ebook img

Camila C. Francolin, D. A. Benson, William W. Hager, and Anil V. Rao PDF

17 Pages·2014·0.53 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Camila C. Francolin, D. A. Benson, William W. Hager, and Anil V. Rao

OPTIMALCONTROLAPPLICATIONSANDMETHODS Optim.ControlAppl.Meth.(2014) PublishedonlineinWileyOnlineLibrary(wileyonlinelibrary.com).DOI:10.1002/oca.2112 Costate approximation in optimal control using integral Gaussian quadrature orthogonal collocation methods(cid:2) CamilaC.Françolin1,DavidA.Benson2,WilliamW.Hager3 andAnilV.Rao1,*,† 1DepartmentofMechanicalandAerospaceEngineering,UniversityofFlorida,Gainesville,FL32611,USA 2TheCharlesStarkDraperLaboratory,Inc.,Cambridge,MA02139,USA 3DepartmentofMathematics,UniversityofFlorida,Gainesville,FL32611,USA SUMMARY Twomethodsarepresentedforapproximatingthecostateofoptimalcontrolproblemsinintegralformusing orthogonalcollocationatLegendre–Gauss(LG)andLegendre–Gauss–Radau(LGR)points.Itisshownthat thederivativeofthecostateofthecontinuous-timeoptimalcontrolproblemisequaltothenegativeofthe costate of the integral form of the continuous-time optimal control problem. Using this continuous-time relationshipbetweenthedifferentialandintegralcostate,itisshownthatthediscreteapproximationsofthe differentialcostateusingLGandLGRcollocationarerelatedtothecorrespondingdiscreteapproximations of the integral costate via integration matrices. The approach developed in this paper provides a way to approximatethecostateoftheoriginaloptimalcontrolproblemusingtheLagrangemultipliersoftheintegral formoftheLGandLGRcollocationmethods.Themethodsaredemonstratedontwoexampleswhereitis shownthatboththedifferentialandintegralcostateconvergeexponentiallyasafunctionofthenumberof LGorLGRpoints.Copyright©2014JohnWiley&Sons,Ltd. Received31October2013; Revised19January2014; Accepted24January2014 KEYWORDS: optimalcontrol;Gaussianquadrature;orthogonalcollocation;directtranscription 1. INTRODUCTION Over the past two decades, direct collocation methods have become popular in the numerical solution of nonlinear optimal control problems. In a direct collocation method, the state and control are discretized at a set of appropriately chosen points in the time interval of interest. The continuous-time optimal control problem is then transcribed to a finite-dimensional nonlinear programming problem (NLP), and the NLP is solved using well known software [1, 2]. Recently, agreatdealofresearchhasbeendoneontheclassofGaussianquadratureorthogonalcollocation methods [3–25]. In a Gaussian quadrature orthogonal collocation method, the state is approxi- matedusingabasisofeitherLagrangeorChebyshevpolynomials,andthedynamicsarecollocated at points associated with a Gaussian quadrature. The most common Gaussian quadrature collo- cation points are Legendre–Gauss (LG) [3, 4, 6–9, 11], Legendre–Gauss–Radau (LGR) [9–14], and Legendre–Gauss–Lobatto [15–25]. All three types of Gaussian quadrature points are defined on the domain Œ(cid:2)1;1(cid:3) but differ in that the LG points include neither of the endpoints, the LGR points include one of the endpoints, and the LGL points include both of the endpoints. The use of global polynomials together with Gaussian quadrature collocation points is known to provide accurateapproximationsthatconvergeexponentiallyfastforproblemswhosesolutionsaresmooth *Correspondence to: Anil V. Rao, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville,FL32611,USA. †E-mail:anilvrao@ufl.edu. ‡Thisarticlewaspublishedonlineon27February2014.Errorsweresubsequentlyidentified.Thisnoticeisincludedin