ebook img

Can the removal of molecular cloud envelopes by external feedback affect the efficiency of star formation? PDF

4.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Can the removal of molecular cloud envelopes by external feedback affect the efficiency of star formation?

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed18January2017 (MNLATEXstylefilev2.2) Can the removal of molecular cloud envelopes by external feedback affect the efficiency of star formation? William E. Lucas1(cid:63), Ian A. Bonnell1 and Duncan H. Forgan1 1SUPA,SchoolofPhysics&Astronomy,UniversityofStAndrews,NorthHaugh,StAndrews,FifeKY169SS,UnitedKingdom 7 1 0 18January2017 2 n a ABSTRACT J We investigate how star formation efficiency can be significantly decreased by the removal 6 of a molecular cloud’s envelope by feedback from an external source. Feedback from star 1 formationhasdifficultieshaltingtheprocessindensegasbutcaneasilyremovethelessdense andwarmerenvelopeswherestarformationdoesnotoccur.However,theenvelopescanplay ] A an important role keeping their host clouds bound by deepening the gravitational potential andprovidingaconstrainingpressureboundary.Weusenumericalsimulationstoshowthat G removal of the cloud envelopes results in all cases in a fall in the star formation efficiency . (SFE).At1.38free-falltimesour4pccloudsimulationexperiencedadropintheSFEfrom h p 16tosixpercent,whileour5pccloudfellfrom27to16percent.Atthesametime,our3pc - cloud(theleastbound)fellfromanSFEof5.67percenttozerowhentheenvelopewaslost. o The star formation efficiency per free-fall time varied from zero to ≈ 0.25 according to α, r t definedtobetheratioofthekineticplusthermaltogravitationalenergy,andirrespectiveof s theabsolutestarformingmassavailable.FurthermorethefallinSFEassociatedwiththeloss a oftheenvelopeisfoundtoevenoccuratlatertimes.WeconcludethattheSFEwillalwaysfall [ shouldastarformingcloudloseitsenvelopeduetostellarfeedback,withlessboundclouds 1 sufferingthegreatestdecrease. v 4 Keywords: stars:formation–ISM:clouds–accretion,accretiondiscs–hydrodynamics 1 4 4 0 . 1 INTRODUCTION Bonnell&Whitworth2007andotherpapersinthisseries;Daleet 1 al.2014;MacLachlanetal.2015).Theeffectismuchmoresignif- 0 Star formation is a complex process governed by several inter- icantinlowerdensitygas,butitisinsteadinthehigherdensitygas 7 twinedphysicalprocesses(Evansetal.1999;Dobbsetal.2014). that star formation takes place. This would seem to indicate that 1 Thecoremechanismisthecollapseundergravityofdenseregions : feedbackcannotgreatlyimpacttheefficiencyofstarformation. v of gas into stars, with this for the most part taking place in giant Inrealitystarformationtakesplaceindenseandcoldmolec- i molecular clouds with only around ten per cent of stars forming X ularhydrogengasatthecentreoftheseclouds.Theopticaldepth inisolation(Lada&Lada2003;Evansetal.2009).Opposingthis hereishighenoughthattheyareshieldedfromtheexternalGalactic r arethermalpressurealongwithturbulentkineticmotions(Heyer& a radiationfield,whiletheouterlayersofthecloudareexposedand Brunt2004;MacLow&Klessen2004)andmagneticfields(Price formanenvelopeofatomichydrogen(Abgralletal.1992;LeBour- &Bate2009;Padoan&Nordlund2011).Theconfluenceofthese lot et al. 1993). Observations of star forming clouds have found processesgovernsthepropertiesofanewstellarpopulationsuch themtotypicallybemarginallybound,thoughthevirialparame- asthenumberofstars,theirmasses,locations,multiplicityanddy- terforindividualcloudsvariesfrom0.1to10(Bolattoetal.2008; namics(Shu,Adams&Lizano1987;Bonnell,Larson&Zinnecker Heyeretal.2009;Wongetal.2011;Dobbsetal.2011;Dobbset 2007). al.2014). One of the most important questions concerning star forma- tion is why it is so inefficient, with of order a few percent of the Restricting a cloud rather than allowing it to freely expand gasavailableonlargescalesbeingtransformedintostars(Kenni- intoavacuumwouldkeepitsaveragevolumedensityhigherthan cutt&Evans2012;Krumholz2014;Heyeretal.2016).Feedback otherwise.Krumholz&Tan(2007)arguedusingobservationsthat fromyoungstars,intheformofionizingradiation,stellarwindsor acloud’sstarformationefficiency(SFE)perfree-falltimeisinde- supernova explosions, is often invoked as a solution, but numeri- pendentofitsdensity,allowingKrumholz,Dekel&McKee(2012), calsimulationshaverepeatedlyshownthatfeedbackhasatmosta Federrath(2013)andSalim,Federrath&Kewley(2015)toformu- moderateeffectonthestarformationefficiencyofdensegas(Dale, latestarformationlawsbasedonturbulence.SimulationsbyClark, Bonnell&Klessen(2008)foundthattheSFEincreasesformore tightlyboundclouds.NewersimulationsbyBonnelletal.