ebook img

Can galaxy outflows and re-accretion produce the downsizing in specific star formation rate of late-type galaxies? PDF

0.29 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Can galaxy outflows and re-accretion produce the downsizing in specific star formation rate of late-type galaxies?

Mon.Not.R.Astron.Soc.000,1–??(2002) Printed18January2010 (MNLATEXstylefilev2.2) Can galaxy outflows and re–accretion produce the downsizing in specific star formation rate of late–type galaxies? 0 C. Firmani1,2⋆, V. Avila-Reese2†, A. Rodr´ıguez-Puebla2 1 0 1OsservatorioAstronomicodiBrera,viaE.Bianchi46,I-23807Merate,Italy 2 2InstitutodeAstronom´ıa,UniversidadNacionalAuto´nomadeMe´xico,A.P.70-264,04510,Me´xico,D.F. n a J 18January2010 8 1 ABSTRACT ] O Anincreasingamountofrecentobservationalevidenceshowsthatlessmassivegalaxies C are, the higher on average is their specific star formation rates (SSFR = SFR/M , M is ∗ ∗ . the stellar mass). Such a trend, called the ’SSFR downsizing’ (SSFR–DS) phenomenon,is h seen forlocaland high–redshift(backto z ∼ 1−2) galaxysamples. We use observational p datarelatedonlytodiscgalaxiesandexplorehowdoestheaverageSSFRchangewithz for - o differentmasses. For allthe masses in the range∼ 109.5−1010.5 M , the SSFR increases ⊙ r with(1+z)toapowerthatseemsnottodependonM ,andatallredshiftssmallergalaxies st have ever higher SSFRs; galaxies less massive than M∗∗ ∼ 1010 M⊙ are formingstars at a a greaterratethaninthepastassumingconstantSFRsoveraHubbletimetobuildstellarmass. [ We show that these features strongly disagree with the Λ Cold Dark Matter (ΛCDM) halo 2 hierarchicalmassaccretionrates.Further,bymeansofself–consistentmodelsofdiscgalaxy v evolutioninsidegrowingΛCDMhalos,theeffectsthatdiscfeedback–drivenoutflowsandgas 8 re–accretionhaveonthegalaxySSFRhistoriesareexplored.Theparametersoftheoutflow 8 andre–accretionschemesaretunedtoreproducethepresent–dayMh–M∗relation(Mhisthe 1 halomass)inferredfromtheobservationally–basedM functionofdiscgalaxies.Inthecase ∗ 5 ofoutflowsonly,theSSFRofindividualmodelgalaxiesincreaseswithzroughlyas(1+z)2.2 . 9 for all the masses (somewhat shallower than observations) with a normalization factor that 0 dependsonmassasM0.1,i.emoremassivegalaxieshaveslightlylargerSSFRs, contraryto ∗ 9 theobservedstrongSSFR–DStrend.Forthere–accretioncases,thedependenceonzremains 0 approximatelythe same aswithoutgasre–infall,butthe correlationon massincreaseseven : v for most of the reasonable values of the model parameters. The comparison of models and i observationsintheSSFR–M∗planeatz ∼0(wherethedataaremorereliable),clearlyshows X the divergenttrend in SSFR as the masses are lower (upsizing vs downsizing). We explain r whyourmodelsshowthereportedtrends,andconcludethattheSSFR–DSphenomenonfor a low–massgalaxiesposesasharpchallengeforΛCDM–baseddiscgalaxyevolutionmodels. Keywords: cosmology:theory—galaxies:evolution—galaxies:haloes—galaxies:high- redshift—galaxies:spiral—galaxies:starformation 1 INTRODUCTION overashortertime-span,thanlessmassive/latertypegalaxies(e.g., Faberetal.1992;Wortheyetal.1992;Carollo,Danziger&Buson The inference of the assembling history of stellar populations in 1993; Bell & de Jong 2000). With the advent of large and com- galaxiesasafunctionoftheirmorphological typeandluminosity pletesurveysoflocalgalaxiesandthesignificantimprovementof (mass)isamajortopicofpresent–dayextragalacticastronomy,as the population synthesis models, the average ages, and even the well as a key probe for cosmologically–based models of galaxy wholestarformationrate(SFR)historiesofallkindsofgalaxies, formationandevolution. havebeeninferred(e.g.,Kauffmanetal.2003;Heavensetal.2004; Based on chemical and spectro-photometric studies of local Jimenezetal.2005;Gallazzietal.2005,2008;CidFernandezetal. galaxies, it has long been known that more massive/earlier type 2005; Panter et al. 2007). The general conclusion of these works galaxiesholdonaverageolderstellarpopulationsandwereformed confirmsand extendstheprevious results:moremassive galaxies assembledtheirstarsatearlierepochsandonshortertimescales, haltingtheirstarformation(SF)atlaterepochs.Thisphenomenon ⋆ E–mail:fi[email protected] † E–mail:[email protected] 2 Firmaniet al. hasbeennowdubbed as’archaeological downsizing’ (Thomaset analytical models (SAMs) several authors have found systemati- al.2005;Fontanotetal.2009). callythattheSFinmodeledlow–massgalaxieshappenstooearly In thelast decade, the observational capabilitiesallowed the and isover–quenched at later times, showing these galaxies have extensionofgalaxypopulationstudiestohighredshifts.Withthese toolowSSFRsatlowredshiftsascomparedwithobservationalin- ’look-back studies’, thecurrent properties ofgalaxiesat theirob- ferences(seeforrecentresultsandmorereferencesSomervilleet servedtimes,aswellastheirpasthistories,wereinferred.Inapi- al. 2008 and Fontanot et al. 2009). The problem is sharpened by oneeringwork,Cowieetal.(1996)havefoundthatthemaximum thefact that in the SAMs, thebaryon mass fraction of low–mass rest–frame K band luminosity of actively star–forming galaxies galaxieshas tobedecreased systematically inorder to reproduce − has declined with time in the redshift range z = 1.7 0.2, i.e. thelow–luminosityendoftheluminosityfunction(e.g.,Bensonet − theSFefficiencyshiftstolowermassgalaxieswithtime.Thisphe- al.2003).Thisisaccomplishedbyintroducingappropriatelytuned nomenonhasbeenconfirmedbysubsequentworksbasedonwider schemes of very strong stellar ejective feedback as a function of surveys with multi-wavelenght information (Juneau et al. 2005; mass,whichworsenstheSSFR–DSproblem( 4).Latere–infallof § Feulneretal2005;Belletal.2007;Noeskeetal.2007a,b;Zheng theejectedgas(Bertone,DeLucia&Thomas2007;Oppenheimer etal.2007;Cowie&Berger2008;Mobasheretal.2009;Chenet &Dave´2008)couldofferapartialcuretothisproblem. al.2009;Damenetal.2009;seeFontanotetal.2009formoreref- In this work we aim to ’isolate’ the SSFR–DS problem for erences).TheseworksallowedtoinferthespecificSFrates(SSFR onlylow–massdiscgalaxiesandexploreinatransparentwaythe =SFR/M ,M isthegalaxystellarmass)forrelativelycomplete effects of ejective stellar feedback and gas re–accretion on the ∗ ∗ samplesofgalaxiesatdifferentredshiftsuntilz 1 2.Thegen- SSFRhistoriesofgalaxiesbymeansofevolutionaryhydrodynami- ∼ − eralresultisthatthemeasuredSSFRstendtobehigherassmaller calmodelsofdiscgalaxiesformedinsidegrowingCDMhalos.We isM ,aphenomenon called‘SSFRdownsizing’, thistrendbeing willshowthatasolutiontotheSSFR–DSproblemisnotsimplein ∗ observed at all thestudied redshifts.Recent look–back studiesof thecontextofthehierarchicalΛCDMscenario. galaxy luminosity functions have also confirmed the local infer- In Section 2, the observational data to be used in this paper ences of archaeological downsizing mentioned above: the high– arepresentedanddiscussed.Preliminarytheoreticalpredictionsre- massendofthegalaxymassfunctionseemstobemostlyinplace garding the SSFR histories of galaxies as a function of mass are since z 2, while the abundances of galaxies of smaller stellar presented in Section 3. A brief review of our galaxy disc evolu- ∼ massesgrowgraduallywithtime(Daddietal.2004,2007;Bundyet tionarymodelsandtheparametricschemesintroducedformodel- al.2004,2006;Droryetal.2005;Conseliceetal.2007;Marchesini ingejectivefeedbackandgasre–infallaregiveninSection4.The et al. 2009; Pe´rez-Gonza´lez et al. 2008 and see more references model results and their comparison toobservations are presented therein). inSection5.Finally,asummaryoftheresultsandadiscussionare Theemergingobservationalpictureofdownsizinginthestel- presentedinSection6. larmassgalaxyassemblyhasbeenconfrontedwiththehierarchical Thecosmologicalmodelusedthroughoutthispaperisthecon- clusteringscenarioofgalaxyformationandevolution,basedonthe cordanceonewithh = 0.7,Ω = 0.7,Ω = 0.3,Ω = 0.042, Λ m b ΛColdDarkMatter(ΛCDM)cosmological model.Atthispoint, andσ =0.8. 