theonlineandprintversionstoindicatethatbothhavebeencorrectedon22May2014. Copyright©2014JohnWiley&Sons,Ltd. C.C.FRANÇOLINETAL. [6, 9–11, 14]. An advantage of these methods is that by computing the solution of the control problem accurately at a small number of carefully chosen points, one obtains an accurate global approximation. Because the problem solution is approximated in a small dimensional space, the numericalalgorithmscanbeveryefficient. The costate variable in an optimal control problem is related to the sensitivity of the objective function to perturbations in the system dynamics. The costate is essentially the derivative of the objective function with respect to a perturbation in the system dynamics. For example, see [26] and the references therein. Previous research on costate approximation using Gaussian quadrature collocation has focused on the use of the differential form of the collocation methods. However, recentresearchstronglyindicatesthattheremaybecomputationaladvantagestousingtheintegral formofLGandLGRcollocationoverthedifferentialform.Infact,themostcurrentimplementation ofLGRcollocationistheMATLABoptimalcontrolsoftwareGPOPS(cid:2)II [27],whichusesthe integralformofLGRcollocationbydefaultbecauseithasbeenfoundthroughavarietyofexamples thattheintegralformprovidesmoreconsistentresults.TheimplicitintegralformsofLGandLGR collocation are consistent with the implementations used by established optimal control software packagessuchasSOCS[28], DIRCOL[29],OTIS[30],ICLOCS[31],andACADO[32]. It is important to note that while the differential and integral forms of LG and LGR collocation produce equivalent primal solutions (i.e., state and control), these two formulations produce com- pletely different dual variables. Moreover, the discretized versions of the integral and differential dynamics have much different numerical characteristics. For example, when refining the mesh in ordertoachieveaspecifiederrortolerance,theerrorestimatesfortheintegraldynamicsaremuch more stable and reliable than the error estimates derived from the differential dynamics [27, 33]. Onthebasisofthecomputationalimportanceoftheintegralformofthecollocationmethods,this paperwillanalyzetherelationshipbetweentheLagrangemultipliersassociatedwiththediscretized integralforms,andthecostateofthecontinuousoptimalcontrolproblem.Ourearlierwork[9–11] analyzedtherelationshipsbetweentheLagrangemultipliersarisinginthediscreteandcontinuous differentialformulationsoftheoptimalcontrolproblem. The approach developed in this paper provides a way to approximate the costate of the original optimal control problem using the Lagrange multipliers of the integral form of the LG and LGR collocation methods. Transformations are derived that relate the Lagrange multipliers of the inte- gral forms of the LG and LGR collocation methods to the costate of the original optimal control problem. These transformations are derived by writing the original continuous-time optimal con- trol problem in integral form. A new continuous-time dual variable called the integral costate is thenintroduced,wheretheintegralcostateistheLagrangemultiplieroftheintegraldynamiccon- straint.Thefirst-orderoptimalityconditionsoftheintegralformoftheoptimalcontrolproblemare derived in terms of the integral costate. The integral form of the optimal control problem is then discretizedusingtheintegralLGandLGRcollocationmethodsandrelationshipsbetweenthedis- creteformoftheintegralcostateandthecostateoftheoriginaldifferentialoptimalcontrolproblem