(2011) (cid:63) E-mail:[email protected] and observations by Louvet et al. (2014) found a positive corre- (cid:13)c 0000RAS 2 W.E.Lucasetal. lationbetweenSFEanddensity.Elmegreen&Lada(1977)intro- Table1.Thesimulationnamesandmeanings.Thenamereflectsthecloud ducedtheconceptofsequentialstarformationtakingplaceasion- radius in parsecs and the resolution of the simulation (very low, low, izing feedback from young stellar clusters repeatedly sweeps up mediumorhigh).Thesecondcolumngivesthegasparticlemassinsolar materialtoformnewclusters.AssuchweaskhowtheSFEmight units.Thefinaltwocolumnsprovidethemassofthecloudandenvelope. change with the loss of a cloud’s envelope due to feedback in a Eachrunhadtwovariations–oneinwhichthewarmenveloperemained similarscenario,thoughwiththefeedbackheretakinganegative forthewholesimulation’sduration(indicatedbyprefixingthenamegiven ratherthanpositiveform. herewithan‘E’)andanotherinwhichitwasremovedafteraquarterofthe cloud’scrossingtime(indicatedby‘X’). Observationsandmodelsagreethatthetransitionfromwarm lowdensitygastocoldhighdensitygasisgradualandthatthere isamixtureofphasespresent(Goldsmith&Li2005).Totestthe Runname mpart/M(cid:12) Mcloud/M(cid:12) Menvelope/M(cid:12) envelope’seffectonstarformationefficiency,weenvisionasim- 3pc–medres 0.01 2,160.72 7,786.59 plifiedgeometrywithawarmerlowdensityenvelopesurrounding 4pc–vlowres 0.04 5,114.44 7,479.88 thecold,denseandturbulentgaswherestarformationcanoccur. 4pc–lowres 0.02 5,116.08 7,482.26 Theextragravityandpressurefromtheenvelopekeepsthesuper- 4pc–medres 0.01 5,119.46 7,487.21 virialcloudfromexpanding.Twoscenariosfollow:oneinwhich 4pc–highres 2×10−3 5,115.294 7,481.118 5pc–vlowres 0.04 10,000.00 7,000.00 theenveloperemainsinplace,andoneinwhichitislaterremoved 5pc–lowres 0.02 10,000.00 7,000.00 asafirstorderapproximationtoitsstrippingbystellarfeedback. 5pc–medres 0.01 10,000.00 7,000.00 In this paper we report on simulations of such a cloud within a 5pc–highres 2×10−3 10,000.00 7,000.00 transientwarmenvelopeinordertoaskwhethersuchfeedbackcan contributetoasignificantreductioninthestarformationefficiency inthedensegas. a value slightly above the 3 to 4kms−1 that might be expected foracloudofthissizeandmassfromtheLarsonrelations(Larson 1981;Rosolowskyetal.2003). Theenvelopeontheotherhandwasallowedtoremainwithno 2 NUMERICALMETHOD internalmotions.Eitherthermalorrampressurefromtheenvelope Smoothedparticlehydrodynamics(SPH)isaLagrangiantechnique couldhavebeenusedtoconstrainthecloud,sowhileitwassetto used to model a fluid as a set of particles. Each particle’s mass a temperature of 103K, a lower value could have been used and is spread throughout a volume with the use of a smoothing ker- theenvelopealsomadeturbulent.Forsimplicity,weusedthermal nel. The fluid equations may then be reformulated as sums over pressurealone. the particles by treating the density, internal energy and so on as Thesamesimulationwasrunwithalessboundcloudbytak- interpolated quantities. The simulations shown later in this paper ingtheoriginalcloudofradius5pcandremovingthelayerfrom4 wereperformedwiththeSPHcodeSPHNG(Bate,Bonnell&Price to5pc,thenrecreatingtheenvelopebypopulatingtheregionfrom 1995;Price&Monaghan2007).Thiscodeallowsforthecreation 4to10pcwithlowdensitywarmgasasbefore.Thisleftthecold of sink particles which represent stars. As a Lagrangian method, cloudwithamassof5120M ,andassuchinisolationα=3.15. (cid:12) SPHalsoallowsformasstobetracedthroughoutasimulation.This The 4 and 5pc setups were created at four resolution levels of makesthemethodwidelyusedinastrophysics,andassuchmany 0.04M ,0.02M ,0.01M ,and2×10−3M perparticle.Dueto (cid:12) (cid:12) (cid:12) (cid:12) papersprovidein-depthdescriptions.Somerecommendationsare theinitialrandomparticleplacement,thetotalcloudmassdidvary Benz(1990)andMonaghan(1992)forbasicoverviews,andPrice veryslightlybetweendifferentresolutionsimulationswhenderiv- &Monaghan(2004)fordetailsofthegrad-hformalismwhichwas ingthe4pcclouds.Asinglesimulationwassimilarlysetuptorun usedhere. with a cloud size of 3pc at the 0.01M resolution level. With a (cid:12) The basic simulation setup is as follows. Firstly, a spherical massof2160M ,thiscloudwasmostunboundwithα=5.59. (cid:12) cloud of radius 5pc and mass 104M was created. The original Dynamicsinkparticlecreationwasenabledinallsimulations. (cid:12) densitywasuniformwithavalueofρ = 1.29×10−21gcm−3, The criteria for creation are as described in Bate et al. (1995); a 0 giving a free-fall time of 1.85×106years. Its temperature was brief description follows here. A gas particle being tested had to set to 10K. The region from 5 to 10pc was then filled with gas exceed a critical density set to 108ρ = 1.29×10−13gcm−3, 0 at103Kandadensityafactoroftenlowerthentheinnercloud. and all its neighbours (gas particles within the kernel) had to be Thesoundspeedinthecoldinnercloudwas0.253kms−1 while withinadistanceof0.01pc.Thisclumpofparticlesalsohadtobe inthewarmouterenvelopeitwas2.53kms−1.Notethatthegasin bound and collapsing. The