ebook img

Cambridge Senior Mathematics: Mathematical Methods VCE Units 1 & 2 PDF

862 Pages·2022·11.826 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cambridge Senior Mathematics: Mathematical Methods VCE Units 1 & 2

MATHEMATICAL METHODS VCE UNITS 1 & 2 CAMBRIDGE SENIOR MATHEMATICS VCE SECOND EDITION MICHAEL EVANS | KAY LIPSON DOUGLAS WALLACE | DAVID GREENWOOD MATHEMATICAL METHODS VCE UNITS 1 & 2 CAMBRIDGE SENIOR MATHEMATICS VCE SECOND EDITION MICHAEL EVANS | KAY LIPSON DOUGLAS WALLACE | DAVID GREENWOOD UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org c MichaelEvans,KayLipson,DouglasWallaceandDavidGreenwood2015,2022. (cid:13) Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2015 SecondEdition2022 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 CoverdesignbyDeniseLane(Sardine) TypesetbyJanePitkethly PrintedinChinabyC&COffsetPrintingCo.Ltd. AcataloguerecordforthisbookisavailablefromtheNationalLibraryof Australiaatwww.nla.gov.au ISBN978-1-009-11045-7Paperback Additionalresourcesforthispublicationatwww.cambridge.edu.au/GO ReproductionandCommunicationforeducationalpurposes TheAustralianCopyrightAct1968(theAct)allowsamaximumof onechapteror10%ofthepagesofthispublication,whicheveristhegreater, tobereproducedand/orcommunicatedbyanyeducationalinstitution foritseducationalpurposesprovidedthattheeducationalinstitution (orthebodythatadministersit)hasgivenaremunerationnoticeto CopyrightAgencyLimited(CAL)undertheAct. FordetailsoftheCALlicenceforeducationalinstitutionscontact: CopyrightAgencyLimited Level12,66GoulburnStreet SydneyNSW2000 Telephone:(02)93947600 Facsimile:(02)93947601 Email:[email protected] ReproductionandCommunicationforotherpurposes ExceptaspermittedundertheAct(forexampleafairdealingforthe purposesofstudy,research,criticismorreview)nopartofthispublication maybereproduced,storedinaretrievalsystem,communicatedor transmittedinanyformorbyanymeanswithoutpriorwrittenpermission. Allinquiriesshouldbemadetothepublisherattheaddressabove. CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLSforexternalorthird-partyinternetwebsitesreferredtoin thispublicationanddoesnotguaranteethatanycontentonsuchwebsitesis, orwillremain,accurateorappropriate.Informationregardingprices,travel timetablesandotherfactualinformationgiveninthisworkiscorrectat thetimeoffirstprintingbutCambridgeUniversityPressdoesnotguarantee theaccuracyofsuchinformationthereafter. CambridgeUniversityPressacknowledgestheAustralianAboriginalandTorresStraitIslander peoplesofthisnation.Weacknowledgethetraditionalcustodiansofthelandsonwhichour companyislocatedandwhereweconductourbusiness.Wepayourrespectstoancestorsand Elders,pastandpresent.CambridgeUniversityPressiscommittedtohonouringAustralian AboriginalandTorresStraitIslanderpeoples’uniqueculturalandspiritualrelationshipstothe land,watersandseasandtheirrichcontributiontosociety. Contents Introductionandoverview ix Acknowledgements xiv 1 Reviewinglinearequations 1 1A Linearequations . . . . . . . . . . . . . . . . . . . . . . . 2 1B Constructinglinearequations . . . . . . . . . . . . . . . . . 8 1C Simultaneousequations . . . . . . . . . . . . . . . . . . . 11 1D Constructingsimultaneouslinearequations . . . . . . . . . 16 1E Solvinglinearinequalities . . . . . . . . . . . . . . . . . . . 19 1F Usingandtransposingformulas . . . . . . . . . . . . . . . 22 ReviewofChapter1 . . . . . . . . . . . . . . . . . . . . . . 27 2 Reviewingcoordinategeometry 32 2A Distanceandmidpoints . . . . . . . . . . . . . . . . . . . . 33 2B Thegradientofastraightline . . . . . . . . . . . . . . . . . 36 2C Theequationofastraightline . . . . . . . . . . . . . . . . . 42 2D Graphingstraightlines . . . . . . . . . . . . . . . . . . . . 50 2E Parallelandperpendicularlines . . . . . . . . . . . . . . . 