aredeveloped.ItisshownthattheLGRintegrationmatrixthatrelatesthedifferentialcostatetothe integral costate is singular while the corresponding LG integration matrix is full rank. These rela- tionshipsleadtoawaytoapproximatethecostateoftheoriginaloptimalcontrolproblemusingthe LagrangemultipliersoftheintegralformoftheLGandLGRcollocationmethods.Thetwomethods developed in this paper are demonstrated on two examples where it is found that the costate con- verges exponentially, consistent with the analysis in [34] for unconstrained control problems with smoothsolutions.Althoughwefocusonunconstrainedcontrolproblemsinthispaper,therelations we establish between the continuous costate and the Lagrange multipliers for the discrete integral formsarealsoapplicableforproblemswithcontrolconstraintsorendpointconstraints.Ontheother hand, when state constraints are present, the relationship between the continuous costate and the multipliersinthediscreteproblemismorecomplexasshownin[35]and[36]. Thispaperisorganizedasfollows.InSection2,weintroducetheconventionsandnotationused intheremainderofthispaper.InSection3,weformulatethecontinuous-timeoptimalcontrolprob- lemwiththedynamicconstraintsformulatedinbothdifferentialandintegralform,andwepresent the first-order optimality conditions for each form. In Sections 4 and 5, we present the LG and LGR collocation methods in both differential and integral forms, derive the first-order optimality Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca COSTATEAPPROXIMATIONINOPTIMALCONTROL conditionsineachform,developthetransformedadjointsystem,andderiveacostateapproximation in terms of the Lagrange multipliers of the integral forms. In Section 6, we provide two examples that demonstrate the accuracy of the LG and LGR costate approximation methods derived in this paper.Finally,inSection7,weprovideconclusionsonourwork. 2. CONVENTIONSANDNOTATION The following notation and conventions are used throughout this paper. Except where explicitly noted,vectorsinthispaperarerowvector.Inparticular,ify.(cid:4)/ 2 Rn isthestatevectorattime(cid:4), theny.(cid:4)/DŒy .(cid:4)/;(cid:3)(cid:3)(cid:3) ;y .(cid:4)/(cid:3).Generally,ifYisamatrix,thenY isthei-throwofY,whileY 1 n i iWj denotesthesubmatrixformedbyrowsi throughj.TwoexceptionsarethedifferentiationmatrixD and the integration matrix A, in which case D and A refer to the ith column of D or A. Finally, i i D> denotesthetransposeofmatrixD,andD> denotesthetransposeoftheith columnofD.Given i vectors x and y 2 Rn, the notation hx;yi is used to denote the standard Euclidean inner product between x and y. Furthermore, if f W Rn (cid:2)! Rm and Y is N by n, then f.Y/ is the matrix whose i-throwisf.Y /.Ify 2 Rn,thenrf.y/denotestheJacobianoffevaluateaty;theJacobianisan i m(cid:4)n matrix whose i-th row is rf .y/. In particular, the gradient of a scalar-valued function is a i rowvector.Finally,theKroneckerdeltafunctionisdefinedbyı D1andı D0ifi ¤j. ii ij 3. CONTINUOUS-TIMEBOLZAOPTIMALCONTROLPROBLEM In this section, we state the differential and integral forms of the continuous-time Bolza optimal controlproblemunderconsiderationinthispaper.Inaddition,weprovidethefirst-orderoptimality conditionsofeachformoftheproblemandexplainhowthesetwosetsofoptimalityconditionsare relatedtooneanother. 3.1. Differentialandintegralformsofoptimalcontrolproblem Consider the following continuous-time optimal control problem defined on the interval (cid:4) 2Œ(cid:2)1;C1(cid:3). Determine the state y.(cid:4)/ 2 Rn and the control u.(cid:4)/ 2 Rm that minimize the costfunctional Z C1 J Dˆ.y.C1//C g.y.