e s c n a l a l a v y E W b n l o e e s e s a a p r h gl i T c L u d i M o y i v D a a K D S p e M c a i t a l h i e s t m a t i c 2 s & Ca 1 m b ts Senior ridge i M n at h e U A m ustr atic C alia s INCLUDES INTERACTIVE ur n TEXTBOOK POWERED BY ri c CAMBRIDGE HOTMATHS ul u m / V C E CCaammbbrriiddggee SSeenniioorr MMaatthhss AACC//VVCCEE IISSBBNN 997788--11--110077--5566776655--88 ©© EEvvaannss eett aall.. 22001166 CCaammbbrriiddggee UUnniivveerrssiittyy PPrreessss SSppeecciiaalliisstt MMaatthheemm aa tt iicc ss 11 && 22 PPhhoottooccooppyyiinngg iiss rreessttrriicctteedd uunnddeerr llaaww aanndd tthhiiss mmaatteerriiaall mmuusstt nnoott bbee ttrraannssffeerrrreedd ttoo aannootthheerr ppaarrttyy.. 477WilliamstownRoad,PortMelbourne,VIC3207,Australia CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.edu.au Informationonthistitle:www.cambridge.org/9781107567658 ©MichaelEvans,DouglasWallace,KayLipson,DavidTreeby2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstprinted2016 Reprinted2016 CoverdesignedbyLoupeDesign TypesetbyJanePitkethlyandDiacritech PrintedinChinabyC&CO↵setPrintingCoLtd ACataloguing-in-Publicationentryisavailablefromthecatalogue oftheNationalLibraryofAustraliaatwww.nla.gov.au ISBN978-1-107-56765-8Paperback Additionalresourcesforthispublicationatwww.cambridge.edu.au/GO Reproductionandcommunicationforeducationalpurposes TheAustralianCopyrightAct1968(theAct)allowsamaximumof onechapteror10%ofthepagesofthispublication,whicheveristhegreater, tobereproducedand/orcommunicatedbyanyeducationalinstitution foritseducationalpurposesprovidedthattheeducationalinstitution (orthebodythatadministersit)hasgivenaremunerationnoticeto CopyrightAgencyLimited(CAL)undertheAct. FordetailsoftheCALlicenceforeducationalinstitutionscontact: CopyrightAgencyLimited Level15,233CastlereaghStreet SydneyNSW2000 Telephone:(02)93947600 Facsimile:(02)93947601 Email:[email protected] Reproductionandcommunicationforotherpurposes ExceptaspermittedundertheAct(forexampleafairdealingforthe purposesofstudy,research,criticismorreview)nopartofthispublication maybereproduced,storedinaretrievalsystem,communicatedor transmittedinanyformorbyanymeanswithoutpriorwrittenpermission. Allinquiriesshouldbemadetothepublisherattheaddressabove. CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLSforexternalorthird-partyinternetwebsitesreferredtoin thispublication,anddoesnotguaranteethatanycontentonsuchwebsitesis, orwillremain,accurateorappropriate.Informationregardingprices,travel timetablesandotherfactualinformationgiveninthisworkiscorrectat thetimeoffirstprintingbutCambridgeUniversityPressdoesnotguarantee theaccuracyofsuchinformationthereafter. Cambridge Senior Maths AC/VCE ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Contents Introduction ix Acknowledgements xi AnoverviewoftheCambridgecompleteteacherandlearningresource xii 1 AlgebraI 1 1A Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1B Standardform . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1C Solvinglinearequationsandsimultaneouslinearequations . . . 8 1D Solvingproblemswithlinearequations . . . . . . . . . . . . . 13 1E Solvingproblemswithsimultaneouslinearequations . . . . . . 17 1F Substitutionandtranspositionofformulas . . . . . . . . . . . . 19 1G Algebraicfractions . . . . . . . . . . . . . . . . . . . . . . . . 22 1H Literalequations . . . . . . . . . . . . . . . . . . . . . . . . . 25 1I UsingaCAScalculatorforalgebra . . . . . . . . . . . . . . . . 28 ReviewofChapter1 . . . . . . . . . . . . . . . . . . . . . . . 33 2 Numbersystemsandsets 39 2A Setnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2B Setsofnumbers. . . . . . . . . . . . . . . . . . . . . . . . . . 