SPH code aimed to give each particle bothstructureshasameanmolecularweightof1.29,thatforamix around 50 neighbours and so the minimum sink mass was 2M (cid:12) of atomic hydrogen and helium, and differs only in temperature. inthe‘vlowres’simulations,1M in‘lowres’simulations,0.5M (cid:12) (cid:12) Allowingittochangewithphasewouldbedesirablefora‘com- in‘medres’runs,and0.1M in‘highres’.Aftersinkcreation,gas (cid:12) plete’simulation,buthereitiskeptconstantbothasanumerical particleswithinthesamedistanceof0.01pccouldbeaccretedif convenienceandinordertokeepthemodelsimple.Fromthispoint ittheypassedaboundednesstest.Particleswithin2.5×10−3pc theterms‘cloud’and‘envelope’willrefertotheinnerandouter wereaccretedwithouttesting. structuresrespectively. After setup, the simulations were evolved isothermally un- A turbulent velocity field following an approximately Kol- derself-gravityforaslongaspossiblebeforebeinghaltedbythe mogorov power spectrum of (cid:104)|v |2(cid:105) ∝ k−3.5 was applied to the smalltimestepsrequiredinthehighdensityregionsformingsinks. k cloud.Theαvalue(Boss&Bodenheimer1979)istheratioofthe Foreach,splitsimulationswerecreatedafteraquarterofthetur- kineticplusthermalenergytothegravitationalbindingenergy.The bulent crossing time in the cloud (evaluating to 0.32Myr for the velocitieswerescaledsuchthat,whenconsideringthecloudiniso- 3pccloud,0.43Myrforthe4pccloudand0.54Myrforthe5pc lation,itwouldbeunboundwithα=2.00.Assuchtherootmean cloud)inwhichtheentiretyofthewarmenvelopewasremovedas square(RMS)speedwas4.53kms−1(MachnumberM=17.9), anapproximationtotheeffectsoffeedback.Inalatersetofsimu- (cid:13)c 0000RAS,MNRAS000,000–000 SFEaftercloudenvelopeloss 3 Figure1.Simulationmethod.Insubfigurea),acoldturbulentcloud(blue)isembeddedwithinawarmnonturbulentenvelope(red).Thiswasthenevolved forwardsintime,showninsubfiguresb)andthenc).Partofthewaythroughthesimulation,usuallyataquarteroftheturbulentcrossingtimeandhereshown inb),aseparatesimulationwascreatedbyremovingthewarmenvelopetocreatethesetupseeninsubfigured).Thecloudwasthenevolvedinisolationtoa latertimeshownine)toallowadirectcomparisonwiththeoriginalruninwhichtheenvelopewasretainedfortheentiredurationofthesimulation.Itwas expectedthatthelossoftheenvelopewouldleadtomorestarformationtakingplaceinc)thanine).(Acolourversionofthisplotisavailableintheonline version.) lationstheenvelopewasremovedfromthemediumresolution4pc density translates to a decrease in the importance of self-gravity cloudatlatertimesofupto1.50t .Theprocessofevolutionand andhenceadecreaseinthelocalstarformationrate.Assuchpar- ff creationofaparallelsimulationwithouttheenvelopeisshownin allelsinstructurecanbeseenwiththecorrespondingE-runs,but Figure1. thesmalldenseclumpsseenpreviouslydidnotforminthesesim- ThesimulationsandnamingconventionsaregiveninTable1. ulations. Thecloudradiusinparsecsisprovided,alongwithanindication Figure 3 shows column densities and sink locations for the of the resolution level of the simulation: very low, low, medium medium resolution simulations at all three cloud sizes (3, 4 and orhigh.Whenreferringtoaspecificsimulation,an‘E’isprefixed 5pc) and both with and without the envelope, at 1.38t = ff tothistoindicatethattheenveloperemainedthroughoutthewhole 2.54Myr.Acrossthethreecloudsizes,themostapparentchange simulation,whilean‘X’prefixindicatesthatitwasremovedduring is the correlation of the original cloud size with the extent of theevolution. dense structured gas after evolution. Much of this takes the form ofcometaryblobsofcoldgaslaunchedoutwardsthroughtheen- velope.Itisalsoimmediatelyapparentthatwiththeremovalofthe envelopeintheE-runs,theabilityofthecloudtoformdensestruc- 3 EVOLUTIONARYOVERVIEW tureingeneralalongwithsinkparticlesdroppeddramatically.At Asmightbeexpected,thecoldinnercloud’sevolutionwaschar- thesametime,whilethe5pccloud(themostboundoftheset)was acterised by the growth of overdensities throughout its evolution. able to form stars in the absence of the envelope, the 3pc cloud Theseinitiallycameaboutthroughthegenerationofstructurevia hadfailedtoformany.Indeednosinkshadbeenformedevenby turbulence. Self-gravity was then able to take hold in the densest theendofE3pc–medresat2.54tff =4.71Myr.E4pc–medresand regionsandbringthemtothepointwherestarscouldbeformed. X4pc–medreslaybetweentheextremaofthe3and5pcruns. Thewarmenvelope,retainedintheE-simulations,maintained ExaminingthedensityPDFsrevealsinmoredetailthequanti- aroughlysphericalsymmetryasitgainedlittlekineticenergyfrom tativedifferencesbetweenthesimulations.TheseareshowninFig- the turbulent central cloud, and thus lacked significant internal ure4forthecoldgasintheE-andX-variationsofthe3pc–medres, motions.Incontrasttheclouditselfdevelopedstrongfilamentary 4pc–medresand5pc–medressimulationsat1.38tff. structurealongwithanumberofsub-parsecscaleclumpscontain- ThedensityPDFsforbothvariationsofthe3pc–medresand