8 asshowninNeisteinetal.(2006;seealsoFontanotetal.2009),it isimportant to realizethat the downsizing effect towhich obser- vationsrefergenerically,hasactuallymanymanifestations,related 2 THEOBSERVATIONS to different phenomena, involving different types of galaxies and differentepochsintheirhistories.Hereinweemphasizeatleastthe Ouraimistotargetthepotential problemofSSFR–DS,andthen twodistinctdownsizingphenomenamentionedabove: compareobservationswithdetailedtheoreticalpredictions.Wefo- cusourstudyhereonlyonnormal(notdwarf)low–massdiscgalax- (i) the ’archaeological downsizing’ related to the early (z>2) ∼ ies(109.5M <1010.5 M ).Ononehand,duetocompletenessis- assemblyofmoststarsinmassive/earlytypegalaxies,and ∗∼ ⊙ sues, dwarf galaxiesarenot taken intoaccount inthez 0and (ii) the’SSFRdownsizing’ (hereafter SSFR–DS)relatedtothe ∼ high–redshiftobservationalsamplestobeusedhere.Ontheother later growth of the relative stellar mass as less massive are the hand,sincemostofdwarfgalaxiesaresatellitesinbiggersystems, galaxies. thephysicsofthemisaffectedbyseveralenvironmentalprocesses Thearchaeologicaldownsizinghasapartialexplanationinthe (rampressure,tidalstripping,interactions,etc.),whicharenotcon- frame of the hierarchical clustering process of dark–matter halos sideredinourmodels. (Mouri&Taniguchi2005;Neisteinetal.2006;Guo&White2008; InordertodeterminetheSSFR–M relationatdifferentred- ∗ Keresˇ etal.2009),andastrophysicalprocesseslikeActiveGalac- shifts,multi–wavelengthphotometric andspectroscopic extensive ticNuclei(AGN)–feedbackhavebeenintroducedalsotogetbetter samplesarenecessary.ThestellarmassesandSFRsofgalaxiesare agreementwiththeobservations(e.g.,Boweretal.2006;Crotonet inferredcommonlybyusingfittingtechniquestostellarpopulation al.2006;Cattaneoetal.2006;Monaco,Fontanot&Taffoni2007; synthesis(SPS)models;theSFRsofgalaxiescanbeinferredalso Hopkins et al. 2008; Somerville et al. 2008, and see more refer- byusingemissionlinesthattraceSFwhenavailable.Theuncertain- encestherein). tiesassociatedtotheseinferencesarelargeduetoselectioneffects, RegardingtheSSFR–DS,whichisthefocusof thiswork, if sampleincompleteness,andthemethodsusedtoinferM andthe ∗ confirmed, it will turn as a pervasive problem for current mod- SFR(seeforadiscussion 6.1).Forourwork,werequiresamples §§ els. This problem refers mainly to the high SSFRs of low–mass wherelate–typegalaxiesareseparatedfromearly–typeones.This (M 109 3 1010M )star–formingdiscgalaxies.Forthese isthecaseoftheobservationalworksbySalimetal.(2007;z 0) ∗ ⊙ ∼ − × ∼ galaxiestheAGNfeedbackisnotexpectedtobeimportantbecause andbyBelletal.(2007;highredshifts). eithertheydonothaveAGNs(e.g.,Kauffmannetal.2003;Salimet Belletal.(2007;seealsoZhengetal.2007andDamenetal. al.2007)ortheirAGNsaretooweakastoproducesignificantfeed- 2009) analyze the COMBO-17 photometric redshift survey com- back(e.g.,Boweretal.2006;Crottonetal.2006).Byusingsemi– bined with Spitzer 24µm data (0.2 < z<1.0). Stellar masses ∼ Galaxyoutflowsandre–accretion 3 AGN,whichformawelldefinedlinearsequenceintheSSFRvs. M plot,fittedlinearlybyLogSSFR=–0.35(logM –10)–9.83. ∗ ∗ InFig.1thesamefourmassesrelatedtothedatafromBelletal. (2007)areusedfortheSalimetal.(2007)resultsatz 0. ∼ FromFig.1weseethattheSSFRofwhatroughlycanbecon- sidered late–type galaxies declines fromz 1 toz 0 almost ∼ ∼ withthesameslopeforallthemasses.However,thenormalization strongly depends onM , being on average theSSFRsat all red- ∗ shiftshigheraslowerisM .ThisshowstheSSFR-DSbehavior.A ∗ crudeapproximationtotherangeofthedatadisplayedinFig.1is: SSFR=0.13M−0.53(1+z)2.6Gyr−1, (1) ∗,10 where M is M in units of 1010M . Recently, for all (late– ∗,10 ∗ ⊙ andearly–type)galaxiesandbacktoz 2.8,Damenetal.(2009) ≈ havereportedatrendofSSFRonredshiftalsonotstronglydepend- ingonM ,withatrendroughlyproportionalto(1+z)5(seealso ∗ Feulneretal.2005; Zhengetal.2007; Martinetal.2007; Pe´rez- Gonza´lezetal.2008).Therearesomepiecesofevidencethatthe SSFRsofmassivegalaxiesstarttoincreasesignificantlyandover- comestheSSFRsoflessmassivegalaxiesonlyatredshiftslarger than2(Pe´rez-Gonza´lezetal.2008) Noticethateachofthepairsofcurvesinferredfromobserva- tionsfor z>0.3 inFig.1 refer toagiven M that isthesameat ∼ ∗ Figure1.EvolutionoftheSSFRoflate–type galaxies fordifferent fixed eachredshift,i.e.thesecurvesdonotrefertotheevolutionofin- values of M∗. The data at z ∼ 0 (squared dots) are from Salim et al. dividual galaxies (evolutionary tracks), but to galaxy populations (2007). The solid curves were inferred from Bell et al. (2007) for their at different epochs. We have carried out an exercise for recover- two fields, CDFS and A901 (corresponding upper and lower curves, re- ingapproximategalaxyevolutionarytracksfromtheobservational spectively;seetext).Fromtoptobottom,thedatacorrespondtomassbins dataindiagramofFig.1.WeassumethatagalaxyofmassM at centeredatLog(M∗/M⊙)=9.5(cyan),10.0(blue),10.5(green),and11.0 ∗ redshiftzincreasesitsmassduringthetimeinterval(dt/dz)dzby (red), respectively. The thin dot–long–dashed green line is our estimate fromthedatafortheindividual evolution ofanaveragegalaxythatends formingstarsatarateM˙∗ =(1 R)SSFR(M∗,z)M∗(z),where − atz = 0withM∗ = 1010.5M⊙ (seetext). Thesolidblacklineshows SSFRisgivenbyeq.(1),andR=0.4takesintoaccountforgas thecurve1/[tH(z)–1Gyr](1-R)correspondingtoconstantSFRalongthe returnduetostellarmassloss.Thisway,weareabletocalculate time.Thedashedcurvesare’dark–matterhalo’SSFRhistoriescalculatedas M˙ /M ateachz foran“average”galaxyevolutionarytrackthat ∗ ∗ M˙h/[Mh(1−R)](seetext);fromtoptobottomthecorrespondingmasses ends at z 0 with a given M∗. The dot-dashed line shows the areMh=1012.6M⊙(red),Mh=1012.1M⊙(green),Mh=1011.7M⊙ average ev∼olutionary track for a present–day galaxy stellar mass (blue),andMh=1011.4M⊙(cyan).Thecorrespondingstellarmassesare of1010.5M .Theevolutionarytracksintherangeofthedataare ⊙ roughly as thoseofthedata. Thecosmological specific infall rates drive roughlyparallelandatz 0intercepttheSSFRaxisatthelevelof SSFRsthatareslightlyhigherformassivegalaxiesandstronglylowerfor ∼ thecorrespondingmasses.AsseeninFig.1,theevolutionarytrack low–massivegalaxiesthanobservationalinferences. inferredthiswayisonlyslightlysteeperthantheobservedconstant masscurves. were estimated using 17 pass-bands in conjunction with a