ebook img

Cambridge Senior Maths Australian curriculum/VCE: Mathematical Methods 3 & 4 - Solutions Manual PDF

844 Pages·2015·25.779 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cambridge Senior Maths Australian curriculum/VCE: Mathematical Methods 3 & 4 - Solutions Manual

Chapter 1 – Functions and relations Solutions to Exercise 1A 1 a 8,11 c X Y = 2,3,5,7,9,11,15,19,23 { } ∪ { } b 8,11 d X Y = 2,3,5,11 { } \ { } c 1,3,8,11,18,22,23,24,25,30 e Z Y = 2 { } \ { } d 3,8,11,18,22,23,24,25,30,32 f X Z = 2,7,9 { } ∩ { } e 3,8,11,18,22,23,24,25,30,32 g [ 2,8] X = 2,3,5,7 { } − ∩ { } f 1,8,11,25,30 h ( 3,8] Y = 7 { } − ∩ { } i (2, ) Y = 7,9,15,19,23 ∞ ∩ { } 2 a 3,18,22,23,24 { } j (3, ) Y = (3, ) ∞ ∪ ∞ b 25,30,32 { } c 3,18,22,23,24 5 a X Y = a,e { } ∩ { } d 1,25,30 b X Y = a,b,c,d,e,i,o,u { } ∪ { } c X Y = b,c,d \ { } 3 a −4−3−2−1 0 1 2 3 4 5 d Y X = i,o,u \ { } b −4−3−2−1 0 1 2 3 4 5 6 a B C = 6 ∩ { } c b B C = 2,4,8,10 −4−3−2−1 0 1 2 3 4 5 \ { } c A B = 1,3,5,7,9 d \ { } −4−3−2−1 0 1 2 3 4 5 d A B = 1,3,5,7,9 \ { } e A C = 2,4,5,7,8,10 \ { } −4−3−2−1 0 1 2 3 4 5 (A B) (A C) = 1,2, \ ∪ \ { 3,4,5,7,8,9,10 f } −4−3−2−1 0 1 2 3 4 5 e B C = 6 ∩ { } A (B C) = 1,2,3,4,5,7,8,9,10 \ ∩ { } 4 a X Y = 7,9 ∩ { } f A B = 1,3,5,7,9 \ { } b X Y Z = 7,9 A C = 2,4,5,7,8,10 ∩ ∩ { } \ { } 1 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56747-4 © Evans et al. 2016 Cambridge University Press Mathematical Methods 3&4 Photocopying is restricted under law and this material must not be transferred to another party. (A B) (A C) = 5,7 9 a \ ∩ \ { } −3−2−1 0 1 2 g B C = 1,2,3,4,6,8,9,10 ∪ { } A (B C) = 5,7 b \ ∪ { } −4 −3−2−1 0 1 2 3 h A B C = 6 ∩ ∩ { } c 7 a [ 3,1) 0 1 2 3 − b ( 4,5] d − −4 −3−2−1 0 1 c ( √2,0) − e 1 d ( , √3) −4 −3−2−1 0 − √2 e ( , 3) f −∞ − −2−1 0 1 2 3 4 5 f (0, ) ∞ g ( ,0) 10 a −∞ h [ 2, ) −3−2−1 0 1 2 3 4 5 6 − ∞ b 8 a ( 2,3) − b [ 4,1) −3−2−1 0 1 2 3 4 5 6 − c [ 1,5] c − d ( 3,2] −2−1 0 1 2 3 4 5 6 − d −8 −6 −4 −2 0 2 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56747-4 © Evans et al. 2016 Cambridge University Press Mathematical Methods 3&4 Photocopying is restricted under law and this material must not be transferred to another party. Solutions to Exercise 1B 1 a Domain = R c y range = [ 2, ) − ∞ 2 b Domain = ( ,2] −∞ x range = R 0 8 Domain = R+ 0 c Domain = ( 2,3) ∪{ } − range = ( ,2] range = [0,9) −∞ d y d Domain = ( 3,1) − range = ( 6,2) − (4, 4) (1, 2) e Domain = [ 4,0] − x 0 