ingdynamicallyformingsinkparticles.Asthecloudwasbydesign 4pc–medresrunsaswellasE5pc–medresfollowedapproximately unbound,itexpandedandpartiallydisplacedtheenvelope. lognormaldistributions.ThedistributionsfortheE-runswerelo- TheX-simulations,inwhichtheenvelopewasremoved,ex- catedathigherdensities,withexcessesattheveryhighestdensities hibitquitedifferentevolution.AswasnotedinSection2,theywere representing the self-gravitating gas moving towards sink forma- removed at 0.25t once the turbulence had already started to tion.ThisnoticeablydoesnotoccurinX3pc–medres.Intermsof cross generate the internal filamentary structure. In the absence of the shape the density PDF for X5pc–medres is the exception, seem- envelopethecoldcloudwasfreetoexpand.Thefilamentsformed inglyspreadingbetweentheE-andX-groups.Itisclearfromex- fromtheturbulenceweremorediffuseincomparisonwiththesim- aminationofthecolumndensitiesinFigure3thattheremovalof ulationsinwhichtheenvelopewaspresentthroughout.Thislower thewarmenvelopeledtothecloud’sexpansionintothevacuum.In (cid:13)c 0000RAS,MNRAS000,000–000 4 W.E.Lucasetal. Figure 2. Evolution of simulation E4pc–medres. Shown are the column densities and sink particles (as white points) at four times. For reference, 844300years=0.46tff,1693000years=0.92tffand2542000years=1.38tff.Turbulenceinthecloudgeneratedstructure,withsinkparticlesforming inthedensestregionsbythefinaltimeshown.Enoughkineticenergyhadbeenplacedwithintheinitialcloudtolaunchsmallblobsoutwards,butwiththe presenceoftheenvelopethecloudonthewholeremainedroughlythesamesizethroughout.(Acolourversionofthisplotisavailableintheonlineversion.) X5pc–medres,thesameexpansionisseeningasmovingtolower afactorof55forthe4pc–medresrunsand139forthe3pc–medres densities–atthesametime,thecloudinthissimulationwascloser runs.Thatistosay,thedensityinthecloudwasincreasedmoreby tobeinggloballybound,andexaminationofthesimulationsdoes retaining the envelope than by making it larger and more bound. showthatthecentralregionwasundergoingcollapse.Thisresulted Thuswecansaythattheeffectofthewarmenvelopecontributed in the ‘flat-top’ of the density PDF for X5pc–medres, represent- greatlytowardsmaintaininghigherdensitiesinthecloud. ingthedenseinnerregionsofthecloudaswellasanewenvelope Approaching 1t , sink particles began to form in all simu- ff formedfromtheexpansionofitsouterlayers. lations with the exception of X3pc–medres, concentrated in the AtthetimeofthePDFsshowninFigure4,themediandensity cold and dense filaments and clumps. In no simulation did enve- inE3pc–medreswas1.97×10−20gcm−3,whileremovingtheen- lopeparticlestakepartinaccretiontosinkparticles.Overtimethe velopeledtothemediandensityinX3pc–medresfallingto1.42× proto-clusterscoalescedtoformlargerstructuresfollowingapro- 10−22gcm−3.InE4pc–medresitwas2.19×10−20gcm−3,while cesssimilartothatseeninBonnell,Bate&Vine(2003),thelargest itsimilarlyfellinX4pc–medresto4.00×10−22gcm−3.Finally formingfromthedensecentralregionsofthecloudthatcanbeseen the respective values for E5pc–medres and X5pc–medres were justabovetheorigininFigure3.Isolatedsinksalsoformedfrom 2.58×10−20gcm−3and1.29×10−21gcm−3. thesmallerclumpsatlargerdistancesfromtheorigin,butdueto Twoobservationsmaybemadehere.Firstly,changingthesize theclumps’absence,atamuchlowerrateintheX-simulationsin ofthecloudfrom3to5pcledtoonlyasmallchangeinthemedian whichtheenvelopehadbeenremoved. densityintheE-simulations,whileintheX-simulationsitfellby An isothermal equation of state was used in all the simu- almostafactoroften.Secondly,removingtheenvelopedroppedthe lations. Because of this, the gas may easily fragment as seen in mediandensitybyafactorof20inthe5pc–medressimulationsbut Dobbs,Bonnell&Clark(2005)andLarson(2005)andthenumber (cid:13)c 0000RAS,MNRAS000,000–000 SFEaftercloudenvelopeloss 5 Figure3.Columndensitiesforallmediumresolutionsimulationsat1.38tff = 2.54Myr,withdotsshowingthelocationsofsinkparticles.Theplotsare arrangedwithincreasingcloudradiusfromtoptobottom,andwiththeleft-handcolumnshowingtheE-simulationswhichretainedtheenvelopewhileinthe X-simulationsshownontherighttheenvelopewasremovedafteraquarterofacrossingtime.GasreachedhigherdensitiesintheE-simulationsandformed morecomplexstructure,whilethecloudexpandedtobecomemuchmorediffuseintheX-simulations.Sinkformationisgenerallyassociatedwiththedensest regions.Increasingstructure,densityandstarformationcanalsobeseenasthecloudradius(andthusboundedness)increased.