non- evolvingtemplatelibraryderivedfromthePe´gaseSPSmodel,and SFRs were determined from the combined UV and IR fluxes of 3 PRELIMINARYTHEORETICALPREDICTIONS galaxies. In Fig. 1, we reproduce the averaged data presented in their Fig.3(SSFRvs. M ),where four redshift bins centered on Fromatheoretical point ofview,inorder toestimatethelevelof ∗ z 0.9,0.7,0.5,and0.3aregiven.Wereproducethedataasso- SF activity of galaxies as a function of their masses and epochs, ∼ ciated only with the blue cloud (late–type) galaxies and for four let consider first the case of a constant SFR history. Then, M ∗ masses [Log(M /M ) = 9.5, 10.0, 10.5, and 11.0 from top to at the cosmic time t (z) should be given by M SFR (1 ∗ ⊙ H ∗ ∼ × bottom, respectively]. Their data are separated according to two – R) (t (z) – 1 Gyr); 1 Gyr is subtracted in order to take into H × COMBO-17fieldsobservedbySpitzer:theextendedChandraDeep account the (average) delay in the formation of halos that host FieldSouth(CDFS),andthefieldaroundtheAbell901/902(A901) galaxies. Ifthe measured SSFRat z = 0issmaller (larger) than galaxycluster(upperandlowercurvesinFig.1,respectively).Note 1/[t (z) – 1 Gyr] (1–R), then the average SFR of the given H ∼ that the SSFRs from CDFS are systematically higher than those galaxy has been higher (lower) in the past than in the current around the denser field of a cluster. It is well known that the SF epoch.InFig.1thecurve1/[t (z)–1Gyr](1-R)forthecosmol- H activitytendstobequenched ingalaxiesinhigh–density regions. ogyusedhereandforR=0.4isplotted(thinsolidline).Thecon- Thus,forcomparisonwithourtheoreticalpredictions,thedatacor- stantSFRcaseisjustindicativeofthesituation:low–massgalaxies respondingtoCDFSarelikelymoreappropriate. (M <1010M )showcurrentSFRshigherthantheirpastaverage ∗∼ ⊙ Thedata inFig.1corresponding toz 0weretaken from SFR. ∼ Salimetal.(2007),whoobtainedM anddust–correctedSFRsfor Now,withinthecontext oftheΛCDMcosmogony, onemay ∗ 50,000galaxiesbyfittingtheSDSSandGALEX photometry anticipateapotentialdisagreementwithobservationsrelatedtothe ≈ toalibraryofdust–attenuatedSPSmodels.Theywereabletosep- SSFR–DSphenomenon.ByusinganextendedPress–Schechterap- aratefrom their sample the“pure” star–forming galaxies withno proach (Avila-Reese et al. 1998; Firmani & Avila-Reese 2000 – 4 Firmaniet al. hereafter FA2000; see 4), we calculate for a given present–day forthecosmologyadoptedhere.Thefinalgalaxybaryonfraction, § M its averaged mass aggregation history (MAH), M (z), from f M /M ,isdeterminedbythefurtherdiscgasejecting h h b,gal gal h ≡ tens of thousands of Monte-Carlo extractions. By assuming that andinfallingprocesses. the SSFR is driven by the halo specific mass aggregation rate, Theaccretingmassshellsatthetimeoftheirvirialization,t , v (M˙ /M )(z),andcorrectingbythegasreturnfactor(1–R),we are assumed to rotate rigidly with a specific angular momentum h h havecalculatedthe’darkmatter’–drivenSSFRhistoriesfordiffer- calculatedasj (t )=∆J /∆M ,where∆representsadiffer- sh v h h enthalomasses.InFig.1thedashedlinesshowfromtoptobottom encebetweentwotimesteps,andJ =λ GM5/2/ E 1/2,M , the SSFRhistories for halo masses from Mh = 1012.6M⊙ (red) and Eh, are the halo total angularhmomehntum,hmass|, ahn|d energhy to Mh = 1011.4M⊙ (cyan), which correspond roughly to stellar respectively; λh is the halo spin parameter, assumed to be con- massesfromM∗ =1011M⊙toM∗ =109.5M⊙,respectively(see stant in time. As a result of the assembling of these mass shells, 4.1andFig.2).Agoodinterpolatingformulatoourresultssince a present–day halo ends with an angular momentum distribution §§ z 1is: close to the (universal) distribution measured in N-body simula- ∼ 1 M˙ 10−1.5 tions(Bullocketal.2001).Theradialmassdistributionofthelayer SSFR≈ (1 R)Mh = (1 R)M∗1,/182(1+z)2.25Gyr−1(2) iscalculatedbyequatingitsspecificangularmomentumtothatof h − − itsfinal circular orbit incentrifugal equilibrium (detailed angular whereM∗,12isM∗inunitsof1012M⊙. momentumconservation). Thesuperposition oftheselayersform From this very preliminary calculation, we conclude that agaseousdisc,whichtendstobesteeper inthecentreandflatter while the dark matter–driven SSFR histories of massive galaxies attheperipherythantheexponentiallaw.Thegravitationalinterac- donotshowasignificantdiscrepancywithobservations,forlow– tionofdiscandinnerhaloduringtheirassemblyiscalculatedusing massgalaxies(M∗<∼1010.5M⊙)thediscrepancybecomessignifi- theadiabaticinvarianceformalism. cantanditincreasesassmalleristhemass.ThepredictedSSFRs Afurtherstepisthecalculationofthestellarsurfacedensity oflow–massgalaxiesarelowerthantheobservedonesbeyondthe profile. The previously mentioned processes and the fact that SF uncertaintylevel. Afirstguesstosolvesuch aconflict withinthe islessefficientattheperipherythaninthecentreproducesstellar contextofthehierarchicalcosmogonyistoproposethatthemain discswithanearlyexponentialsurfacedensitydistribution,andthe stellarformationepochoflowmassgalaxiesisdelayedbysomeas- sizemainlydeterminedbyλ .ThediscSFatagivenradius(as- h trophysicalprocessestolowerredshifts.Cangasoutflowsandlater sumingazimuthalsymmetry)istriggeredbytheToomregasgrav- re–accretion work inthis direction? In what follows, weturn out itational instability criterion and self–regulated by a balance be- toself–consistentmodelsofdiskgalaxyformationandevolutionto tweentheenergyinputduetoSNeandtheturbulentenergydissipa- explorethisquestion. tionintheISM.Bothingredientsdeterminethegasdischeightand theSFrate.ThisphysicalprescriptionnaturallyyieldsaSchmidt- Kennicutt-like law. TheSFefficiency depends on the gassurface 4 THEMODEL density determined mainly by λh, and on the gas infall history, whichinitsprimaryphaseisproportionaltothehaloMAH. Theformationandevolutionofdiscgalaxieswithingrowingdark matter halos can be followed in a transparent and self-consistent way by using simplified hydrodynamic models of discs in cen- 4.1 Feedback–drivenoutflows trifugalandverticalhydrostaticequilibrium,andwithaSFmecha- nismtriggeredbyadiscinstabilitycriterionandself–regulatedby Inourpreviousworks,wedidnottakeintoaccountdiscmassout- anenergybalanceprocess(thesemi-numericalapproach;FA2000; flows(galacticsuper-winds)duetoSNandradiationpressurefeed- Avila-Reese &Firmani2000; seefor similar approaches van den back.Therefore,thedrivingfactor fordiscgrowthwassolelythe Bosch2000;Naab&Ostriker2006;Stringer&Benson2007;Dut- gasinfall rateassumedproportional tothehalomassaggregation ton&vandenBosch2009–hereafterDvdB09). rate,wheretheproportionalitycoefficientisthegalaxybaryonmass Themainphysicalingredientsofthemodelsusedhereareas fraction,fb,gal.Thisfractionwasfixedtoaconstantvaluesmaller follows.AspecialextendedPress–Schechterapproachbasedonthe thantheuniversalbaryonfraction,fb,Univ,byafactor 4.With ∼ conditionalprobability(Lacey&Cole1993)isusedtogeneratethe thissimpleassumption,nearlyflatrotationcurvesatthepresentand halo mass accretion histories (MAHs) fromthe primordial Gaus- athigherredshifts,andgoodagreementwithobserveddiscscaling siandensityfluctuationfield.Ageneralizedsecondaryinfallmodel relationswereobtained (e.g., FA00; Avila-Reese et al.2008; Fir- withellipticalorbitsisappliedtocalculatethetime–by–timeviri- mani&Avila-Reese2009). alizationoftheaccretingmassshells(Avila-Reeseetal.1998).The Here we introduce an algorithm for outflows from the disc orbitellipticityparameterisfixedinsuchawaythatthestructureof similartothoseusedintheSAMsbutappliedlocallytotheevolv- theΛCDMhaloesagreeswithresultsfromcosmological N–body ing disc–halo system as a function of the radius (DvdB09). The simulations(Avila-Reeseetal.1999;FA2000).A(baryon)fraction outflowisassumedtomoveatthelocalescapevelocityofthedisc– of the massof each accreting shell isassumed tocool down ina halosystem,Vesc(r).Therefore,theefficiencyofmassejectionde- dynamicaltimeandformadisclayer1.Wecall’primary’cosmo- pendsonmass.Forhaloslessmassivethan 1012 M⊙,theout- ∼ logicalgasaccretionthatonerelatedtotheseaccretingmassshells flowswerefoundtobeabletoreducetheinitialuniversal baryon withanuniversal baryonfractionf Ω /Ω = 0.163 fractionbyfactors 2andmoreasthemassissmaller (c.f.van b,Univ ≡ B DM denBosch2002;B∼ensonetal.2003;DvdB09).Themassejected perunitofareaandtimefromdiscradiusrisgivenby 1eveFrosrhhoarltoermthaassnesthleowHeurbtbhlaenti∼me5,1tH01.1TMhe⊙refthoerer,atdhiiastiavsesucmoopltiinogntiwmoerkiss Σ˙ (r)=Σ˙ (r)ǫ 1000kms−1 n, (3) wellforhalosofthismassandsmaller.Forlargermasses,thecoolingtime eject SFR (cid:18) Vesc(r) (cid:19) becomeslargerthantH.Then,themassbaryonfractionavailabletoform thegalaxydecreasessystematicallywithmass. where Σ˙SFR is the SFR surface density, and ǫ is a free param- Galaxyoutflowsandre–accretion 5 isη = 0.009M −1,one obtainsnamely thevalue of 1000 SN ⊙ ∼ kms−1 reported ineq. (3) and theparameter ǫcan be interpreted as the fraction of SN kinetic energy transferred into the outflow. For the latter case (n = 1), by assuming that each SN produces amomentum p = 3104 M kms−1 andusing thesamevalue SN ⊙ of η as above, the normalization velocity in eq. (3) should be SN 300kms−1;bykeeping1000kms−1ineq.(3),theoutflowmo- ∼ mentumisalready3.3timesthemomentumproducedbyoneSN; thisshouldbestillmultipliedbyourǫ.However,weshouldsaythat the’momentum–driven’caseisthoughtfortheeffectofmassive– starsratherthanfortheSNcontributions(e.g.Murray,Quataert& Thompson2005;Oppenheimer&Dave´2008;Grimesetal.2009); thetotalmomentum(energy)injectedbymassivestarsduringtheir lifeismuchhigherthantheoneinjectedbySNe. BecausetheoutflowrateisproportionaltotheSFR(eq.3),the outflowsaremoreefficientinremovinggasatearlierepochs,when the SFR is higher. The early accreted gas has lower angular mo- mentumthanthelateraccretedgas.Thus,astheresultofdiscgas ejectionbyoutflows,thespinparameterλofthefinaldiscbecomes largerthanthespinincaseofnooutflows,which,byassumption, isequaltothehalospinparameter(seealsoDvdB09). Thestudyofthegalaxy–sizeoutflowphysicsisacomplicated hydrodynamicandradiationtransferproblem,anditrequiresavery large dynamical range, from parsec to megaparsec scales (e.g., Dalla Vecchia & Schaye 2008; Oppenheimer & Dave´ 2008 and more references therein). The model described above is certainly anoversimplification,whichoverestimatesthefeedbackefficiency (see for a discussion DvdB09). In most of the previous works it was assumed that the ejected gas is lost forever by the galaxy– halosystemandtheproportionalitycoefficientandexponentineq. (3) were varied in order to reproduce the low–luminosity side of the observed luminosity function as well as galaxy scaling laws like the Tully–Fisher relation (c.f. Benson et al. 2003; DvdB09). Feedback–drivenoutflowsseemtobealsonecessarytoexplainthe steepmass–metallicityrelationofgalaxiesatredshiftsz 1 2, ∼ − andtheobservedmetallicitiesoftheIGMathighredshifts(Aguirre Figure2.Panel(a):Semi–empirical andmodeledstellarvshalomasses. et al. 2001; Oppenheimer & Dave´ 2006; Finlator & Dave´ 2008; Theformerareinferredbydifferentauthorsbymatchingagivenobserved DvdB09). luminosity (M∗)function withthe theoretical halo mass function forall The full modeling of feedback–driven outflows isout of the galaxiesandhalos(non-continuouscurves),foronlylate–typegalaxiesand scopeofthispaper.Instead,weaimtoexploreinasemi–empirical halosthatlikelyhostlate–typegalaxies (continuousredcurvefortheav- way the effects of different kinds and levels of feedback on the erage,anddottedcurvesencompassingthedottedhorizontallinesforthe SFRhistoryofdiscgalaxiesasafunctionofmass.Theexploration 1σuncertainty),andfromdirectweakgravitationallensingstudies(cyan solidsquareswithverticalerrorbars).Thecorrespondingliteraturesources issemi–empiricalinthesensethatwetakecaretoagreewiththe areindicatedinsidethefigure.Forthemodelpredictions(thickdot–dashed present–day Mh–M∗ relation inferred from matching the galaxy curves),thediscoutflowcasesforn = 1,2,and5(respectivelyinclock- stellar(luminosity)andhalomasscumulativefunctions.InFig.2 wisesense)areshown.Themodelsareforcedtoagreewiththecontinuous weshow thisrelationasinferredbydifferentauthors(Shankar et redlineat1010 M⊙ bytuningthefreeparameterǫineq.(3);seeforthe al.2006;Baldry,Glazebrook&Driver2008;Conroy&Wechsler valuesTable1.Then=2’energy–driven’outflowcasebestreproducesthe 2009;Mosteretal.2009;Rodr´ıguez-Pueblaetal.2009,inprep.). observationalinferences.Panel(b):Sameaspanel(a)butformodelsthat Differentobservedgalaxyluminosityfunctions,differentmethods includegasre–accretion.Onlycaseswithn=1andMpcg=const.(µ=0, topassfromluminositytoM ,anddifferenthalomassfunctions seeeq.5)areplotted.Forlargervaluesofn,there–accretionproducestoo ∗ (analytical fits or halos directly from N–body numerical simula- shallowslopesintheMh–M∗relation.Thethreecasesplottedwiththick tions), as well asdifferent corrections to account for halo groups solid,dashed,anddot–dashedlines,correspondtovaluesforthe(Log(m), α)parametersof(10.0,1.0),(10.5,1.0),and(10.0,0.5),respectively(see andsub-halos, wereusedbyeachoneof theseauthors. Forcom- Table1). pleteness,wereproduceinFig.2alsothemoredirect(butyetvery uncertain) inferences basedonweaklensing studiesforlate–type galaxies(squareswithlargeverticalerrorbars;Mandelbaumetal. eter. In the literature, values for n from 1 to 5 were commonly 2006). usedinordertoreproducethelow–massluminosityfunction.The TheM –M relationhasbeeninferredcommonlyusingthe h ∗ values n = 2 and 1 are expected for the ’energy–driven’ and whole galaxy population and all the halos. In the case of Baldry ’momentum–driven’ outflows, respectively. For the former case, etal.(2008;longdashedblueline),theusedgalaxysamplerefers assuming that each SN produces an energy E = 1051 erg, to galaxies in the field, where disc galaxies dominate. Since our SN and that the the number of SNe per solar mass of stars formed study refers to disc galaxies, the M –M relation should be in- h ∗ 6 Firmaniet al. ferredfromastellarmassfunctionforonlydiscgalaxiesandfrom timeand,inanycase,uncertainduetothestochasticnatureofthe a halo mass function related to halos that will host disc galax- problem.Instead,weadopthereasimpleapproachthatcanbeeas- ies.ThisinferencehasbeenperformedinRodr´ıguez-Pueblaetal. ilyimplementedinournumericalcode.Letusconsiderthatduring (2009),whousedtheM functionforSDSSlate–type(blue)cen- thetimeintervalelapsedbetweentheejectionofagaselementand ∗ tral galaxies as reported in Yang, Mo & van den Bosch (2009), itsre–infallontothedisc,acertainamountM ofprimarycos- pcg andthehaloM functioncorrectedforhalosthatdidnotsuffera mological gas (see above for a definition) accretes onto the disc. h majormerger(massratiolargerthan0.2)sincez = 0.85;Gover- Theinformationrelatedtothesurroundinggasthatbreakstheout- natoetal.