43 2C Themodulusfunction . . . . . . . . . . . . . . . . . . . . . . 48 2D Surds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2E Naturalnumbers . . . . . . . . . . . . . . . . . . . . . . . . . 57 2F LinearDiophantineequations . . . . . . . . . . . . . . . . . . 62 2G TheEuclideanalgorithm . . . . . . . . . . . . . . . . . . . . . 66 2H Problemsinvolvingsets . . . . . . . . . . . . . . . . . . . . . . 70 ReviewofChapter2 . . . . . . . . . . . . . . . . . . . . . . . 74 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. iv Contents 3 Variation 82 3A Directvariation . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3B Inversevariation . . . . . . . . . . . . . . . . . . . . . . . . . 87 3C Fittingdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3D Jointvariation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3E Partvariation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ReviewofChapter3 . . . . . . . . . . . . . . . . . . . . . . . 104 4 Sequencesandseries 110 4A Introductiontosequences . . . . . . . . . . . . . . . . . . . . 111 4B Arithmeticsequences . . . . . . . . . . . . . . . . . . . . . . . 118 4C Arithmeticseries . . . . . . . . . . . . . . . . . . . . . . . . . 122 4D Geometricsequences . . . . . . . . . . . . . . . . . . . . . . . 127 4E Geometricseries . . . . . . . . . . . . . . . . . . . . . . . . . 133 4F Zeno’sparadoxandinfinitegeometricseries. . . . . . . . . . . 137 ReviewofChapter4 . . . . . . . . . . . . . . . . . . . . . . . 140 5 AlgebraII 146 5A Polynomialidentities . . . . . . . . . . . . . . . . . . . . . . . 147 5B Quadraticequations . . . . . . . . . . . . . . . . . . . . . . . 151 5C Applyingquadraticequationstorateproblems . . . . . . . . . 157 5D Partialfractions . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5E Simultaneousequations . . . . . . . . . . . . . . . . . . . . . 169 ReviewofChapter5 . . . . . . . . . . . . . . . . . . . . . . . 173 6 RevisionofChapters1–5 177 6A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 177 6B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 179 6C Extended-responsequestions . . . . . . . . . . . . . . . . . . 182 7 Principlesofcounting 190 7A Basiccountingmethods . . . . . . . . . . . . . . . . . . . . . 191 7B Factorialnotationandpermutations . . . . . . . . . . . . . . . 195 7C Permutationswithrestrictions . . . . . . . . . . . . . . . . . . 201 7D Permutationsoflikeobjects . . . . . . . . . . . . . . . . . . . 204 7E Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7F Combinationswithrestrictions . . . . . . . . . . . . . . . . . . 212 7G Pascal’striangle . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7H Thepigeonholeprinciple . . . . . . . . . . . . . . . . . . . . . 219 7I Theinclusion–exclusionprinciple . . . . . . . . . . . . . . . . . 223 ReviewofChapter7 . . . . . . . . . . . . . . . . . . . . . . . 228 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Contents v 8 Numberandproof 232 8A Directproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 8B Proofbycontrapositive . . . . . . . . . . . . . . . . . . . . . . 238 8C Proofbycontradiction . . . . . . . . . . . . . . . . . . . . . . 242 8D Equivalentstatements . . . . . . . . . . . . . . . . . . . . . . 246 8E Disprovingstatements . . . . . . . . . . . . . . . . . . . . . . 249 8F Mathematicalinduction . . . . . . . . . . . . . . . . . . . . . 251 ReviewofChapter8 . . . . . . . . . . . . . . . . . . . . . . . 260 9 Geometryintheplaneandproof 265 9A Points,linesandangles . . . . . . . . . . . . . . . . . . . . . . 266 9B Trianglesandpolygons . . . . . . . . . . . . . . . . . . . . . . 272 9C Congruenceandproofs . . . . . . . . . . . . . . . . . . . . . 277 9D Pythagoras’theorem . . . . . . . . . . . . . . . . . . . . . . . 