range = [0,4] Domain = [0, ) ∞ range = [0, ) f Domain = R ∞ range = ( ,2) e y −∞ 2 a y 5 x 0 5 1 Domain = [0,5] x 0 range = [0,5] Domain = R range = [1, ) f y ∞ b y (4, 18) 2 3 x 0 4 x Domain = [0,4] −3 0 3 range = [2,18] −3 Domain = [ 3,3] − range = [ 3,3] − 3 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56747-4 © Evans et al. 2016 Cambridge University Press Mathematical Methods 3&4 Photocopying is restricted under law and this material must not be transferred to another party. g y range = 4 { } (2, 4) 0 4 a functionDomain = R x range = 4 −1 −22 { } −5 b notafunction (−1, −5) Domain = 2 Domain = [ 1,2] { } − range = Z range = [ 5,4] − c function h y Domain = R range = R 4 d notafunction −2 2 x Domain = R 0 Domain = R range = R range = ( ,4] −∞ e notafunction i y Domain = [ 4,4] − range = [ 4,4] − 1 5 f(x) = 2x2 +4x; x 0 1 g(x) = 2x3 +2x 6 − Domain = R a f( 1) = 2( 1)2 +4( 1) = 2 Range = R − − − − f(2) = 2(2)2 +4(2) = 16 f( 3) = 2( 3)2 +4( 3) = 6 3 a notafunction − − − f(2a) = 2(2a)2 +4(2a) = 8a2 +8a Domain = 1,1,2,3 {− } range = 1,2,3,4 { } b g( 1) = 2( 1)3 +2( 1) 6 = 10 b function − − − − − Domain = 2, 1,0,1,2 g(2) = 2(2)3 +2(2) 6 = 14 {− − } − range = 4, 1,0,3,5 g(3) = 2(3)3 +2(3) 6 = 54 {− − } − c notafunction g(a 1) = 2(a 1)3 +2(a 1) 6 − − − − Domain = 2, 1,2,4 = 2(a3 3a2 +3a 1)+2a 8 {− − } − − − range = 2,1,2,4,6 {− } = 2a3 6a2 +8a 10 − − d function Domain = 1,0,1,2,3 6 g(x) = 3x2 2 {− } − 4 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56747-4 © Evans et al. 2016 Cambridge University Press Mathematical Methods 3&4 Photocopying is restricted under law and this material must not be transferred to another party. a g( 2) = 3( 2)2 2 = 10 c 3x 2 = 0 − − − − g(4) = 3(4)2 2 = 46 2 − x = 3 b i g( 2) = 3( 2)2 2 = 12x2 2 − − − − 9 a f : R Rwhere f(x) = 2x+3 ii g(x 2)2 = 3(x 2)2 2 = → − − − 3x2 12x+10 b 3y+4x = 12 − iii g(x+2)2 = 3(x+2)2 2 = 3y = 12 4x − − 3x2 +12x+10 4x y = 4 − 3 iv g(x2) = 3(x2)2 2 = 3x4 2 − − 4x f :R Rwhere f(x) = − +4 → 3 7 f(x) = 2x 3 − c f :[0, ) Rwhere f(x) = 2x 3 ∞ → − a f(3) = 2(3) 3 = 3 − d f :R Rwhere f(x) = x2 9 → − b f(x) = 11 e f :[0,2] Rwhere f(x) = 5x 3 → − 11 = 2x 3x = 7 − c f(x) = 4x 10 a y 4x = 2x 3 (6, 7) − 2x = 3 (2, 3) − x 3 0 x = − 2 range = [3, ) d f(x) > x ∞ 2x 3 > x b y − x > 3 8 g(x) = 6x+7 h(x) = 3x 2 x − 0 (2, −1) a 6x+7 = 3x 2 − 3x = 9 range = ( , 1] − −∞ − x = 3 − b 6x+7 > 3x 2 − 3x > 9 − x > 3 − 5 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56747-4 © Evans et al. 2016 Cambridge University Press Mathematical Methods 3&4 Photocopying is restricted under law and this material must not be transferred to another party. c y h y (4, 19) 1 1 − 2 0 x x 0 −1 0.2 (−2, −11) (−4, −7) range = ( 11,19) − range = [ 7, ) − ∞ 11 f(x) = 2x2 6x+1; g(x) = 3 2x d y − − a f(2) = 2(2)2 6(2)+1 = 3 (3, 11) − − 2 − f( 3) = 2( 3)2 6( 3)+1 = 37 3 2 − − − − x f( 2) = 2( 2)2 6( 2)+1 = 21 0 − − − − b g( 2) = 3 2( 2) = 7 range = ( ,11) − − − −∞ g(1) = 3 2(1) = 1 − e y g( 3) = 3 2( 3) = 9 − − − (3, 4) c i f(a) = 2a2 6a+1 − −1 1 x ii f(a+2) = 2(a+2)2 0 6(a+2)+1 − range = ( ,4] = 2a2 +2a 3 −∞ − f y iii g( a) = 3+2a − (6, 17) iv g(2a) = 3 4a 1 − 3 x v f(5 a) = 2(5 a)2 −1 0 − − 6(5 a)+1 (−2, −7) − − range = [ 7,17] = 2a2 14a+21 − − g y vi f(2a) = 8a2 12a+1 − (−5, 14) vii g(a)+ f(a) = (2a2 6a+1) (−1, 2) − +(3 2a) x − 0 = 2a2 8a+4 − range = [2,14] 6 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56747-4 © Evans et al. 2016 Cambridge University Press Mathematical Methods 3&4 Photocopying is restricted under law and this material must not be transferred to another party. viii g(a)− f(a) = (3−2a) d f(x) > 0 −(2a2 −6a+1) 3x2 + x−2 > x 2 from(a),the x-interceptsare −1, = −2a2 +4a+2 3 asthe coefficientof x2 > 0 theshapeof the graphy = f(x)is 12 f(x) = 3x2 + x−2 a f(x) = 0 ∴ f(x) > 0for 3x2 + x−2 = 0 2 x ∈ (−∞,−1)∪( ,∞) usingthequadraticformula 3 (cid:112) −(1)± (1)2 −4(3)(−2) x = e f(x) > x 2(3) √ −1± 25 3x2 + x−2 > x x = 6 3x2 −2 > 0 2 x = −1, 2 3 x2 > i(cid:40)nsetn(cid:41)otation  √ 3  √  −1, 2 x ∈ −∞, −√ 2∪ √2,∞ 3 3 3 b f(x) = x f f(x) ≤ −2 3x2 + x−2 ≤ −2 3x2 + x−2 = x 1 from(c),the x-interceptsare − ,0 3x2 = 2 3 asasthe coefficientof x2 > 0 x2 = 2 theshapeof the graphy = f(x)is 3 (cid:112) x = ± 2/3 insetnotation  (cid:114) (cid:114)  (cid:34) (cid:35) − 2, 2 ∴ f(x) ≤ −2for x ∈ −1,0  3 3 3 c f(x) = −2 13 f(x) = x2 + x 3x2 + x−2 = −2 a f(−2) = (−2)2 +(−2) = 2 3x2 + x = 0 x(3x+1) = 0 b f(2) = (2)2 +(2) = 6 ∴ either x = 0or 3x+1 = 0 c f(−a) = (−a)2 +(−a) = a2 −a −1 x = 0, 3 d f(a)+ f(−a) = (a2 +a)+(a2 −a) insetnotation (cid:40) −1(cid:41) = 2a2 0, 3 7 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56747-4 © Evans et al. 2016 Cambridge University Press Mathematical Methods 3&4 Photocopying is restricted under law and this material must not be transferred to another party. e f(a)− f(−a) = (a2 +a)−(a2 −a) f 1 = 6 g(x) = 2a 1 = 6g(x) f f(a2) = (a2)2 +(a2) = a4 +a2 1 = 6(3x−2) 1 = 18x−12 14 g(x) = 3x−2 18x = 13 a g(x) = 4 x = 13 18 3x−2 = 4 x = 2 15 a f(x) = kx−1 b g(x) > 4 3 = 3k−1 3x−2 > 4 k = 4 3 x > 2 in setnotation b f(x) = x2 −k {x:x > 2} 3 = 9−k c g(x) = a k = 6 3x−2 = a c f(x) = x2 +kx+1 a+2 x = 3 = 9+3k+1 3 −7 d g(−x) = 6 k = 3 −3x−2 = 6 k d f(x) = x = −8 x 3 k 3 = 3 e g(2x) = 4 k = 9 6x−2 = 4 x = 1 e f(x) = kx2 3 = 9k 1 k = 3 8 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56747-4 © Evans et al. 2016 Cambridge University Press Mathematical Methods 3&4 Photocopying is restricted under law and this material must not be transferred to another party. f f(x) = 1−kx2 c 1 = 9 x2 3 = 1−9k 1 x = ± 9k = −2 3 −2 k = d x = 1 = 2 9 x x2 −2x+1 = 0 16 a 5x−4 = 2 (x−1)2 = 0 6 x = x = 1 5 e (x+1)(x−2) = 2 1 b = 5 ∴ either x+1 = 0or x−2 = 0 x x = −1 x = 2 1 x = ∴ x = −1,2 5 9 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56747-4 © Evans et al. 2016 Cambridge University Press Mathematical Methods 3&4 Photocopying is restricted under law and this material must not be transferred to another party. Solutions to Exercise 1C 1 a Thefunctionswhichare one-to- 6 a Domain: R range: R oneare bandc b Domain: R+ 0 range: R+ 0 ∪{ } ∪{ } 2 a Thefunctionswhichare one-to- c Domain: R range: [ 2, ) − ∞ oneare b,dandf d Domain: [ 4,4] range: [0,4] − 3 a Thegraphsoffunctionsarei,iii,iv, e Domain: R 0 range: R 0 \{ } \{ } vi,vii,andviii. f Domain: R range: ( ,4] −∞ b Thegraphsofone-to- onefunctions g Domain[3, ) range: [0, ) areiii,andvii. ∞ ∞ 4 y2 = x+2,x 2 7 a Domain: R range: R ≥ − y = √x+2 b Domain: R range: [ 2, ) − ∞ ± c Domain[-3,3] range: [0,3] twopossiblefunctions f andgare f :[ 2, ) R f(x) = √x+2 d Domain: R 1 range: R 0 \{ } \{ } − ∞ → rangeof f :[0, ) = R+ 0 ∞ ∪{ } 8 a R 3 \{ } g:[ 2, ) Rg(x) = √x 2 − ∞ → − − b ( , √3] [√3, ) −∞ − ∪ ∞ rangeofg:( ,0] = R 0 − −∞ ∪{ } c R d [4,11] 5 a y e R 1 \{− } f h(x) = √(x+1)(x 2) − Domain: ( , 1] [2, ) 2 −∞ − ∪ ∞ x 0 g R 1,2 \{− } b twopossiblefunctionsarethe right h Domain: ( , 2) [1, ) half −∞ − ∪ ∞ g :[0, ) R g (x) = x2 +2 1 1 1 i f(x) = √x(1 3x)Domain: 0, ∞ → andthelefthalf − 3 (cid:31) (cid:30) g :( ,0) R g (x) = x2 +2 2 2 j [ 5,5] −∞ → − 10 Cambridge Senior Maths AC/VCE ISBN 978-1-107-56747-4 © Evans et al. 2016 Cambridge University Press Mathematical Methods 3&4 Photocopying is restricted under law and this material must not be transferred to another party.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.