(Acolourversionofthisplot isavailableintheonlineversion.) (cid:13)c 0000RAS,MNRAS000,000–000 6 W.E.Lucasetal. Figure5.Starformationefficiencyforthe4pcradiusclouds.Thelowres- Figure 4. Mass-weighted density PDF of cold (10 K) gas in the 3pc– olutionsimulationsactuallybeganformingsinkparticlesearlierthanthe medres,4pc–medresand5pc–medressimulationsat1.38tff =2.54Myr. mediumresolutionruns,butatsuchlowratesthattheSFEwasoforder The dotted vertical line shows the original mean density ρ0 = 1.29× 0.01.OncetheSFEreachedanappreciablefractionofunity,therunsat 10−21gcm−3inthecoldgas.Asidefromthedifferenceindensitiesbe- variousresolutionshadessentiallydivergedtogivetwogroups:theE-runs tweenthethreesetscausedbytheincreaseofmasswithcloudsize,itis inwhichtheenveloperemainedinplacethroughout,andtheX-inwhichit apparentthatdensitieswereenhancedwhenthewarmenveloperemained wasremoved.Bytheendpointsoftheseruns,theE-simulationshadanSFE inplacethroughoutthesimulation.(Acolourversionofthisplotisavailable afactorofalmostfourgreater.(Acolourversionofthisplotisavailablein intheonlineversion.) theonlineversion.) formationproceededbutveryslowly.AfterthatpointtheSFEin- ofsinksformedislikelyanupperlimit,withthetruevaluebeing creasedmuchmorequicklytosizeablefractionsofunity,withthe lower.Howeverthesimulationsshouldstillprovideagoodestimate efficiencies for the E- and X- simulations beginning to diverge ofthetotalmassinstars,anditiswiththisquantityweinvestigate shortlyafterwardsat≈1.1t .AfterthispointthetwosetsofSFEs thestarformationefficiencyinthenextsection. ff continued to increase at roughly linear rates. The divergence ap- pearsmorenoticeableforthe4pccloudthankstothelongerrun- timesthatcouldbeachievedforthesesimulations. 4 STARFORMATIONEFFICIENCY ItisclearfrombothfiguresthattheX-runsinwhichthewarm envelope was removed were less efficient at forming stars when Thestarformationefficiency(SFE)wasfoundtobeverydifferent compared to the E- simulations in which the envelope remained betweenthevarioussimulations.TheSFEwasdefinedinrelation throughout the simulation. Taking a fiducial point at 1.38t , the tothemassofcold(10K)gasinthecloud,M ,avaluediffer- ff cloud SFE in E4pc–medres was 0.16 while it fell to 0.06 in X4pc– ingbetweenthevariously-sizedcloudsused.Itmaythenbesimply medres.Atthesametimeforthe5pc,E5pc–medreshadanSFEof calculatedatanytimeby 0.27andX5pc–medreshad0.16.Bythelatesttimesavailablefor M the 4pc cloud, after 1.8t , the difference was even greater, with SFE = sinks , (1) ff M +M the SFE ≈ 0.15 in the X- runs increasing to over 0.5 in the E- cloud sinks runs. whereM isthetotalmassinsinkparticles.Asnoenvelopepar- sinks Thoughthevaluesaretoolowtobeseeninthefigures,star ticleswentintoanysinks,thesumonthebottomalwaysequalled formation began in the 4pc cloud at different times, from 0.7 to the original cloud mass. Although the sink particles are only nu- just over 1t depending on the level of resolution and whether mericalrepresentationsofstars,theyareasuitableproxytoallow ff theenvelopewaspresentornot.Conversely,starformationinthe thecalculationoftheSFE:whileeachonemaynottrulyrepresent 5pccloudbeganbetween0.7and0.8t inallcases.Anobserva- astar,itdoesstillcontaingasthatwasdeterminedtobedenseand ff tionmaybemadeinthatallthesimulationsinwhichtheenvelope gravitationally bound. As such, the SFEs reported here do repre- wasretainedbegantoformsinkparticlesearlierthanthevariants sent the star forming capability of the cloud, within the limits of inwhichtheenvelopewaslost.Furthermore,thediscrepancywas theresolution,whichiscoveredinSection4.2. greaterforthe4pcclouds(wheresinkformationwasdelayedby upto≈0.1t )thanthe5pcclouds(whereitwas≈0.01t ).Since ff ff theSFEatthesetimeswasgenerallyoforder10−3,theendeffect 4.1 Originalsimulations isnegligible. TheSFEsofthe4pccloudsareplottedagainsttimeinFigure5for The3pccloudisnotshownontheseplots,beingmuchmore boththeE-andX-variantsandatallfourresolutionsusedforthat extremethantheothers.InE3pc–medres,by1.38t =2.54Myr, ff setup.Asimilarplotisshownforthe5pccloudsinFigure6. 22sinkshadformedwithanSFEof5.67×10−2.Bytheendofthe TheprofilesoftheSFEforthetwocloudsizesshowninFig- simulationat2.55t =4.71×106Myr,therewere103sinkswith ff ures 5 and 6 both follow a similar pattern. Before ≈ 1.0t star an SFE of 0.59. In contrast to all other runs, no sinks formed at ff (cid:13)c 0000RAS,MNRAS000,000–000 SFEaftercloudenvelopeloss 7 Figure6.Starformationefficiencyforthe5pcradiusclouds,plottedinthe samewayasFigure5.AtearliertimestheseparationbetweentheE-and Figure7.Thestarformationefficiencyperfree-falltime,SFEff,calculated theX-runsisnotasclearasitwaswiththe4pccloud,butasthesimulation at1.38tffforallthesimulationswhichhaddataaslateasthat,plottedhere progressedthedivergencebetweenthetwosetsgrewsothattheincreased againstα=T/|W|.Thesearebothdimensionlessquantities.Thearrows SFEwiththeenvelope’spresenceisclearlyvisible.