282 9E Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 9F Anintroductiontosimilarity . . . . . . . . . . . . . . . . . . . 288 9G Proofsinvolvingsimilarity . . . . . . . . . . . . . . . . . . . . 295 9H Areas,volumesandsimilarity . . . . . . . . . . . . . . . . . . . 297 9I Thegoldenratio . . . . . . . . . . . . . . . . . . . . . . . . . 304 ReviewofChapter9 . . . . . . . . . . . . . . . . . . . . . . . 308 10 Circlegeometry 316 10A Anglepropertiesofthecircle . . . . . . . . . . . . . . . . . . . 317 10B Tangents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 10C Chordsincircles . . . . . . . . . . . . . . . . . . . . . . . . . 326 ReviewofChapter10 . . . . . . . . . . . . . . . . . . . . . . 329 11 RevisionofChapters7–10 334 11A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 334 11B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 337 11C Extended-responsequestions . . . . . . . . . . . . . . . . . . 342 12 Samplingandsamplingdistributions 347 12A Populationsandsamples . . . . . . . . . . . . . . . . . . . . . 348 12B Thedistributionofthesampleproportion . . . . . . . . . . . . 353 12C Investigatingthedistributionofthesampleproportion usingsimulation . . . . . . . . . . . . . . . . . . . . . . . . . 366 12D Investigatingthedistributionofthesamplemean usingsimulation . . . . . . . . . . . . . . . . . . . . . . . . . 373 ReviewofChapter12 . . . . . . . . . . . . . . . . . . . . . . 381 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. vi Contents 13 Trigonometricratiosandapplications 387 13A Reviewingtrigonometry . . . . . . . . . . . . . . . . . . . . . 388 13B Thesinerule . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 13C Thecosinerule . . . . . . . . . . . . . . . . . . . . . . . . . . 397 13D Theareaofatriangle . . . . . . . . . . . . . . . . . . . . . . . 400 13E Circlemensuration . . . . . . . . . . . . . . . . . . . . . . . . 403 13F Anglesofelevation,anglesofdepressionandbearings . . . . . 408 13G Problemsinthreedimensions . . . . . . . . . . . . . . . . . . 412 13H Anglesbetweenplanesandmoredifficult3Dproblems . . . . . 416 ReviewofChapter13 . . . . . . . . . . . . . . . . . . . . . . 421 14 Furthertrigonometry 427 14A Symmetryproperties . . . . . . . . . . . . . . . . . . . . . . . 428 14B Thetangentfunction . . . . . . . . . . . . . . . . . . . . . . . 430 14C ReciprocalfunctionsandthePythagoreanidentity . . . . . . . 433 14D Additionformulasanddoubleangleformulas . . . . . . . . . . 438 14E Simplifyingacosx+bsinx . . . . . . . . . . . . . . . . . . . . 445 ReviewofChapter14 . . . . . . . . . . . . . . . . . . . . . . 448 15 Graphingtechniques 453 15A Reciprocalfunctions . . . . . . . . . . . . . . . . . . . . . . . 454 15B Locusofpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 459 15C Parabolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 15D Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 15E Hyperbolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 15F Parametricequations . . . . . . . . . . . . . . . . . . . . . . . 474 15G Polarcoordinates . . . . . . . . . . . . . . . . . . . . . . . . . 483 15H Graphingusingpolarcoordinates . . . . . . . . . . . . . . . . 485 15I Furthergraphingusingpolarcoordinates . . . . . . . . . . . . 488 ReviewofChapter15 . . . . . . . . . . . . . . . . . . . . . . 493 16 Complexnumbers 498 16A Startingtobuildthecomplexnumbers. . . . . . . . . . . . . . 499 16B Multiplicationanddivisionofcomplexnumbers . . . . . . . . . 503 16C Arganddiagrams . . . . . . . . . . . . . . . . . . . . . . . . . 509 16D Solvingequationsoverthecomplexnumbers . . . . . . . . . . 513 16E Polarformofacomplexnumber . . . . . . . . . . . . . . . . . 