(cid:4)/;u.(cid:4)//d(cid:4); (1) (cid:2)1 subjecttothedynamicconstraint yP.(cid:4)/(cid:2)f.y.(cid:4)/;u.(cid:4)//D0; (cid:4) 2Œ(cid:2)1;C1(cid:3); (2) andtheboundarycondition y.(cid:2)1/Dy : (3) 0 Itisnotedthatthetimeinterval(cid:4) 2Œ(cid:2)1;C1(cid:3)canbetransformedtotheintervalŒt ;t (cid:3)viatheaffine 0 f transformation t (cid:2)t t Ct f 0 f 0 t D (cid:4) C : 2 2 Henceforth,(1)–(3)willbereferredtoasthedifferentialoptimalcontrolproblem. The differential optimal control problem given in (1)–(3) can be re-written in the following integralform.Inparticular,integratingthedynamicsgivenin(2),wehave Z (cid:2) y.(cid:4)/Dy.(cid:2)1/C f.y.(cid:4)/;u.(cid:4)//d(cid:4): (cid:2)1 Theoptimalcontrolprobleminintegralformisthenstatedasfollows.Determinethestatey.(cid:4)/ 2 Rn andthecontrolu.(cid:4)/2Rm thatminimizethecostfunctional Z C1 J Dˆ.y.C1//C g.y.(cid:4)/;u.(cid:4)//d(cid:4); (4) (cid:2)1 Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca C.C.FRANÇOLINETAL. subjecttotheintegralconstraint Z (cid:2) y.(cid:4)/(cid:2)y.(cid:2)1/(cid:2) f.y.(cid:4)/;u.(cid:4)//dt D0; (cid:4) 2Œ(cid:2)1;C1(cid:3); (5) (cid:2)1 andtheboundarycondition y.(cid:2)1/Dy : (6) 0 Henceforth,(4)–(6)willbereferredtoastheintegraloptimalcontrolproblem. 3.2. First-orderoptimalityconditionsofdifferentialandintegralforms The first-order optimality conditions for the differential optimal control problem, given by the Pontryaginminimumprinciple,are[37] yP.(cid:4)/Df.y.(cid:4)/;u.(cid:4)//; (cid:4) 2Œ(cid:2)1;C1(cid:3); (7) y.(cid:2)1/Dy ; (8) 0 0Dr H.y.(cid:4)/;u.(cid:4)/;(cid:2).(cid:4)//; (cid:4) 2Œ(cid:2)1;C1(cid:3); (9) u (cid:2)(cid:2)P.(cid:4)/Dr H.y.(cid:4)/;u.(cid:4)/;(cid:2).(cid:4)//; (cid:4) 2Œ(cid:2)1;C1(cid:3) (10) y (cid:2).C1/Drˆ.y.C1//: (11) HereHistheHamiltoniandefinedby H.y;u;(cid:2)/Dg.y;u/Ch(cid:2);f.y;u/i; (12) and(cid:2)istheLagrangemultiplierassociatedwiththedifferentialdynamicsgivenin(7). The first-order optimality conditions for the integral optimal control problem, derived in the Appendix,arethefollowing: Z (cid:2) y.(cid:4)/Dy.(cid:2)1/C f.y.t/;u.t//dt; (cid:4) 2Œ(cid:2)1;C1(cid:3); (13) (cid:2)1 y.(cid:2)1/Dy ; (14) 0 0Dr H.y.(cid:4)/;u.(cid:4)/;(cid:2).(cid:4)//; (cid:4) 2Œ(cid:2)1;C1(cid:3); (15) u r.(cid:4)/Dr H.y.(cid:4)/;u.(cid:4)/;(cid:2).(cid:4)//; (cid:4) 2Œ(cid:2)1;C1(cid:3); (16) y where Z C1 (cid:2).(cid:4)/Drˆ.y.C1//C r.t/dt; (17) (cid:2) andristhemultiplierassociatedwiththeintegraldynamicsof(13).Thus,(17)givestherelation- ship between the multipliers in the differential and integral formulations. Differentiating (17), we seethatr.(cid:4)/D(cid:2)(cid:2)P.(cid:4)/;i.e.,themultiplierfortheintegraldynamicsisthenegativederivativeofthe multiplierforthedifferentialdynamics.Theremainderofthispaperisdevotedtoderivingtwodis- creteapproximationsofthedifferentialcostate,(cid:2).(cid:4)/,usingdiscreteapproximationsoftheintegral costate,r.(cid:4)/. 4. COSTATEAPPROXIMATIONUSINGINTEGRALLEGENDRE–GAUSSCOLLOCATION Inthissection,wepresenttheLGcollocationmethodandestablishtherelationbetweentheintegral anddifferentialdiscretizedproblems. Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca COSTATEAPPROXIMATIONINOPTIMALCONTROL 4.1. DifferentialformofLegendre–Gausscollocation The differential optimal control problem is now approximated using collocation at LG points (see Refs. [6, 9–11]). The LG points are denoted .(cid:4) ;:::;(cid:4) / and are defined on the open interval 1 N .(cid:2)1;C1/.Thestateisapproximatedbythepolynomial N N X Y (cid:4) (cid:2)(cid:4)j y.(cid:4)/(cid:5)Y.