(2009)haveshownthatafteramajormergertookplace flow(mostlyrelatedtotheinfallingcosmologicalgas),aswellasof beforez 0.8, thegalaxycanregenerateasignificant discuntil thedynamicsinthegravitationalfield,areactuallysummarizedin ∼ the present epoch. Rodr´ıguez-Puebla et al. checked that the frac- theparameterM (seeforasimilarstatementDubois&Teyssier pcg tions of late–type galaxies and ’quiet’ halos with respect to their 2008). In other words, the physics concerning to the outflow/re– corresponding distributionfunctionsweresimilar,around55% in accretion process can be parametrized through M . With this pcg both cases. The solid red line in Fig. 2 reproduces the results by ideainmind, wefollow thenext simpleapproach for calculating Rodr´ıguez-Puebla et al.including the1σ uncertainty (dotted red gasre–accretioninourcode.Foragivendiscgaselement,assoon lineswhichencompasstheareaofdottedhorizontallines);thisun- asisejected,theacumulatedamountoftheaccretedprimarycos- certaintyismainlyduetotheuncertaintiesinthepopulation syn- mologicalgasisnumericallycalculatedtimebytime.Whensuch thesismodelsusedtoestimateM . amountreachesthevalueofM ,thenthegivenmasselementis ∗ pcg WeusetheM –M relationbyPuebla-Rodr´ıguezasindica- reintegratedtothedisc.Thisprocedure isappliedtoeachejected h ∗ tive, intending that the feedback–driven mass ejection shall help gaselement at anytime.Adopting such anapproach, thephysics reproduce roughly such a (semi–empirically derived) relation. It reducestofixM inaparametricfashion. pcg shouldbestressedthatourconclusionsbelowregardingSSFRsare Actuallyweintroducealognormaldistributionaroundourpa- unchanged if our models are calibrated to reproduce any of the rameterM inordertotakeintoaccountthestochasticalnature pcg otherM –M relationsshowedinFig.2.Wefocusourstudyonly oftheproblem.Suchdistributionisdefinedby h ∗ on galaxies with M <1010.5M , those for which the SSFR-DS phenomenonbecome∗s∼strong(se⊙e 2). dP = α e−α2 ln Mp′cg −hln Mp′cg i 2dln M′ , (4) Inpanel(a)ofFig.2,thethic§kdot–dashedlinesshowourre- √π (cid:0) (cid:0) (cid:1) (cid:0) (cid:1)(cid:1) (cid:0) pcg(cid:1) sultsforthecasesn=1,2,and5inclockwisesense,respectively. where α regulates the width of the distribution around the loga- In each model the outflow efficiency ǫ isfixed in order to obtain rithmicmeanvalue ln(M′ ) ;αandM =e(hln(Mp′cg)i) are thebest agreement withtheM –M relationatM = 1010M . h pcg i pcg h ∗ ∗ ⊙ introducedasfreeparameters. Thehighernis,theshallowertheM –M relationatlowmasses; h ∗ Bymeansofcosmological hydrodynamical simulations,Op- forexample,theslopesintherange9.5< LogM <10.5are0.79, ∼ ∗ ∼ penheimer & Dave´ (2008) have found that the re–accretion time 0.62, and0.36 for n = 1,2, and 5,respectively (thecorrespond- scaleswithgalaxymassroughlyasM−1/2 andtheyinterpretthis ing slope for the Rodr´ıguez-Puebla et al. inference is 0.65). We gal tobethecasewhenenvironmentaleffectsaredominatingtheretar- haveexperimentedalsowithanoutflowmodelwithconstantmass dationofoutflows.SuchabehaviorimpliesinourcasethatM loading (i.e., n = 0); as expected, the models follow a correla- pcg shouldberoughlyconstant ormoderatelydecreasingwithmass2. tion steeper than the case n = 1. If outflows are not introduced This way, for massive galaxies, M is attained soon and gas (f =0.04=const. is used), then the correlation is only slightly pcg b,gal re–accretion becomes consequently efficient (galactic fountains), shallowerthanthecaseM M inFig.2(slope 0.94);thisis becauseinourmodelsthehlo∝wert∗hediscmassis,th≈elessefficient whileforlowermassgalaxies,attainingMpcg takeslongertimes; for the smallest galaxies, it may takes eventually periods longer istheprocessofgastransformationintostars. than the current Hubble time in which case the gas does not re- AsseenfromFig.2,areasonableagreementbelow1010.5M ⊙ turn.Giventhelargeuncertaintiesinthephysicsoftheprocess,we with the observational inferences is obtained for n = 2 (’SN introduceaparametricexpressionforM : energy–driven’ outflows) with a high SN energy transference ef- pcg ficiency,ǫ = 0.62. Thevaluesofǫfordifferentcases,aswellas m M µ M = h , (5) theobtainedvaluesofM∗ atz = 0fordifferenthalomasses,are pcg M⊙ (cid:18)21011M⊙(cid:19) presentedinTable1. wheremandµareparameterstobeprobed. 4.2 Re–accretionoftheejectedgas The assumption that gas islost forever is strong and likely unre- 2 ThepropertiesofMpcgcanbeestimatedalsobysimplemomentumor energy conservation arguments. Letus consider agiven outflow ofmass alistic. Theoutflow propagates along theintra–halo and/or intra– filament media and even if gas escapes from the current gravita- Mo movinginagiven solidangle attheejected velocity Vo inthehalo tionalpotential,itwillbesloweddownandstoppedbyfurtherin- potential;then,MoVoa = (Mo+Mp)Va,whereMpisthemasspiled bytheoutflow,V istheshockvelocity,anda= 1or2formomentumor teractionwiththeintergalacticmedium,andthenre–accretedlater energyconservation,respectively.AroughandgeneralestimateforV could by thehalo–galaxy system(see e.g.,Bertone et al.2007; Oppen- bethetypicalhalocircularvelocity,Vc,whichapproximatelyscaleswith heimer&Dave´2008). thehalomassasVc ∝ Mh1/3.Therefore,themasspiledbytheoutflow takingThinetmooatcicoonuonftatnheejheacltoe–dgdailsacxgyagsrealveimtaetinotncaalnpboetecnatlicaullaanteddtbhye bisacMkptot≈he(dMisco.VIno)oath/eMrwha/o3rd.sS,uMchomisarsesinwteigllradteradgtothtehemdaisscswelheemne,nwtitMhino viscosityofthesurroundinggas.Oncetheejectedgaselementstops thegivensolidangle,theamountofmassMpofprimarygasisaccreted. withrespecttothegasaround,boththeejectedgaselementandthe Thus,MpcgisjustMpscaledtotheentiresolidangle4π.Fromthiscrude circungalacticgaswillinfalltogetherontothediscgalaxy.Thisis approximation,Mpcg∝Mh−1/3orMh−2/3,dependenciesthatarewithin arathercomplexhydrodynamicprocess,demandingincomputing therangeexploredbelowbyus. Galaxyoutflowsandre–accretion 7 LogMh n ǫ Log(m) α µ 11.2 11.4 11.7 12.1 11.2 11.4 11.7 12.1 LogM∗ LogSSFR 1 1.83 9.38 9.63 10.00 10.48 -1.39 -1.37 -1.34 -1.32 2 0.62 9.22 9.54 10.00 10.60 -1.36 -1.34 -1.31 -1.28 5 0.024 8.65 9.18 10.00 10.90 -1.30 -1.26 -1.19 -1.20 1 7.23 10.0 1.0 0 9.05 9.43 10.00 10.77 -1.25 -1.17 -1.13 -1.12 1 3.18 10.5 1.0 0 9.20 9.51 10.00 10.70 -1.33 -1.26 -1.19 -1.15 1 5.95 10.0 0.5 0 9.15 9.49 10.00 10.69 -1.28 -1.22 -1.18 -1.17 1 9.61 10.0 1.0 -1 8.73 9.15 10.00 11.08 -1.28 -1.05 -0.92 -1.07 1 6.46 10.0 1.0 1 9.38 9.63 10.00 10.48 -1.44 -1.37 -1.34 -1.35 2 2.32 10.0 1.0 1 9.21 9.53 10.00 10.62 -1.40 -1.33 -1.31 -1.30 Table1.PredictedM∗andSSFRatz =0asafunctionofhalomassMhfordifferentmodelswithonlyoutflows(lineswithcolumns3–5empty)andwith