54 2F Familiesofstraightlines . . . . . . . . . . . . . . . . . . . 58 2G Linearmodels . . . . . . . . . . . . . . . . . . . . . . . . . 61 2H Simultaneouslinearequations . . . . . . . . . . . . . . . . 64 ReviewofChapter2 . . . . . . . . . . . . . . . . . . . . . . 70 iv Contents 3 Quadratics 76 3A Expandingandcollectingliketerms . . . . . . . . . . . . . . 77 3B Factorising . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3C Quadraticequations . . . . . . . . . . . . . . . . . . . . . 87 3D Graphingquadratics . . . . . . . . . . . . . . . . . . . . . 91 3E Completingthesquareandturningpoints . . . . . . . . . . . 96 3F Graphingquadraticsinpolynomialform. . . . . . . . . . . . 101 3G Solvingquadraticinequalities . . . . . . . . . . . . . . . . . 104 3H Thegeneralquadraticformula . . . . . . . . . . . . . . . . 106 3I Thediscriminant . . . . . . . . . . . . . . . . . . . . . . . 110 3J Solvingsimultaneouslinearandquadraticequations . . . . . 114 3K Familiesofquadraticpolynomialfunctions . . . . . . . . . . 117 3L Quadraticmodels . . . . . . . . . . . . . . . . . . . . . . . 126 ReviewofChapter3 . . . . . . . . . . . . . . . . . . . . . . 129 4 Agalleryofgraphs 137 4A Rectangularhyperbolas . . . . . . . . . . . . . . . . . . . 138 4B Thetruncus . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4C Thegraphofy2 =x . . . . . . . . . . . . . . . . . . . . . . 144 4D Thegraphofy=√x . . . . . . . . . . . . . . . . . . . . . . 145 4E Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 4F Determiningrules . . . . . . . . . . . . . . . . . . . . . . . 154 ReviewofChapter4 . . . . . . . . . . . . . . . . . . . . . . 158 5 Functionsandrelations 164 5A Setnotationandsetsofnumbers . . . . . . . . . . . . . . . 165 5B Relations,domainandrange . . . . . . . . . . . . . . . . . 169 5C Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 5D One-to-onefunctionsandimplieddomains . . . . . . . . . . 183 5E Piecewise-definedfunctions . . . . . . . . . . . . . . . . . 187 5F Applyingfunctionnotation . . . . . . . . . . . . . . . . . . 189 5G Inversefunctions . . . . . . . . . . . . . . . . . . . . . . . 191 5H Functionsandmodellingexercises . . . . . . . . . . . . . . 194 ReviewofChapter5 . . . . . . . . . . . . . . . . . . . . . . 198 6 Polynomials 205 6A Thelanguageofpolynomials . . . . . . . . . . . . . . . . . 206 6B Divisionofpolynomials . . . . . . . . . . . . . . . . . . . . 210 6C Factorisationofpolynomials . . . . . . . . . . . . . . . . . 216 6D Solvingcubicequations . . . . . . . . . . . . . . . . . . . . 225 6E Cubicfunctionsoftheformf(x)=a(x h)3+k . . . . . . . . . 228 − Contents v 6F Graphsoffactorisedcubicfunctions . . . . . . . . . . . . . 232 6G Solvingcubicinequalities . . . . . . . . . . . . . . . . . . . 238 6H Familiesofcubicpolynomialfunctions . . . . . . . . . . . . 239 6I Quarticandotherpolynomialfunctions . . . . . . . . . . . . 243 6J Applicationsofpolynomialfunctions . . . . . . . . . . . . . 248 6K Thebisectionmethod . . . . . . . . . . . . . . . . . . . . . 253 ReviewofChapter6 . . . . . . . . . . . . . . . . . . . . . . 257 7 Transformations 265 7A Translationsoffunctions . . . . . . . . . . . . . . . . . . . 266 7B Dilationsandreflections . . . . . . . . . . . . . . . . . . . 270 7C Combinationsoftransformations . . . . . . . . . . . . . . . 274 7D Determiningtransformations . . . . . . . . . . . . . . . . . 277 7E Transformationsofgraphsoffunctions . . . . . . . . . . . . 280 ReviewofChapter7 . . . . . . . . . . . . . . . . . . . . . . 286 8 RevisionofChapters2–7 292 8A Technology-freequestions . . . . . . . . . . . . . . . . . . 292 8B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . 295 8C Extended-responsequestions . . . . . . . . . . . . . . . . . 