(cid:4)/D Y L .(cid:4)/; L .(cid:4)/D ; (18) i i i (cid:4) (cid:2)(cid:4) i j iD0 jD0 j¤i where(cid:4) D (cid:2)1isanadditionalpointwhereweapproximatethestate,andL .(cid:4)/,i D 0;:::;N is 0 i abasisofLagrangepolynomialsofdegreeN withsupportpoints.(cid:4) ;:::;(cid:4) /.Thetimederivative 0 N ofthestateapproximationat(cid:4) D(cid:4) ,16i 6N is i N N X X yP.(cid:4) /(cid:5)YP.(cid:4) /D Y LP .(cid:4) /D Y D DŒDY (cid:3) ; (19) i i j j i j ij 0WN i jD0 jD0 whereY D Y.(cid:4) /andDistheN (cid:4).N C1/LGdifferentiationmatrixwhoseelementsaregiven j j byD DLP .(cid:4) /.Notethatweonlycollocatethedynamicsatthequadraturepoints(cid:4) ,16i 6N, ij j i i notattheinitialtime(cid:4) D (cid:2)1.Ifw D .w ;:::;w /istherowvectorofLGquadratureweights 0 1 N and(cid:4) DC1istheterminaltime,thenthediscretizedcontrolproblemis NC1 N X min J Dˆ.Y /C w g.Y ;U /; (20) NC1 j j j jD1 subjecttothecollocateddynamics DY (cid:2)f.Y ;U /D0; (21) 0WN 1WN 1WN Y (cid:2)Y (cid:2)wf.Y ;U /D0; (22) NC1 0 1WN 1WN Y Dy ; (23) 0 0 It is noted for LG collocation that (22) provides an LG quadrature approximation, Y , of the NC1 stateatthefinalnoncollocatedpoint(cid:4) DC1.TheNLPdescribedby(20)–(23)willbereferred NC1 toasthedifferentialLGcollocationmethod. 4.2. Karush–Kuhn–TuckerconditionsusingdifferentialLegendre–Gausscollocation In [10], it is shown that the Karush–Kuhn–Tucker (KKT) conditions for the differential LG collocationmethodassociatedwith(20)–(23)canbewritteninthefollowingform: DY Df.Y ;U /; Y Dy ; (24) 0WN 1WN 1WN 0 0 Y DY Cwf.Y ;U /; (25) NC1 0 1WN 1WN 0Dr H.Y ;U ;(cid:2) /; (26) u i i i .D(cid:3)(cid:2) / D(cid:2)r H.Y ;U ;(cid:2) /; (27) 1WNC1 i y i i i (cid:2) Drˆ.Y /; (28) NC1 NC1 i D1;2;:::;N,whereD(cid:3) isdefinedby N D(cid:3) D(cid:2)wjD ; 16i;j 6N; and D(cid:3) D(cid:2)XD(cid:3): (29) ij w ji i;NC1 ij i jD1 Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca C.C.FRANÇOLINETAL. It was shown in Theorem 1 of [9] that D(cid:3) is a differentiation matrix for the space of polynomials ofdegreeN.Moreprecisely,ifb isapolynomialofdegreeatmostN andb 2 RNC1 isthevector whoseithelementisb Db.(cid:4) /,16i 6N C1,then.D(cid:3)b/ DbP.(cid:4) /.Inthetranscriptionof(24)– i i i i (28), the state is differentiated by a matrix D [given by (19)], which is based on the derivatives of polynomials of degree N with coefficients at the N LG points plus the initial noncollocated point (cid:4) D (cid:2)1, whereas the costate is differentiated by a matrix D(cid:3) [given by (29)], which is based on 0 the derivatives of polynomials of degree N with coefficients at the N LG points plus the terminal noncollocatedpoint(cid:4) DC1. NC1 4.3. IntegralformofLegendre–Gausscollocation TheintegraloptimalcontrolproblemisnowdiscretizedusingtheintegralformofLGcollocation. It has been shown in [10] that the LG differentiation matrix D given by (19) has the property that thesquarematrixD obtainedbyremovingthefirstcolumnofDisfull-rankand(cid:2)D(cid:2)1 D D1. 1WN 1WN 0 Wemultiplythedifferentialdynamicsin(24)byADD(cid:2)1 toobtain 1WN Y D1Y CAf.Y ;U /; (30) 1WN 0 1WN 1WN where 1 is an N (cid:4) 1 column vector of all ones. Combining (30) with (25) gives the discretized dynamicsfortheintegralformulation.Theintegraloptimalcontrolproblemof(4)–(6)canthenbe approximatedviathefollowingfinite-dimensionalnonlinearprogrammingproblem:Minimizethe costfunctionof(20)subjecttothealgebraicconstraints Y D1y CAf.Y ;U /; (31) 1WN 0 1WN 1WN Y Dy Cwf.Y ;U /: (32) NC1 0 1WN 1WN The NLP described by the objective function of (20) and the dynamics of (31) and (32) will be referredtoastheintegralLGcollocationmethod. 