bothoutflowsandgasre–accretion.AllthemassesareinunitsofM⊙,andtheSSFRisinunitsofGyr−1. Regardingtheangularmomentumofthere–accretedgas,the We first study models with galactic outflows only, and then situationisevenmoreuncertain.Weassumethatthespecificangu- includethepossibilityofgasre–accretion.Inallthecasesthepa- larmomentumofthisgasisafractionf oftheonecorresponding rametersofthefeedback–drivenoutflowsandgasre–accretionare j tothecurrentlyhierarchicallyinfallingcosmicgas.Theresultsto chosen appropriately to reproduce the M –M relation inferred h ∗ bepresentedheredependpoorlyontheassumedfractionwithinthe semi–empirically(Fig.2).Ouraimistoexplorewhetherthemodel reasonablerangeoff 0.3 0.7 SSFRhistoriesfordifferentmassesagreeornotingeneralwiththe j ≈ − In panel (b) of Fig. 2, the thick black curves show our re- observationaltrendofSSFR-DSdiscussedin 2(Fig.1). § sults for the outflow model with n = 1 (see eq. 3) and constant values of the re–accretion M parameter, i.e. with µ = 0 (see pcg eq. 5): m = 1010 (solid line) and m = 1010.5 (dashed line), in 5 RESULTS both cases using α = 1 in the probability distribution of M pcg (eq.4);andm = 1010 butα = 0.5(dot–dashedline).Thecorre- TheobservationaldataintheSSFRvs.(1+z)diagram(Fig.1)re- spondingslopesoftheMh–M∗relationintherange9.5<∼ LogM∗ fertocurvesofconstantM∗ correspondingtogalaxypopulations <10.5are0.58,0.57,and0.52,closetotheslopeoftheobserva- atdifferentredshiftsratherthantocurvesequivalenttotheevolu- ∼ tions. For outflow models with n larger than 1, after taking into tionofindividualgalaxies.However,asdiscussedin 2,atleastfor § account re–accretion, the Mh–M∗ relations become significantly z<∼1,thelatercurvesseemtobeonlyslightlysteeperthanthefor- shallower than the observational inferences. InTable 1 wereport meronesintheSSFRvs.(1+z)diagram.Havinginmindthissmall ourresultsatz = 0(M andSSFRfordifferenthalomasses)for difference(notethatatz 0,thecomparisonofmodelsandob- ∗ ∼ there–accretionparametersmentionedaboveaswellasforsome servationsiscompletelyfair),wecomparebelowtheobservational caseswithµ = 0,andforn = 2.Asexpected,byincludingre– datawithresultsforindividualgalaxyevolutionmodels,whichend accretionandt6ryingtoreproducetheM –M relationimpliesvery atz = 0withstellarmassessimilartothosecorrespondingtothe h ∗ highoutflowefficiencies.Weseealsothattheresultsdependactu- data:Log(M∗/M⊙)=9.5,10.0,and10.5.Themassivecase,Log allyweakly on thedispersion parameter α (e.g., compare rows 4 (M∗/M⊙)=11.0,ashasbeenexplainedin 4,isoutofthescopeof § and6fromTable1). theproblemstudiedherein.Recallthatourmodelsareconstrained heretoagreewiththeM –M relationinferredsemi–empirically h ∗ (Fig.2). 4.3 Strategy 5.1 Galacticoutflowsonly Agivengalaxymodelisdefinedbythehalomass,M ,itsMAH, h anditsλh.Theinitialbaryonfractionisassumedequaltotheuni- We first experiment with the usual ejecting SN feedback model, versalone,fb,gal=fb,Univ,butthefeedback–drivenoutflowandgas where the gas in the outflows (galactic super-winds) is assumed re–accretionparametersdefinetheactualvalueoffb,gal.Sincewe to be lost forever from the halo ( 4.1). In Fig. 2 we showed areinterestedhereingenericevolutionarytrendsrelatedtotheSFR thatthesemi–empiricallyderivedM§§–M relationisbetterrepro- h ∗ andM∗historiesasafunctionofmass,westudyonlythe“central” duced by the n = 2 outflow model (’energy–driven’ outflows). modelsofdifferentmassescharacterizedby: TheSSFRevolutionfor thiscaseandforthepresent–day masses Log(M /M )=9.5and10.5areplottedinFig.3withthedotted theaveragedMAHcorrespondingtothegivenhalomassM , ∗ ⊙ h • cyan(lowercurve)andgreen(uppercurve)lines,respectively.The a value of λ = 0.03, which is somewhat smaller than the h • SSFRtrackscorresponding tomassesinbetweenthismassrange meanofallrelaxedhaloesmeasuredinnumericalsimulations(e.g., liewithinthesetwocurves. Bettetal.2007). Forallthemasses,theSSFRincreaseswithzwithatrendin Note that these physical ingredients have in fact probability den- roughagreementwithobservations,butthereisasmallbutsystem- sitydistributions(nottakenintoaccounthere)that,ofcourse,will aticaltrendofhigherSSFRsasthemassislarger,oppositetothe produce anintrinsic scatter inthe values of the galaxy properties strong observed SSFR-DS phenomenon. A good fit to the model studied. resultsfromz =0toz 3is: ∼ 8 Firmaniet al. 5.2 Galacticoutflows+re–accretion In 4.2wedescribedourparametricmodeltoaccountforthere– §§ accretionoftheejectedgasbyfeedback–driven galacticoutflows. Themodelswithre–accretionagreewiththeM –M relationonly h ∗ foroutflowswithn= 1(seepanelbofFig.2).InFig.3,thecase withn = 1,µ = 0,m = 1010 (seeeq.5)andα = 1(seeeq.4) isplottedfortwomodelsthatendatz = 0withLog(M /M )= ∗ ⊙ 9.5 (upper dashed cyan line) and 10.5 (lower dashed green line). Wehaveexperimentedalsowithmanyotherre–accretionparame- ters(seeTable1).Asexpected,theSSFRsarehigherforthemod- elswithre–accretion.Thisisbecausetherateoflaterre–accretion oftheejectedgassumsuptothehierarchical haloaccretionrate, raisingtheSFR.FromFig.3weseethattheSSFRincreaseswith (1+z) toa power not strongly dependent on massand actually, similartothecaseofnore–accretion(dottedcurves;seeeq.[6]). It is obvious that if re–accretion isincluded, then the mass load- ingintheoutflowmodelshouldbeincreasedinordertoreproduce thesameM –M relationthanwithoutre–accretion.Forexample, h ∗ comparethemodelsgiveninrows1and4inTable1(n = 1out- flowcase),whereǫincreasedfrom1.83to7.23;notethattheSSFR increasedforallthemasses,butmoreforthemoremassivemodels. The physics of the model is rather complex. For M = pcg Figure3.SameasinFig.1butincludingevolutionarytracksofindividual const., the larger themass, theshorter the timeperiod of gas re– galaxies.Thedottedcurvesareformodelswithoutflowsandforthefavorite incorporationintothediscbecauseMpcgisequaledquicklybythe casen = 2;theuppergreenandlowercyanlinesareforM∗ = 1010.5 accretedprimarycosmologicalmassinmoremassivegalaxies.Fur- M⊙andM∗=109.5M⊙,respectively.Thedashedcurvesareformodels thermore,agivenmasselementcanbeejectedandre–accretedsev- withoutflows(n=1)andgasre–accretion(µ=0,m=1010,α=1.0); eraltimesdependingontheoutflowefficiency.Giventhatmassive theuppergreenandlowercyanlinesareforM∗=1010.5M⊙andM∗= galaxies recover their ejected gassooner than low mass galaxies, 109.5M⊙,respectively. thenthesamestellarmass(M –M relation) isreacheddecreas- h ∗ ing the power n of eq. (3), i.e. decreasing the low mass galaxies outflowwithrespecttomassivegalaxies. The behavior of the SSFR with mass is again against the SSFR=0.005M 0.1(1+z)2.2Gyr−1. (6) SSFR–DS.Forthe value of Mpcg= 1010 M⊙ used here, models ∗,10 withM 1010.5 M raisetheirSSFRtovalues slightlylower ∗ ⊙ ∼ Suchabehaviorisconsequenceof(i)mainlytheCDMhaloMAHs on average than observational inferences, while the lowest mass whichdrivethegasinfallprocessand,consequently,theSFhisto- models,onlyveryslightlyraisetheirSSFRatlateepochs,faraway ries:thelessmassivethehalos,thelowerthespecificmassaggre- fromthevaluesrequiredtoreproducethehighSSFRsinferredfor gationratesatlateepochs(seeFig.1);and(ii),inalessextent,of low–massdiscgalaxies. thefactthatthediscoutflowgasejectionismoreefficientforlower Further,wehaveexperimentedwithcaseswhereµineq.