(Acolourversionof showthechangewhenremovingtheenvelopefromacloudofagivenra- thisplotisavailableintheonlineversion.) dius.Thesimulationresolutionisreflectedbypointsize;thelargestpoints herearethemediumresolutionsimulations.Itcanbeseenthatforeach cloudofagivenradius,theSFEff fellwhentheenvelopewasremoved. allrightupuntilthesameendpointforthesimulation.Thelower Atthesametimetheincreaseinαbringsthetwodatasetsroughlyinline densities in the cloud that resulted from the envelope’s removal, withoneanother.ThepointforE3pc–medresliesalmostontopofthose forX4pc–vlowres,–lowresand–medres.(Acolourversionofthisplotis seeninthedensityPDFsinFigure4,ledtothecompleteinability availableintheonlineversion.) ofthecloudtoformstarsatall. account that for a cloud to be in virial equilibrium it must have 4.2 Resolutioneffects T/|W|=0.5.Thuscalculatingthevalue ItcanbeseeninFigures5and6thatalthoughtherewerevariations 2T α ≡ (3) betweenthestarformationefficienciesforsimulationsofdifferent vir |W| resolutionlevels,onthewholetheyfollowedoneanotherclosely andfindingα = 1impliesvirialequilibrium,whileforbound- and allowed us to confirm the effect of the envelope. This can in vir ednessα (cid:54)2.Thevalueitselfonlydiffersfromαbyafactorof particularbeseenwiththelongerruntimesforthe4pccloudsim- vir two.Notethatintheliteraturethesetwoparametersareoftenboth ulations. giventhesymbol‘α’,andsotodifferentiatethemweusethe‘vir’ AsnotedinSection4.1,the4pccloudinparticularbeganto subscriptwiththesecond.(SeeBallesteros-Paredes2006forsome formsinkparticlesatdifferenttimesdependingonthelevelofres- ofthevirialparameter’sshortcomings,includingitsneglectingto olution.Webelievethatthisisduetothelowerlevelsbeingunable take into account that turbulence not only hinders star formation toresolvetheturbulenceimposedintheinitialconditions,causing butcanalsohelpitthroughtheformationofdensestructure.) moreenergytobedepositedinlargerscalemotionsandmakingit Ofinterestisthestarformationefficiencyperfree-falltime, easiertoformsinksonsmallscales.Thesevariationsweresosmall SFE ,whichwecalculatedattimetby howeverthattheyhadnorealbearingontheultimateoutcome. ff SFE(t)−SFE(t ) SFE (t)= 0 (4) ff t−t 0 4.3 Variationofthestarformationefficiencywith (see e.g. Dale et al. 2014). For t we used the time at which the boundedness 0 envelopewasremovedfromthe5pccloud,0.29t .Atthispoint ff Theabilityofacloudtoholditselftogethercanbequantifiedby structurehadbeengeneratedandthusthecloudscanbeconsidered consideringtheαparameter(Boss&Bodenheimer1979;Tohline tohavebeeninastarformingconfiguration.WecalculatedSFEff 1980). We may take the sum of the cloud’s kinetic and thermal for each simulation at t = 1.38tff. This was far enough into the energytobethetotalenergyopposingcollapseT.Withthegravi- runsthatareasonablefractionofmasshadbeenallowedtoconvert tationalbindingenergyofthecloudW theratio tosinkparticles,butstillearlyenoughthatdataformostsimula- tionswasavailable.Furthermore,theperiodt−t isalmostexactly T 0 α≡ (2) 2Myr,astellarageoftenassumedinobservationalanalysisofstar |W| formation(e.g.Evansetal.2009;Heidermanetal.2010;Parmen- indicatesthecloud’sboundedness,withavalueofα(cid:54)1meaning tier&Pfalzner2013).ThevaluesofSFE areshownalongwith ff that the cloud is bound. Note that the clouds used in all simula- α and α for all simulations in Table 2. The runs which ended vir tions here were unbound. Alternatively, the virial parameter α before1.38t aregivenwithSFE forthelatesttimeavailable. vir ff ff (Bertoldi & McKee 1992; McKee & Zweibel 1992) takes into In Figure 7 we show these data in a plot of SFE against ff (cid:13)c 0000RAS,MNRAS000,000–000 8 W.E.Lucasetal. Table2.Starformationefficiencyperfree-falltimealongwiththeratio ofkineticplusthermaltogravitationalenergy,α,andthevirialparameter, αvir.ThevaluesgivenforSFEff werecalculatedusingEquation(4)with t0 =0.29tff andt=1.38tff andarethedatashowninFigure7;theruns indicatedwithadaggerdidnotproceedthatfar,andsohavevaluesofSFEff givenforthelatesttimetheyeachreached. Runbasename Envelope? α αvir SFEff X 5.59 11.2 0.00 3pc–medres E 3.18 6.36 0.05 X 3.15 6.31 0.05 4pc–vlowres E 2.28 4.56 0.18 X 3.15 6.31 0.05 4pc–lowres E 2.28 4.56 0.17 X 3.15 6.31 0.05 4pc–medres E 2.28 4.56 0.15 X† 3.15 6.31 0.03 Figure8.StarformationefficiencyofE4pc–medresandallderivativesim- 4pc–highres E† 2.28 4.56 0.08 ulationsinwhichtheenvelopewasremovedattimeslaterthan0.23tff(the original). Whether it took place before or after star formation had com- X 2.00 4.00 0.13 5pc–vlowres menced,thelossoftheenvelopealwayscausedadropintheSFE.Those E 1.66 3.32 0.28 clouds which lost their envelopes afterwards typically followed E4pc– X 2.00 4.00 0.15 medresforashortwhilebeforepeelingaway. 