4.4. Karush–Kuhn–TuckerconditionsusingintegralLegendre–Gausscollocation TheKKTconditionsoftheintegralLGcollocationmethodarefoundbytakingthepartialderivatives oftheLagrangianLoftheNLPwithrespecttoeveryfreevariableandsettingtheresulttozero.The Lagrangianis N X LDˆ.Y /C w g.Y ;U /ChR ;1y CAf.Y ;U /(cid:2)Y i NC1 i i i 1WN 0 1WN 1WN 1WN iD1 ChR ;y Cwf.Y ;U /(cid:2)Y i; NC1 0 1WN 1WN NC1 whereRistheN C1bynmatrixofmultipliersassociatedwiththediscretedynamics.Thepartial derivativeswithrespecttothecontrolandthestateyield 0Dw r g.Y ;U /Cr h.ATR / ;f.Y ;U /iCw r hR ;f.Y ;U /i; 16i 6N; i u i i u 1WN i i i i u NC1 i i R Dw r g.Y ;U /Cr h.ATR / ;f.Y ;U /iCw r hR ;f.Y ;U /i; 16i 6N; i i y i i y 1WN i i i i y NC1 i i R Drˆ.Y /: NC1 NC1 Wemakethechangeofvariables w r DR =w ; 16i 6N; r DR ; A D i A(cid:3): (33) i i i NC1 NC1 ji w ij j Afterthesesubstitutionsandafterdividingtheith equationbyw ,weobtain i 0Dr H.Y ;U ;(cid:3) /; (34) u i i i r Dr H.Y ;U ;(cid:3) /; (35) i y i i i Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca COSTATEAPPROXIMATIONINOPTIMALCONTROL r Drˆ.Y /; (36) NC1 NC1 i D1;2;:::;N,where (cid:3) Dr C.A(cid:3)r/ : (37) i NC1 i Because(cid:2) Dr by(28),weseethat(34)–(35)and(26)–(27)areequivalentifthefollowing NC1 NC1 conditionshold: (a) (cid:2) D1r CA(cid:3)r and (b) r D(cid:2)D(cid:3)(cid:2) : 1WN NC1 1WN 1WN 1WNC1 We will now show that conditions (a) and (b) are equivalent. This equivalence is based on the (cid:2) (cid:3)(cid:2)1 following key property: D(cid:3) D (cid:2)A(cid:3). For example, if (b) holds, then by the definition of 1WN D(cid:3) in(29),wehave NC1 (cid:2)r DD(cid:3)(cid:2) DD(cid:3) (cid:2) CD(cid:3) (cid:2) DD(cid:3) (cid:2) (cid:2)D(cid:3) 1(cid:2) : 1WN 1WNC1 1WN 1WN NC1 NC1 1WN 1WN 1WN NC1 (cid:2) (cid:3)(cid:2)1 (cid:2) (cid:3)(cid:2)1 Wemultiplyby D(cid:3) D(cid:2)A(cid:3)toobtain(a).Theidentity D(cid:3) D(cid:2)A(cid:3)isnowestablished. 1WN 1WN Theorem1 The matrix A(cid:3) defined in (33) is a backwards integration matrix for the space of polynomials of degreeN (cid:2)1.Thatis,ifp isapolynomialofdegreeatmostN (cid:2)1andp2RN isthevectorwith ith componentp Dp.(cid:4) /,then i i Z C1 .A(cid:3)p/ D p.t/dt: (38) i (cid:2)i (cid:2) (cid:3)(cid:2)1 Moreover,(cid:2)A(cid:3) D D(cid:3) . 1WN Proof LetpandqdenotepolynomialsofdegreeatmostN (cid:2)1suchthatp Dp.(cid:4) /andq Dq.(cid:4) /for j j j j j D1;:::;N.Changingtheorderofintegration,wehave Z C1(cid:4) Z (cid:2) (cid:5) Z C1(cid:4) Z C1 (cid:5) q.(cid:4)/ p.t/dt d(cid:4) D p.(cid:4)/ q.t/dt d(cid:4): (39) (cid:2)1 (cid:2)1 (cid:2)1 (cid:2) Becausepandq arepolynomialsofdegreeatmostN (cid:2)1,itfollowsthat Z C1 Z (cid:2) p.(cid:4)/ q.t/dt and q.(cid:4)/ p.t/dt (cid:2) (cid:2)1 arepolynomialsofdegreeatmost2N(cid:2)1.BecauseLGquadratureisexactforpolynomialsofdegree atmost2N (cid:2)1,theintegralsin(39)canbereplacedbytheirLGquadratureequivalentstoobtain XN Z (cid:2)j XN Z C1 w q p.t/dt D w p q.t/dt: (40) j j i i jD1 (cid:2)1 iD1 (cid:2)i In[10],itisshownthat Z (cid:2)j p.t/dt D.Ap/ ; 16j 6N; (41) j (cid:2)1 wherepisacolumnvector.LetL(cid:3) denotetheLagrangebasisfunctionsdefinedby j N L(cid:3) D Y (cid:4) (cid:2)(cid:4)i ; j D1;:::;N; j (cid:4) (cid:2)(cid:4) j i iD1 j¤i Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca C.C.FRANÇOLINETAL. anddefinetheN (cid:4)N matrixBby Z C1 b D L(cid:3).t/dt: ij j (cid:2)i BythedefinitionofB,itfollowsthat Z C1 q.t/dt D.Bq/ : (42) i (cid:2)i Combining(42)with(40)and(41),weobtain N N N N XX XX w q A p D w p B q : j j ji i i i ij j jD1iD1 iD1jD1 Rearrangingthislastexpressiongives N N XX q Œw A (cid:2)w B (cid:3)p D0: j j ji i ij i jD1iD1 Because this last resultmusthold forall p and q, we conclude thatthe bracketed expressionmust vanish.Therefore, w j B D A ; ij ji w i whichshowsthatBDA(cid:3).Consequently,(42)yields(38). Givenp2RN,letp.