(5) masshalos.TheSSFRhistoriesoflow–massmodelshavesignif- isvaried.Forµ < 0andforafixedvalueofm,theepochwhen icantlyover–quenched present–day SFRs,i.e.their stellarmasses theSSFRbecomeshigherduetogasre–accretionisdelayedwith hadtobeassembledwithSFRsinthepasthigherthanthecurrent respecttothecaseµ=0.Thisincreaseisearlyandlargeformore one. In general, all the models since z 2 lie below the curve massivegalaxies,butwithtimetheSFR–ejection–re–accretionpro- ∼ 1/[t (z) – 1 Gyr] (1-R) of approximately constant SFR history cessisstabilized.Forsmallgalaxies,theinfluenceofre–accretion H (thinblacksolidlineinFig.1;see 3). over theSSFRbeginsatlateepochs. Overall,takingasanexam- The most reliableobservation§s arefor local galaxy samples. ple the case µ = 1, galaxies that end with M∗>∼1010.5 M⊙ − InFig.4weplotthefitandits1σdispersiontotheSSFR–M cor- haveSSFRhistoriesclosetothoseinferredfromobservations.For ∗ relationgivenforlocalSDSSgalaxiesbySalimetal.(2007).They smallergalaxies,whiletheirSSFRsarenowhigherthaninprevi- reportthefitforonlystarforminggalaxies(solidblueline)andfor ouscases,theyremainbeingfarfromtheobservationalconstraints. boththissampleandtheoneofgalaxieswithAGN(short–dashed Modelskeepshowingatrendindisagreement withtheSSFR-DS red line). In both cases the galaxy SSFRs significantly decrease trend.Regardingthecaseswithµ> 0,theSSFRsoflessmassive asM increases.Thethreelong–dashedmagentacurvesshownin galaxiesresultevenlowerthanintheµ=0case. ∗ thisplotcorrespond tomodelswithonlyoutflow andwithvalues In Fig.4 the loci of thedifferent re–accretion models inthe ofn=5,2,and1fromtoptobottom,respectively(seealsoTable z = 0SSFR–M diagramareplotted(seealsoTable1).Theµ = ∗ 1).Thicklineisusedforourpreferredn=2case(seepanel(a)of 0,m=1010fiducialcaseisshownwiththethickdot–dashedblack Fig.2).Thedifferencebetweenmodels(weakupsizing)andobser- line.Theuppermostdot–dashedcurvecorrespondstoourµ= 1 − vations(strongdownsizing)inthetrendoftheSSFR–M relation case.Thedot–dashedcurveimmediatelylowertothefiducialcase ∗ issignificant.Inparticular,forM <1010.5M ,thelowerthemass, isforthesamevaluesofthiscasebutforα=0.5.Thenextlower ∗∼ ⊙ thebiggerthedifferencesbetweenthemodelSSFRsandthosein- curveisasthefiducialcasebutform = 1010.5.Thenfollowthe ferred from observations. For M > 1010.5M , the differences curvescorrespondingtoourµ=1andn=2cases(seeTable1). ∗ ⊙ tendtodisappear. Asseen,forareasonablerangeofvaluesforthere–accretionmodel Galaxyoutflowsandre–accretion 9 thatdidnotsufferamajormergersincez = 0.85.Wehavefound thattheslopeoftheM –M relationatmassesM <31010M is h ∗ ∗∼ ∗ better attainedfor theoutflow model withn = 2(energy–driven SNfeedback,eq.3)andforahighSNenergyefficiency,ǫ=0.62 (Fig.2,panela). For the n = 2 outflow case, the SSFR of all masses raises withredshift proportional to(1+z)2.2 upto z 3withalittle dependence on(present–day) mass,asM 0.1 (eq∼.6).TheSSFRs ∗ at low redshifts for models with M <1010.5M are well below ∗∼ ⊙ the constant SFR curve 1/[t (z) – 1 Gyr](1-R) (see 3), which H § meansquiescentlateSFactivity,andmiserablyfailinreproducing theobservationalinferences(Fig.3).Inparticular,themodelsshow a trend contrary to the observed SSFR-DS phenomenon. Such a conflictisclearlyseenintheSSFRvsM diagramforlocalgalax- ∗ ies(z 0),wheretheobservationaldataaremorereliable:while ∼ theSSFRofobservedgalaxiessignificantlydecreaseswithM ,the ∗ modelsshowaslightincreasewithM .Thesituationissimilarfor ∗ modeloutflowswithn=1andn=5(Fig.4). Westressthat theconflict isnot relatedtotheobserved low SSFRsofmassivediscgalaxies(>1010.5M )withrespecttomod- ∼ ⊙ els,butinsteadisrelatedto(i)theobservedtrendofSSFRincreas- ingasthemassdecreases(SSFR–DS),and(ii)tothetoohighval- ues of the SSFRs of galaxies with masses M < 1010M , both ∗ ⊙ Figure 4. Local (z ∼ 0)SSFR–M∗ relation. The fitto the SDDS data itemsapplyingsincez 1. ∼ (averageand1σscatter)bySalimetal.(2007)isplottedwithsolidblue Inthemodels,ononehand,theSFRhistoryislargelydriven linesforonlystarforminggalaxies,andwithshortdashedredlinesforboth bythehierarchicalhalomassaggregationrate3,whichonaverage thestarformingandAGNgalaxies.Thelong–dashedmagentacurvesare increaseswithredshiftatnearlythesamerateforallmasses,butat formodelswithonlyoutflowsandn=5,2and1(respectivelyfromtopto agivenz,massivehaloshaveratesslightlyhigherthanthoseofless bottom).Ourpreferredcase,n=2,ishighlightedwithbold.Thedot–long– massivehalos(seeFig.1andeq.2).Ontheotherhand,theejective dashedblackcurvesareformodelswithoutflowsandgasre–accretion.Our feedbackschemeusedhereproducesproportionallymoregasloss preferredcase,n = 2,µ = 0,m = 1010,α = 1.0ishighlightedwith (hence,lesslaterSF)forthelowermassdiscsthanforthemassive bold.Fortheother curves, seetext andTable1.Inallthecases, models showaweak’upsizing’behaviorcontrarytothestrong’downsizing’ofthe ones. We conclude that the low SSFRs of low–mass disc galaxy observations. modelswithoutflows,andthe(slight)increaseofsuchSSFRswith M ,opposed totheobservedstrongSSFR–DSphenomenon –the ∗ lowerthemass,thehighertheSSFR,isanaturalconsequence of parameters,theSSFRasafunctionofM∗remainsinconflictwith theΛCDMhaloassemblingand,inaminorlevel,ofthefeedback– observations,andtheSSFRsoflow–massmodelsaretoolow. drivenoutflowschemescommonlyusedtoreproducethelocalM – h M relation. ∗ 6 SUMMARYANDDISCUSSION 6.2 Thecontributionofgasre–accretion Bymeansofself–consistentmodelsofdiscgalaxyevolutioninside We further explored the possibility that the gas ejected from the growingΛCDMhalos,theeffectsoffeedback–drivendiscejective outflows(galacticsuper-winds)andgasre–accretionontheevolu- disc–halosystemcanbere–accretedlaterontothedisc.Ourscheme tionoftheSSFRforlow–massgalaxies(M <1010.5M atz=0) forsuchaprocessisverygeneralandencompassesalargerangeof ∗∼ ⊙ possibilitiesfortheunknownandcomplexoutflowhydrodynamic havebeen explored. Wehave studied only the’central’ (average) modelscorrespondingtodifferenthalomassessinceourmaingoal and radiation transfer processes. Instead of introducing as a key was to probe general trends regarding the evolution of the SSFR parameter the time elapsed between when a given mass element isejectedanditisfurtherre–accreted, weuseasaparameter the anditsdependenceonmass. primarycosmologicalgasmassthatwillbeaccretedduringthispe- riod,M .Thisway,wetakeintoaccountinsomewaytheamount pcg 6.1 Theeffectofgasoutflows of circumgalactic massthat interactswiththeoutflow, amount of massthatinour models isrelatedtotheMAHof thegivenhalo. The rate of mass ejection was assumed proportional to the local WeuseaparametrizationforM givenbyeq.(5),andalognor- pcg SFRandinverselyproportionaltothelocalescapevelocityV to esc maldistribution(eq.4)forsuchaparameterisconsideredinorder agivenpowern(seeeq.3,forn = 2andn = 1theoutflowsare tointroducea(natural)dispersionaroundthere–accretiontimesof expectedtobeenergy–andmomentum–driven,respectively).The theejectedmassshell. parametersoftheoutflowmodelswereexploredinthelightofthe M –M relationatz =0(galaxyefficiency)inferredfromasemi– h ∗ empiricalapproachthatmakesuseoftheobservedluminosity(M∗) 3 Inourmodels,theSFRhistorydependsalsoonthelocaldiscgassur- function(Fig.2). facedensityandonsomediscdynamicalandhydrodynamicalproperties. Our best outflow models werechosen tobe thosethat agree Nevertheless,thedominantfactorintheSFRhistoriesofourmodeleddisc withtheMh–M∗relationinferredfordisc(blue)galaxiesandhalos galaxiesisthecosmologicalgasinfallrate. 