7 2008,ApJ,686,948 comparedtotherunsinwhichitwaslost.The4pcsimulationsran BonnellI.A.,BateM.R.,VineS.G.,2003,MNRAS,343,413 untilamuchlatertimeandby≈ 1.8tff thediscrepancywaseven BonnellI.A.,LarsonR.B.,ZinneckerH.,inReipurthB.,Jewitt higherwithSFEsof≈ 0.5fallingto≈ 0.15withthelossofthe D.,KeilK.,eds,ProtostarsandPlanetsV,UniversityofArizona envelope. Press,Tucson,p.149 The 3pc cloud was the most unbound. At the same time of BonnellI.A.,SmithR.J.,ClarkP.C.,BateM.R.,2011,MNRAS, 1.38tff, it had an SFE of 5.67 × 10−2 when the envelope was 410,2339 present.Initscounterpartwhichlosttheenvelope,nostarforma- BossA.P.,BodenheimerP.,1979,ApJ,234,289 tionwhatsoevertookplace. ClarkP.C.,BonnellI.A.,KlessenR.K.,2008,MNRAS,386,3 Considering the star formation efficiencies per free-fall time DaleJ.E.,BonnellI.A.,WhitworthA.P.,2007,MNRAS,375, (SFEff) and plotting these against α shows the simulations to be 1291 nearlyafullsequence,withthe3pccloudwithanenvelopefalling Dale J. E.,Ngoumou J., Ercolano B., BonnellI. A., 2014, MN- on almost the same point as the 4pc cloud lacking an envelope, RAS,442,694 despitethelargercloudhaving2.37timesthemassofthesmaller. DobbsC.L.,BonnellI.A.,ClarkP.C.,2005,MNRAS,360,2 Wealsoranasetofsimulationsderivedfromthe4pccloudin DobbsC.L.,BurkertA.,PringleJ.E.,2011,MNRAS,413,2935 whichtheenvelopewasremovedatlatertimes.Evenwhenitwas DobbsC.L.etal.,2014,inBeutherH.etal.,eds,Protostarsand lostaslateas1.50tff,theSFEfellawaytoasloperesemblingthose PlanetsVI,UniversityofArizonaPress,Tucson,p.3 simulationswhichhadlosttheenvelopeatanearlierstage.Inthe ElmegreenB.G.,LadaC.J.,1977,ApJ,214,725 runsinwhichtheenvelopewasremovedafterstarformationhad EvansN.J.II,1999,ARA&A,37,311 begun,theSFEonlyrespondedtothelossafterashortperiodof EvansN.J.IIetal.,2009,ApJS,181,321 timeofatmost≈0.2tff. FederrathC.,2013,MNRAS,436,3167 Amorerealisticformoffeedbackmayhavebroughtaboutless GoldsmithP.F.,LiD.,2005,ApJ,622,938 extremechangesintheSFEthanthosereportedhere.Forexample, Heiderman A. Evans N. J. II, Allen L. E., Huard T., Heyer M., theenvelopecouldhavebeenlostonlypartiallyacrosssomesmall 2010,ApJ,723,1019 solidangle,leadingperhapstothecloud’sexpansionthroughthe HeyerM.H.,BruntC.M.,2004,ApJ,615,L45 newopeningasacoldoutflow.Or,theenvelopecouldhavebeen HeyerM.,KrawczykC.,DuvalJ.,JacksonJ.M.,2009,ApJ,699, lostslowlyratherthanremovedinstantaneously.However,theend 1092 statewouldhavestillresembledoneofthesimulationsinwhichthe HeyerM.,GutermuthR.,UrquhartJ.S.,CsengeriT.,WienenM., envelopewasremovedatalatertime.Thisimpliesthateventhena LeuriniS.,MentenK.,WyrowskiF.,2016,A&A,588,A29 dropintheSFEwouldbeinevitable. KennicuttR.C.,EvansN.J.II,2012,ARA&A,50,531 KrumholzM.R.,TanJ.C.,2007,ApJ,654,304 KrumholzM.R.,DekelA.,McKeeC.F.,2012,ApJ,745,69 KrumholzM.R.,Phys.Rep.,539,49 ACKNOWLEDGEMENTS LadaC.J.,LadaE.A.,2003,ARA&A,41,57 TheauthorsthankPaulClarkforhiscontributiontowardstheorig- LarsonR.B.,1981,MNRAS,194,809 inal concept of this paper and the anonymous referee for their LarsonR.B.,2005,MNRAS,359,211 helpful comments. Our column density plots were produced us- LeBourlotJ.,PineaudesForeˆtsG.,RoueffE.,FlowerD.R.,1993, ing Daniel Price’s SPLASH software (Price 2007). The authors A&A,267,233 (cid:13)c 0000RAS,MNRAS000,000–000 10 W.E.Lucasetal. LouvetF.,etal.,2014,A&A,570,15 MacLowM.-M.,KlessenR.S.,2004,Rev.Mod.Phys.,76,125 McKeeC.F.,ZweibelE.G.,1992,ApJ,399,551 MacLachlan J. M., Bonnell I. A., Wood K., Dale J. E., 2015, A&A,573,112 MonaghanJ.J.,1992,ARA&A,30,543 PadoanP.,NordlundA˚.,2011.ApJ,730,40 ParmentierG.,PfalznerS.,2013,A&A,549,A132 PriceD.J.,2007,PASA,24,159 PriceD.J.,BateM.R.,2009,MNRAS,398,33 PriceD.J.,MonaghanJ.J.,2004,MNRAS,348,139 PriceD.J.,MonaghanJ.J.,2007,MNRAS,374,1347 RosolowskyE.,EngargiolaG.,PlambeckR.,BlitzL.,2003,ApJ, 599,258 SalimD.M.,FederrathC.,KewleyL.J.,2015,ApJ,806,L36 ShuF.H.,AdamsF.C.,LizanoS.,1987,ARA&A,25,23 TohlineJ.E.,1980,ApJ,235,866 WongT.etal.,2011,ApJS,197,16 (cid:13)c 0000RAS,MNRAS000,000–000