(cid:4)/denotethepolynomialofdegreeatmostN (cid:2)1thatsatisfiesp.(cid:4) /Dp . i i Letq bethepolynomialofdegreeatmostN definedby Z C1 q.(cid:4)/D p.t/dt: (43) (cid:2) Letq 2 RNC1 bethevectorwithcomponentsq D q.(cid:4) /,1 6 i 6 N C1.ByTheorem1in[10] i i andby(43),wehave .D(cid:3) q/ DqP.(cid:4) /D(cid:2)p.(cid:4) /D(cid:2)p ; 16i 6N: (44) 1WNC1 i i i i By(38),wehaveq DA(cid:3)p.Becauseq D0,itfollowsthat 1WN NC1 D(cid:3) qDD(cid:3) q DD(cid:3) A(cid:3)p: (45) 1WNC1 1WN 1WN 1WN Combining(44)and(45)yields D(cid:3) A(cid:3)pD(cid:2)p: 1WN (cid:2) (cid:3)(cid:2)1 Becausepwasarbitrary,wededucethatD(cid:3) isinvertibleand D(cid:3) D(cid:2)A(cid:3). (cid:2) 1WN 1WN 5. COSTATEAPPROXIMATIONUSINGINTEGRALLEGENDRE–GAUSS–RADAU COLLOCATION Inthissection,wedeveloptherelationbetweenthemultipliersarisingintheintegralLGRcolloca- tionschemeandthecostateassociatedwiththedifferentialLGRcollocationscheme.InSection5.1, we review the differential form of the LGR collocation method, and in Section 5.2, we review the first-order optimality conditions for the discrete problem (see Refs. [9–11]). In Section 5.3, we describetheintegralformoftheLGRcollocationmethod,andweprovidethefirst-orderoptimality conditions of the nonlinear programming problem described in Section 5.1, and the relationships betweenthemultipliersintheintegralanddifferentialdiscretizations. Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca COSTATEAPPROXIMATIONINOPTIMALCONTROL 5.1. DifferentialformofLegendre–Gauss–Radaucollocation We will consider the so-called flipped LGR points located on the half-open interval .(cid:2)1;C1(cid:3), as in [10], because the algebraic manipulations are somewhat simpler than those for the LGR points locatedonŒ(cid:2)1;C1/consideredin[9].If.(cid:4) ;:::;(cid:4) /aretheLGRquadraturepointswith(cid:4) DC1, 1 N N thenthestateisapproximatedas N N X Y (cid:4) (cid:2)(cid:4)j y.(cid:4)/(cid:5)Y.(cid:4)/D Y L .(cid:4)/; L .(cid:4)/D ; (46) i i i (cid:4) (cid:2)(cid:4) i j iD0 jD0 j¤i where(cid:4) D(cid:2)1isthestartingtimeandL .(cid:4)/; i D0;:::;N,isabasisofLagrangepolynomialsof 0 i degreeN withsupportpoints.(cid:4) ;:::;(cid:4) /.Thetimederivativeofthestateapproximationat(cid:4) D(cid:4) , 0 N i 16i 6N is N X yP.(cid:4) /(cid:5)YP.(cid:4) /D Y LP .(cid:4) /DŒDY (cid:3) ; (47) i i j j i 0WN i jD0 whereY DY.(cid:4) /andDistheN (cid:4).N C1/LGRdifferentiationmatrixwhoseelementsaregiven i i by D D LP .(cid:4) /. Note that we collocate the dynamics at the quadrature points (cid:4) , 1 6 i 6 N, ij j i i whichincludesthefinaltime(cid:4) D C1butnottheinitialtime(cid:4) D (cid:2)1.Ifw D .w ;:::;w /is N 0 1 N thevectorofLGRquadratureweights,thenthediscretizedcontrolproblemis N X min J Dˆ.Y /C w g.Y ;U /; (48) N j j j jD1 subjecttothecollocateddynamics DY (cid:2)f.Y ;U /D0; (49) 0WN 1WN 1WN Y Dy : (50) 0 0 TheNLPdescribedby(48)–(50)willbereferredtoasthe differentialLGRmethod. 5.2. Karush–Kuhn–TuckerconditionsusingdifferentialLegendre–Gauss–Radaucollocation In[10],itisshownthattheKKTfirst-orderoptimalityconditionsofthedifferentialLGRcollocation methodcanbewritteninthefollowingform: DY Df.Y ;U /; Y Dy ; (51) 0WN 1WN 1WN 0 0 0Dr H.Y ;U ;(cid:2) /; (52) u i i i 1 .D(cid:3)(cid:2) / D(cid:2)r H.Y ;U ;(cid:2) /C ı .