5pc–lowres E† 1.66 3.32 0.15 X 2.00 4.00 0.14 StarformationinE4pc–medrescommencedat0.93t .Exam- 5pc–medres ff E 1.66 3.32 0.25 ination of Figure 8 shows that the two simulations in which the X† 2.00 4.00 0.08 envelopewasremovedbeforethefirstfreefalltimebeganforming 5pc–highres E† 1.66 3.32 0.12 stars only after that time. The simulations in which the envelope wasremovedfrom1.00t onwardsgenerallyfollowedtheE4pc– ff medrescurveforashortperiodofatmost≈ 0.2t afterthesplit ff thevirialparameter.AsnotedinSection2,the5pccloudwasthe andthenfellawayafterabriefperiodduringwhichthecloudre- most bound. The cloud alone was set up to have twice as much actedtothesuddenlossoftheenvelope.Thiswasnotimmediate: kineticasgravitationalenergy,andsoisfoundwithα = 2.00as thegradientsoftheSFEin‘lateloss’((cid:62)1.00tff)runsbeganhigh, thethermalenergyinthecloudwasnegligiblewhencomparedto andslowlytendeddownovertimetowardsvaluesmorecloselyre- kinetic energy. While the envelope was warm and so provided a semblingthegradientsofthetwo‘earlyloss’(<1.00tff)runs.This greatamountofthermalenergy,theextramassprovidedevenmore caninparticularbeseenforthetwolongestrunningsimulations, gravitationalenergy,resultingintheoveralleffectoftheenvelope thosewhichlosttheirenvelopesat0.50tffand1.50tff.Itispossible beingincreasetheα.Thiswasthecasewithallruns. howeverthatthedownturnintheSFEasitapproached0.7inthe Withtheshiftinαprovidedbytheenvelope,itcanbeseenin latterrunactuallyoccurredduetostarformingmaterialbecoming Figure7that,withsomescatter,arelationexistsbetweenbound- morescarce. ednessandSFE .ThisisparticularlyseenwithE3pc–medresand Figure 8 makes it clear that a removal of the envelope in- ff theX4pcrunswhichlaynearlyontopofoneanotherdespitethere evitablyledtoareductionintheSFE,thoughalaterremovalbrings beingafactorof2.37differenceinstarformingcloudmass.X3pc– itclosertothatofthesimulationwhichretainedit.Thusnocritical medresformednostarsandthushadSFE =0.Ifonedoesform pointforitseffectwouldappeartoexist,atleastwithinthesimula- ff arelationbetweentheplottedquantities,thenitmaybethatSFE tionruntimesachieved. ff wouldgotozeroforallvaluesofαaboveperhapsfourorfive.To demonstrablyshowthiswouldhoweverrequiremoresimulations tofillthisregion. 5 CONCLUSIONS Starformationprincipallyoccursinthecoldanddensegasofgiant molecularclouds.Yetthesecloudswillthemselvesbeenshrouded 4.4 Removingtheenvelopeatlatertimes withawarmatomicenvelope,whichcanhelptobindthecloudand Itisapparentthatremovingtheenvelopeearlyonledtoverydif- thus keep it contained. It is possible however that feedback from ferent star formation efficiencies. We decided to run an extra set nearbymassivestars,whetherintheformofionisation,windsor of simulations derived from E4pc–medres in which the envelope supernovae,couldblowawaytheenvelope.Astheenvelopealters was removed at several times before and after1t , in an attempt thecloud’sboundedness,weaskedhowitslosswouldchangethe ff todetermineiftheremightbeacriticalpointbeyondwhichthere- starformationefficiencyoftheremainingdensemolecularcloud. movalnolongeraffectedtheSFE.TheSFEisplottedagainsttime Using smoothed particle hydrodynamics we ran isothermal forthesesimulationsinFigure8,whichshowstheoriginalE4pc– starformingsimulationsofthreedense,coldandturbulentclouds, medressimulationandothersinwhichtheenvelopewasremoved initiallyspherical,withradiiof3,4and5pc.Thesmallerclouds at0.23(theoriginalX4pc–medres),0.50,1.00,1.20and1.50t . werethemselvesderivedfromthe5pccloud.Inisolationallthree ff (cid:13)c 0000RAS,MNRAS000,000–000 SFEaftercloudenvelopeloss 9 clouds would have been unbound with α, the ratio of the kinetic gratefullyacknowledgesupportfromtheECOGALproject,grant plusthermaltogravitationalenergy,of5.59,3.15and2.00respec- agreement 291227, funded by the European Research Council tively.Thecloudswerenotevolvedinisolationhowever,butrather under ERC-2011-ADG. This work used the compute resources they were placed within a warm envelope which provided a con- of the St Andrews MHD Cluster. This work used the DiRAC finingpressureboundary.Theenvelopeshadadensityafactorof Complexity system, operated by the University of Leicester IT tenlower,extendingoutwardsinallcasesto10pc.Withtheirpres- Services, which forms part of the STFC DiRAC HPC Facility ence the values of α were lowered to 3.18, 2.28 and 1.66, again (www.dirac.ac.uk).ThisequipmentisfundedbyBISNationalE- respectivelywiththe3,4and5pcclouds. InfrastructurecapitalgrantST/K000373/1andSTFCDiRACOp- These simulations were evolved through to the point where erations grant ST/K0003259/1. DiRAC is part of the National E- starscouldform,numericallyrepresentedbysinkparticles.How- Infrastructure. ever, aparallel simulation wascreated from eachof the originals after0.25t ofevolution.Intheseruns,thewarmenvelopewas cross instantaneouslyremovedtoleaveonlythecoldcentralcloud.This REFERENCES was our first order approximation to the envelope’s removal by feedback. AbgrallH.,LeBourlotJ.,PineaudesForeˆtsG.,RoueffE.,Flower Wefoundforallthreecloudsthattheremovaloftheenvelope D.R.,HeckL.,1992,A&A,253,525 ledtodrasticallylowerlevelsofstructureformingwithinthecloud Ballesteros-ParedesJ.,2006,MNRAS,372,443 