10 Firmaniet al. Ourresultsshowthatthegasre–accretionmayraisetheSSFR byepisodicprocesses(externallikemergersorinternallikestatisti- of disc galaxies but it does it in the incorrect direction regarding calfluctuationsinmassivestarformation);ifamongthelow–mass mass:whileforlowmassgalaxiestheincreaseinSSFRissmall, galaxies,thosewithlow–SFRsaremissedduetodetectionlimits, for the massive galaxies the increase is significant at all epochs thentheSSFRsoflow–massgalaxieswillbebiasedonaverageto- (Fig.3).Wehaveexperimentedwithseveralcases:M constant ward higher values of SSFR,a bias that increases for samples at pcg forallmasses,andM decreasingorincreasingwithmass.The higher redshifts. Nevertheless, in most of the observational stud- pcg decreaseofSSFRasM decreases(upsizing)isseeninallthecases iesreportingtheSSFR–DSphenomenon theauthorsdiscussthat, ∗ (forz 0,seeFig.4). whilethisispossibleatsomelevel,hardlywoulditbethedominant ∼ We conclude that for models of disc galaxy formation and factorintheSSFR–DSphenomenonobservedsincez 1(seefor ∼ evolutioninthecontextoftheΛCDMcosmogony,theproblemof exampleNoeskeetal.2007a). the SSFR–DS is not solved by an interplay of outflows and re– Ontheotherhand,theanalysisofverylocalsurveyscertainly accretionofgas. helpstodisentanglewhetherepisodicstarburstingeventsdominate ornot theSFhistoryoflow–massdiscgalaxies.Fromastudyof theSFactivityofgalaxieswithinthe11MpcLocal Volume,Lee 6.3 IstheSSFR–DSphenomenonwellestablished? etal.(2007;seealsoBothwell,Kennicutt&Lee2009)havefound Wehaveshowninaclearandtransparentwaythedifficultygalaxy thatintermediate–luminosity discgalaxies( 19<∼MB<∼ 15or − − evolutionmodelsinthecontextoftheΛCDMcosmologyhavefor 50<∼Vm/kms−1<∼120)showrelativelylowscatterintheirSFac- explainingtheSSFR–DSphenomenon, relatedmainlytosub–L∗, tivity,implyingfactors2–3fluctuationsintheirSFRs;aboveVm ≈ star–forming(late–type)galaxies.Beforediscussingsomecaveats 120 km/s the sequence turns off toward lower levels of SSFRs of the models and possible cures to the problem, it should be andlargerbulge–to–discratios.Theseresultsarefornearbygalax- stressedthatatthelevelofobservationalinferencestherearestill ies, where selection effects are minimal, and imply that the SS- largeuncertainties. FRsofdiscgalaxieswithM∗>∼5108M⊙ followarelativelytight TheuseofSPSmodelstofitobservationaldataandinferM sequence, without strong fluctuations. For galaxies smaller than ∗ andSFRshouldbetakenstillwithcautionduemainlytotheuncer- Vm 50km/s(dwarfs)thesituationseemsdifferent.Theresults ∼ taintiesinstellarevolution(forexampleinthethermally–pulsating byLeeetal.(2007)showthatasignificantfractionofsuchgalaxies asymptoticgiant branch, TP-AGB,andhorizontal branchphases) areundergoingstrongepisodicSFfluctuationsduetothelargescat- andtoourpoorknowledgeoftheinitialmassfunction,IMF,aswell terintheirSSFRs.Anotherobservationalstudyofnearbygalaxies as due to degeneracies like the one between age and metallicity byJamesetal.(2008),concludedalsothatthereislittleevidencein (seeforrecentextensivediscussionsMarastonetal.2006;Bruzual theirsampleofpredominantlyisolatedfieldgalaxiesofsignificant 2007; Tonini et al.2009; Conroy, Gunn &White2009a; Conroy, SFthroughbriefbutintensestar-burstphases.Therefore,itseems White & Gunn 2009b). For example, Conroy et al. (2009a) esti- thatthetightsequencefoundfornormalstar–forming(disc)galax- matethatstellarevolutionuncertaintiescanintroduceupto 0.3 iesintheSSFR–M∗ planeinlargesurveysasSDSS(Brinchman dexstatisticalerrorinM atz 0.Regardingsystematicale∼rrors, etal.2004;Salimetal.2007;Schiminovichetal.2007)isintrin- ∗ theyaremoredifficulttoevalua∼te.Marastonetal.(2006)claimthat sicandduetoahighdegreeoftemporalself–regulatedSFwithin thestellarmassesof galaxieswithdominating stellarpopulations individual galaxies. Thissequence (calledthe’mainsequence’ in of 1Gyr agecould be onaverage 60% lower if theirassump- Noeske et al. 2007a) seemsto persist back toredshifts z 1 as tion∼sfor convective overshooting during theTP–AGBphases are discussedabove. ∼ used.Itisnoteasytoestimatethedirectioninwhichthesestatis- ticalandsystematicaluncertaintiescouldinfluencetheSSFR–M ∗ 6.4 Outlook dependencies at different redshifts; at least, it is not obvious that theSSFR–DSphenomenoncouldbeeliminated. If the SSFR–DSphenomenon is definitively confirmed by obser- It is healthy to stress that the approach we follow for com- vations, then, as we have argued, it poses a serious difficulty for paring models and observations is the recommended one in the current discgalaxy evolutionmodels inthecontext of thehierar- senseofminimizinguncertainties.Conroyetal.(2009b)showthat chical ΛCDMscenario. Thisdifficulty, atone oranother level,is itisbettertofirstinferthephysicalpropertiesofobservedgalaxies presentalsoinothergalaxyevolutionapproaches,e.g.,theSAMs (e.g.,stellarmassandSFR)byusingtheSPStechnique,andthen (Somervilleetal.2008;Fontanotetal.2009;LoFaroetal.2009). comparethemtogalaxyevolutionmodels,ratherthanapplyingthe Thesemodels show, morefromastatisticalpoint of view thanat SPStechniquetomodelsinordertocomparetheirpredictionswith the galaxy individual evolution level, that the population of rela- thedirectobservables. tivelysmallgalaxies(M 109 1010.5 M )ismostlyassem- ∗ ⊙ ≈ − OthersignificantsourcesofuncertaintyintheinferredSSFR– bled at higher redshifts becoming older, redder, and with(much) M relationsatdifferent redshiftsaretheselection effectsdueto lowerSSFRsatlaterepochsthantheobservedgalaxiesinthesame ∗ theincompleteness of thesample, dustabsorption, environmental massrange. effects, and/or limit detections of the tracers of SF due to flux– Ourmodelsclearlyshowthatlessmassivegalaxiesassemble limitsorlowemission–linesignal–to–noiseratios;inaddition,ob- their stars early because their dark halos assemble early (earlier scuredAGNemissioncouldbecontaminatingtheinfraredfluxand onaveragethanmoremassiveones),andthatSN–drivenoutflows, some of theoptical linesused toestimateSFR(e.g.,Daddi et al. whicharemoreefficientaslessmassiveisthegalaxy,contributeto 2007;Chenetal.2009). quenchlaterSF.Gasre–accretionhelpstoincreasemoderatelythe The main concern regarding the SSFR–DS phenomenon SSFR,butnotenoughastoagreewithobservationsforlow–mass amongtheseissuesisthatselectionandenvironmentaleffectscould galaxies.TheSF–feedbackefficienciesusedheretoproducegalac- biastheobservedtrendthattheSSFRincreasesasM issmaller. ticoutflowsabletorecover therequiredM –M relationaretoo ∗ h ∗ Forexample,thehighSSFRsoflow–massgalaxiescouldbedueto largeaccordingtohydrodynamical simulations(c.f.Oppenheimer transientstarburstsiftheSFregimeofthesegalaxiesisdominated &Dave´2008;Dubois&Teyssier2008).Besides,itshouldbetaken

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.