(cid:2) (cid:2)rˆ.Y /; (53) 1WN i y i i i iN N N w N where (cid:2) , 1 6 i 6 N is the transformed multiplier associated with the collocated dynamics at i (cid:4) , ı is the Kronecker delta, which is zero except for ı D 1, and D(cid:3) is the N (cid:4)N matrix i iN NN definedby 1 w D(cid:3) D(cid:2)D C and D(cid:3) D(cid:2) jD otherwise: (54) NN NN w ij w ji N i ByTheorem1in[10],D(cid:3) isadifferentiationmatrixforthespaceofpolynomialsofdegreeN (cid:2)1. More precisely, if b is a polynomial of degree at most N (cid:2)1 and b 2 RN is the vector with ith elementb Db.(cid:4) /for16i 6N,then i i .D(cid:3)b/ DbP.(cid:4) /: i i Itisnotedthatin(51)–(53),thetimederivativeofthestateisapproximatedusingthedifferentiation matrixDforthespaceofpolynomialsofdegreeN [(47)],whilethecostateisbeingdifferentiated byadifferentiationmatrixD(cid:3) forthespaceofpolynomialsofdegreeN (cid:2)1. Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca C.C.FRANÇOLINETAL. 5.3. IntegralformofLegendre–Gauss–Radaucollocation It is shown in [10] that the LGR differentiation matrix D given by (47) has the property that the square matrix D obtained by removing the first column of D is full-rank and (cid:2)D(cid:2)1 D D 1. 1WN 1WN 0 Usingtheseproperties,theintegraldynamicconstraints(5)canbeapproximatedas Y D1y CAf.Y ;U /; (55) 1WN 0 1WN 1WN where1asacolumnvectorofallones.TheNLPdescribedby(48)and(55)willbereferredtoas theLGRcollocationmethod. TheKKTfirst-orderoptimalityconditionsoftheintegralLGRcollocationmethodarefoundby taking the partial derivatives of the Lagrangian of the NLP with respect to every free variable and settingtheresulttozero.TheLagrangianis N X LDˆ.Y /C w g.Y ;U /ChR;1y CAf.Y ;U /(cid:2)Y i; N i i i 0 1WN 1WN 1WN iD1 where R , 1 6 i 6 N, is the multiplier associated with the collocated dynamics at (cid:4) . The partial i i derivativeswithrespecttothecontrolandthestateyieldtherelations 0Dw r g.Y ;U /Cr h.ATR/ ;f.Y ;U /i; (56) i u i i u i i i R Dw r g.Y ;U /Cr h.ATR/ ;f.Y ;U /iCı rˆ.Y /; (57) i i y i i y i i i Ni N 16i 6N.Next,wemakethechangeofvariables r DR =w (cid:2).ı =w /rˆ.Y /: (58) i i i Ni i N Inaddition,wedefinethematrixA(cid:3) as w A(cid:3) D jA : (59) ij w ji i Substitutingtheresultsof(58)and(59)into(56)and(57)anddividingtheith equationbyw ,we i obtain 0Dr H.Y ;U ;.A(cid:3)r/ C.A =w /rˆ.Y //; u i i i Ni i N r Dr H.Y ;U ;.A(cid:3)r/ C.A =w /rˆ.Y //: i y i i i Ni i N In[10],itisshownthat A DZ (cid:2)i L(cid:3).(cid:4)/; L(cid:3) D YN (cid:4) (cid:2)(cid:4)i : ij j j (cid:4) (cid:2)(cid:4) (cid:2)1 j i iD1 j¤i Because(cid:4) D C1,wededucethatA D w andA =w D 1.Hence,weobtainthefollowing N Ni i Ni i necessaryoptimalityconditions 0Dr H.Y ;U ;(cid:3) /; (60) u i i i r Dr H.Y ;U ;(cid:3) /; (61) i y i i i 16i 6N,where (cid:3) Drˆ.Y /C.A(cid:3)r/ : (62) i N i Comparing(52)and(53)to(60)and(61),weseethattheyareequivalentifthefollowingconditions hold: (cid:6) (cid:7) 1 1 (a) (cid:2)D1rˆ.Y /CA(cid:3)r and (b) rD e eT (cid:2)D(cid:3) (cid:2)(cid:2) e rˆ.Y /; N w N N w N N N N wheree isthelastcolumnoftheidentity(thecolumnvectorwhoseentriesareallzeroexceptthe N lastentrywhichis1).Theconditions(a)and(b)areequivalentinthatif(a)holds,thensodoes(b) andif(b)holds,thensodoes(a).ThisequivalenceisbasedonthefollowinganalogofTheorem1, whichwasestablishedin[34]. Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca

Description:
orthogonal collocation at Legendre-Gauss and Legendre-Gauss-Radau points. In a direct collocation method, the state and control are discretized at a set of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.