515 ReviewofChapter16 . . . . . . . . . . . . . . . . . . . . . . 520 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Contents vii 17 RevisionofChapters13–16 524 17A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 524 17B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 526 17C Extended-responsequestions . . . . . . . . . . . . . . . . . . 531 18 Matrices 535 18A Matrixnotation . . . . . . . . . . . . . . . . . . . . . . . . . . 536 18B Addition,subtractionandmultiplicationbyarealnumber . . . 540 18C Multiplicationofmatrices . . . . . . . . . . . . . . . . . . . . 544 18D Identities,inversesanddeterminantsfor2 2matrices . . . . . 547 ⇥ 18E Solutionofsimultaneousequationsusingmatrices . . . . . . . 552 ReviewofChapter18 . . . . . . . . . . . . . . . . . . . . . . 555 19 Transformationsoftheplane 560 19A Lineartransformations . . . . . . . . . . . . . . . . . . . . . . 561 19B Geometrictransformations . . . . . . . . . . . . . . . . . . . . 565 19C Rotationsandgeneralreflections. . . . . . . . . . . . . . . . . 571 19D Compositionoftransformations . . . . . . . . . . . . . . . . . 574 19E Inversetransformations. . . . . . . . . . . . . . . . . . . . . . 577 19F Transformationsofstraightlinesandothergraphs . . . . . . . 581 19G Areaanddeterminant . . . . . . . . . . . . . . . . . . . . . . 585 19H Generaltransformations . . . . . . . . . . . . . . . . . . . . . 590 ReviewofChapter19 . . . . . . . . . . . . . . . . . . . . . . 593 20 Vectors 598 20A Introductiontovectors . . . . . . . . . . . . . . . . . . . . . . 599 20B Componentsofvectors . . . . . . . . . . . . . . . . . . . . . . 607 20C Scalarproductofvectors . . . . . . . . . . . . . . . . . . . . . 611 20D Vectorprojections. . . . . . . . . . . . . . . . . . . . . . . . . 614 20E Geometricproofs . . . . . . . . . . . . . . . . . . . . . . . . . 618 20F Vectorsinthreedimensions . . . . . . . . . . . . . . . . . . . 621 ReviewofChapter20 . . . . . . . . . . . . . . . . . . . . . . 624 21 RevisionofChapters18–20 629 21A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 629 21B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 631 21C Extended-responsequestions . . . . . . . . . . . . . . . . . . 635 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. viii Contents 22 Kinematics 640 22A Position,velocityandacceleration . . . . . . . . . . . . . . . . 641 22B Applicationsofantidifferentiationtokinematics . . . . . . . . . 646 22C Constantacceleration. . . . . . . . . . . . . . . . . . . . . . . 650 22D Velocity–timegraphs . . . . . . . . . . . . . . . . . . . . . . . 653 ReviewofChapter22 . . . . . . . . . . . . . . . . . . . . . . 659 23 Staticsofaparticle 666 23A Forcesandtriangleofforces . . . . . . . . . . . . . . . . . . . 667 23B Resolutionofforces. . . . . . . . . . . . . . . . . . . . . . . . 672 ReviewofChapter23 . . . . . . . . . . . . . . . . . . . . . . 676 24 RevisionofChapters22–23 679 24A Technology-freequestions . . . . . . . . . . . . . . . . . . . . 679 24B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . . 681 24C Extended-responsequestions . . . . . . . . . . . . . . . . . . 683 Glossary 685 Answers 698 IncludedintheInteractiveTextbookandPDFtextbookonly AppendixA:GuidetotheTI-NspireCASCalculator(OS4)inVCEMathematics AppendixB:GuidetotheCasioClassPadIICASCalculatorinVCEMathematics Cambridge Senior Maths AC/VCE ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party. Introduction Specialist(cid:1)Mathematics(cid:1)Australian(cid:1)Curriculum/VCE(cid:1)Units(cid:1)1(cid:1)&(cid:1)2(cid:1)provides(cid:1)a(cid:1)complete(cid:1)teaching(cid:1) and(cid:1)learning(cid:1)resource(cid:1)for(cid:1)the(cid:1)VCE(cid:1)Study(cid:1)Design(cid:1)to(cid:1)be(cid:1)implemented(cid:1)in(cid:1)2016.