whiletheexternallayersexpanded.Thisnaturallyalsocausedthe BateM.R.,BonnellI.A.,PriceN.M.,1995,MNRAS,227,362 average densities to fall. As such it became harder for gas to be- Benz W., 1990, in Buchler R. J., ed., Proceedings of the NATO comeselfgravitatingandthelevelsofstarformationfell. AdvancedResearchWorkshoponTheNumericalModellingof The star formation efficiencies (SFEs) were calculated as a Nonlinear Stellar Pulsations: Problems and Prospects, Kluwer functionoftime.Forallpairsofsimulations(withandwithoutthe AcademicPublishers,Dordrecht,p.269 envelope),thosewhichretainedtheenvelopeshowedhigherlevels BertoldiF.,McKeeC.F.,1992,ApJ,395,140 ofstarformation.Atafiducialtimeof1.38tff,the4and5pcclouds Bolatto A. D., Leroy A. K., Rosolowsky E., Walter F., Blitz L., retainingtheenvelopeshowedSFEshigherbyfactorsof1.7to2.7 2008,ApJ,686,948 comparedtotherunsinwhichitwaslost.The4pcsimulationsran BonnellI.A.,BateM.R.,VineS.G.,2003,MNRAS,343,413 untilamuchlatertimeandby≈ 1.8tff thediscrepancywaseven BonnellI.A.,LarsonR.B.,ZinneckerH.,inReipurthB.,Jewitt higherwithSFEsof≈ 0.5fallingto≈ 0.15withthelossofthe D.,KeilK.,eds,ProtostarsandPlanetsV,UniversityofArizona envelope. Press,Tucson,p.149 The 3pc cloud was the most unbound. At the same time of BonnellI.A.,SmithR.J.,ClarkP.C.,BateM.R.,2011,MNRAS, 1.38tff, it had an SFE of 5.67 × 10−2 when the envelope was 410,2339 present.Initscounterpartwhichlosttheenvelope,nostarforma- BossA.P.,BodenheimerP.,1979,ApJ,234,289 tionwhatsoevertookplace. ClarkP.C.,BonnellI.A.,KlessenR.K.,2008,MNRAS,386,3 Considering the star formation efficiencies per free-fall time DaleJ.E.,BonnellI.A.,WhitworthA.P.,2007,MNRAS,375, (SFEff) and plotting these against α shows the simulations to be 1291 nearlyafullsequence,withthe3pccloudwithanenvelopefalling Dale J. E.,Ngoumou J., Ercolano B., BonnellI. A., 2014, MN- on almost the same point as the 4pc cloud lacking an envelope, RAS,442,694 despitethelargercloudhaving2.37timesthemassofthesmaller. DobbsC.L.,BonnellI.A.,ClarkP.C.,2005,MNRAS,360,2 Wealsoranasetofsimulationsderivedfromthe4pccloudin DobbsC.L.,BurkertA.,PringleJ.E.,2011,MNRAS,413,2935 whichtheenvelopewasremovedatlatertimes.Evenwhenitwas DobbsC.L.etal.,2014,inBeutherH.etal.,eds,Protostarsand lostaslateas1.50tff,theSFEfellawaytoasloperesemblingthose PlanetsVI,UniversityofArizonaPress,Tucson,p.3 simulationswhichhadlosttheenvelopeatanearlierstage.Inthe ElmegreenB.G.,LadaC.J.,1977,ApJ,214,725 runsinwhichtheenvelopewasremovedafterstarformationhad EvansN.J.II,1999,ARA&A,37,311 begun,theSFEonlyrespondedtothelossafterashortperiodof EvansN.J.IIetal.,2009,ApJS,181,321 timeofatmost≈0.2tff. FederrathC.,2013,MNRAS,436,3167 Amorerealisticformoffeedbackmayhavebroughtaboutless GoldsmithP.F.,LiD.,2005,ApJ,622,938 extremechangesintheSFEthanthosereportedhere.Forexample, Heiderman A. Evans N. J. II, Allen L. E., Huard T., Heyer M., theenvelopecouldhavebeenlostonlypartiallyacrosssomesmall 2010,ApJ,723,1019 solidangle,leadingperhapstothecloud’sexpansionthroughthe HeyerM.H.,BruntC.M.,2004,ApJ,615,L45 newopeningasacoldoutflow.Or,theenvelopecouldhavebeen HeyerM.,KrawczykC.,DuvalJ.,JacksonJ.M.,2009,ApJ,699, lostslowlyratherthanremovedinstantaneously.However,theend 1092 statewouldhavestillresembledoneofthesimulationsinwhichthe HeyerM.,GutermuthR.,UrquhartJ.S.,CsengeriT.,WienenM., envelopewasremovedatalatertime.Thisimpliesthateventhena LeuriniS.,MentenK.,WyrowskiF.,2016,A&A,588,A29 dropintheSFEwouldbeinevitable. KennicuttR.C.,EvansN.J.II,2012,ARA&A,50,531 KrumholzM.R.,TanJ.C.,2007,ApJ,654,304 KrumholzM.R.,DekelA.,McKeeC.F.,2012,ApJ,745,69 KrumholzM.R.,Phys.Rep.,539,49 ACKNOWLEDGEMENTS LadaC.J.,LadaE.A.,2003,ARA&A,41,57 TheauthorsthankPaulClarkforhiscontributiontowardstheorig- LarsonR.B.,1981,MNRAS,194,809 inal concept of this paper and the anonymous referee for their LarsonR.B.,2005,MNRAS,359,211 helpful comments. Our column density plots were produced us- LeBourlotJ.,PineaudesForeˆtsG.,RoueffE.,FlowerD.R.,1993, ing Daniel Price’s SPLASH software (Price 2007). The authors A&A,267,233 (cid:13)c 0000RAS,MNRAS000,000–000 10 W.E.Lucasetal. LouvetF.,etal.,2014,A&A,570,15 MacLowM.-M.,KlessenR.S.,2004,Rev.Mod.Phys.,76,125 McKeeC.F.,ZweibelE.G.,1992,ApJ,399,551 MacLachlan J. M., Bonnell I. A., Wood K., Dale J. E., 2015, A&A,573,112 MonaghanJ.J.,1992,ARA&A,30,543 PadoanP.,NordlundA˚.,2011.ApJ,730,40 ParmentierG.,PfalznerS.,2013,A&A,549,A132 PriceD.J.,2007,PASA,24,159 PriceD.J.,BateM.R.,2009,MNRAS,398,33 PriceD.J.,MonaghanJ.J.,2004,MNRAS,348,139 PriceD.J.,MonaghanJ.J.,2007,MNRAS,374,1347 RosolowskyE.,EngargiolaG.,PlambeckR.,BlitzL.,2003,ApJ, 599,258 SalimD.M.,FederrathC.,KewleyL.J.,2015,ApJ,806,L36 ShuF.H.,AdamsF.C.,LizanoS.,1987,ARA&A,25,23 TohlineJ.E.,1980,ApJ,235,866 WongT.etal.,2011,ApJS,197,16 (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.