(cid:1)It(cid:1)has(cid:1)been(cid:1) written(cid:1)with(cid:1)understanding(cid:1)as(cid:1)its(cid:1)chief(cid:1)aim(cid:1)and(cid:1)with(cid:1)ample(cid:1)practice(cid:1)o↵ered(cid:1)through(cid:1)the(cid:1) worked(cid:1)examples(cid:1)and(cid:1)exercises.(cid:1)All(cid:1)the(cid:1)work(cid:1)has(cid:1)been(cid:1)trialled(cid:1)in(cid:1)the(cid:1)classroom,(cid:1)and(cid:1)the(cid:1) approaches(cid:1)o↵ered(cid:1)are(cid:1)based(cid:1)on(cid:1)classroom(cid:1)experience(cid:1)and(cid:1)the(cid:1)responses(cid:1)of(cid:1)teachers(cid:1)to(cid:1)earlier(cid:1) versions(cid:1)of(cid:1)this(cid:1)book. Specialist(cid:1)Mathematics(cid:1)Units(cid:1)1(cid:1)&(cid:1)2(cid:1)o↵ers(cid:1)the(cid:1)material(cid:1)on(cid:1)topics(cid:1)from(cid:1)the(cid:1)Specialist(cid:1) Mathematics(cid:1)Study(cid:1)Design.(cid:1)The(cid:1)topics(cid:1)covered(cid:1)provide(cid:1)excellent(cid:1)background(cid:1)for(cid:1)a(cid:1)student(cid:1) proceeding(cid:1)to(cid:1)Specialist(cid:1)Mathematics(cid:1)Units(cid:1)3(cid:1)&(cid:1)4.(cid:1)It(cid:1)also(cid:1)would(cid:1)be(cid:1)very(cid:1)useful(cid:1)for(cid:1)a(cid:1)student(cid:1) proceeding(cid:1)to(cid:1)Mathematical(cid:1)Methods(cid:1)Units(cid:1)3(cid:1)&(cid:1)4. The(cid:1)book(cid:1)has(cid:1)been(cid:1)carefully(cid:1)prepared(cid:1)to(cid:1)reflect(cid:1)the(cid:1)prescribed(cid:1)course.(cid:1)New(cid:1)material(cid:1)has(cid:1) been(cid:1)included(cid:1)for(cid:1)many(cid:1)of(cid:1)the(cid:1)topics(cid:1)including(cid:1)geometry,(cid:1)proof,(cid:1)statistics,(cid:1)transformations,(cid:1) counting(cid:1)principles(cid:1)and(cid:1)algebra. The(cid:1)book(cid:1)contains(cid:1)five(cid:1)revision(cid:1)chapters.(cid:1)These(cid:1)provide(cid:1)technology-free,(cid:1)multiple-choice(cid:1)and(cid:1) extended-response(cid:1)questions. The(cid:1)TI-Nspire(cid:1)calculator(cid:1)examples(cid:1)and(cid:1)instructions(cid:1)have(cid:1)been(cid:1)completed(cid:1)by(cid:1)Russell(cid:1)Brown(cid:1) and(cid:1)those(cid:1)for(cid:1)the(cid:1)Casio(cid:1)ClassPad(cid:1)have(cid:1)been(cid:1)completed(cid:1)by(cid:1)Maria(cid:1)Scha↵ner. Areas(cid:1)of(cid:1)Study The(cid:1)chapters(cid:1)in(cid:1)this(cid:1)book(cid:1)cover(cid:1)the(cid:1)diversity(cid:1)of(cid:1)topics(cid:1)that(cid:1)feature(cid:1)in(cid:1)the(cid:1)Specialist(cid:1) Mathematics(cid:1)Study(cid:1)Design.(cid:1)They(cid:1)are(cid:1)collected(cid:1)into(cid:1)Areas(cid:1)of(cid:1)Study.(cid:1)Topics(cid:1)from(cid:1)(cid:40)(cid:70)(cid:79)(cid:70)(cid:83)(cid:66)(cid:77)(cid:1) (cid:46)(cid:66)(cid:85)(cid:73)(cid:70)(cid:78)(cid:66)(cid:85)(cid:74)(cid:68)(cid:84)(cid:1)(cid:54)(cid:79)(cid:74)(cid:85)(cid:84)(cid:1)(cid:18)(cid:1)(cid:7)(cid:1)(cid:19)(cid:1)(cid:52)(cid:85)(cid:86)(cid:69)(cid:90)(cid:1)(cid:37)(cid:70)(cid:84)(cid:74)(cid:72)(cid:79)(cid:1)(cid:68)(cid:66)(cid:79)(cid:1)also(cid:1)(cid:67)(cid:70)(cid:1)incorporated(cid:1)into(cid:1)a(cid:1)Specialist(cid:1) Mathematics(cid:1)course. The(cid:1)table(cid:1)shows(cid:1)how(cid:1)courses(cid:1)can(cid:1)be(cid:1)constructed(cid:1)from(cid:1)Specialist(cid:1)Mathematics(cid:1)topics(cid:1) (indicated(cid:1)by(cid:1)SM,(cid:1)with(cid:1)prescribed(cid:1)topics(cid:1)marked(cid:1)as(cid:1)such)(cid:1)and(cid:1)General(cid:1)Mathematics topics(cid:1)(indicated(cid:1)by(cid:1)GM).(cid:1)‘ITB(cid:1)extra’(cid:1)refers(cid:1)to(cid:1)a(cid:1)chapter(cid:1)that(cid:1)is(cid:1)accessed(cid:1)only(cid:1)in(cid:1)the Interactive(cid:1)Textbook. Cambridge Senior Maths AC/VCE ISBN 978-1-107-56765-8 © Evans et al. 2016 Cambridge University Press Specialist Mathematics 1&2 Photocopying is restricted under law and this material must not be transferred to another party.