298 8D Investigations . . . . . . . . . . . . . . . . . . . . . . . . . 302 9 Probability 304 9A Samplespacesandprobability . . . . . . . . . . . . . . . . 305 9B Estimatingprobabilities . . . . . . . . . . . . . . . . . . . . 312 9C Multi-stageexperiments . . . . . . . . . . . . . . . . . . . 317 9D Combiningevents . . . . . . . . . . . . . . . . . . . . . . . 322 9E Probabilitytables . . . . . . . . . . . . . . . . . . . . . . . 327 9F Conditionalprobability . . . . . . . . . . . . . . . . . . . . 331 9G Independentevents . . . . . . . . . . . . . . . . . . . . . . 339 9H Solvingprobabilityproblemsusingsimulation . . . . . . . . . 346 9I Pseudocodeforprobabilityandsimulation . . . . . . . . . . 350 ReviewofChapter9 . . . . . . . . . . . . . . . . . . . . . . 356 10 Countingmethods 363 10A Additionandmultiplicationprinciples . . . . . . . . . . . . . 364 10B Arrangements . . . . . . . . . . . . . . . . . . . . . . . . 367 10C Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 10D Applicationstoprobability. . . . . . . . . . . . . . . . . . . 379 ReviewofChapter10 . . . . . . . . . . . . . . . . . . . . . 382 vi Contents 11 Discreteprobabilitydistributions 386 11A Discreterandomvariables . . . . . . . . . . . . . . . . . . 387 11B Samplingwithoutreplacement . . . . . . . . . . . . . . . . 393 11C Samplingwithreplacement:thebinomialdistribution . . . . . 396 ReviewofChapter11 . . . . . . . . . . . . . . . . . . . . . 407 12 RevisionofChapters9–11 413 12A Technology-freequestions . . . . . . . . . . . . . . . . . . 413 12B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . 415 12C Extended-responsequestions . . . . . . . . . . . . . . . . . 418 12D Investigations . . . . . . . . . . . . . . . . . . . . . . . . . 422 13 Exponentialfunctionsandlogarithms 424 13A Theindexlaws . . . . . . . . . . . . . . . . . . . . . . . . 425 13B Rationalindices . . . . . . . . . . . . . . . . . . . . . . . . 432 13C Graphsofexponentialfunctions . . . . . . . . . . . . . . . . 435 13D Solvingexponentialequationsandinequalities . . . . . . . . 441 13E Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . 445 13F Usinglogarithmstosolveexponentialequations andinequalities . . . . . . . . . . . . . . . . . . . . . . . . 449 13G Graphsoflogarithmfunctions . . . . . . . . . . . . . . . . . 452 13H Exponentialmodelsandapplications . . . . . . . . . . . . . 458 ReviewofChapter13 . . . . . . . . . . . . . . . . . . . . . 468 14 Circularfunctions 474 14A Measuringanglesindegreesandradians . . . . . . . . . . . 475 14B Definingcircularfunctions:sineandcosine . . . . . . . . . . 478 14C Anothercircularfunction:tangent . . . . . . . . . . . . . . 480 14D Symmetrypropertiesofcircularfunctions . . . . . . . . . . 481 14E Valuesofcircularfunctions . . . . . . . . . . . . . . . . . . 484 14F Graphsofsineandcosine . . . . . . . . . . . . . . . . . . . 487 14G Solutionoftrigonometricequations . . . . . . . . . . . . . . 494 14H Sketchgraphsofy=asinn(t ε)andy=acosn(t ε) . . . . 499 ± ± 14I Sketchgraphsofy=asinn(t ε) bandy=acosn(t ε) b. 501 ± ± ± ± 14J FurthersymmetrypropertiesandthePythagoreanidentity . . 503 14K Thetangentfunction . . . . . . . . . . . . . . . . . . . . . 506 14L NumericalmethodswithaCAScalculator . . . . . . . . . . . 509 14M Generalsolutionoftrigonometricequations . . . . . . . . . 512 14N Applicationsofcircularfunctions . . . . . . . . . . . . . . . 515 ReviewofChapter14 . . . . . . . . . . . . . . . . . . . . . 518 Contents vii 15 RevisionofChapters13–14 524 15A Technology-freequestions . . . . . . . . . . . . . . . . . . 524 15B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . 526 15C Extended-responsequestions . . . . . . . . . . . . . . . . . 529 15D Investigations . . . . . . . . . . . . . . . . . . . . . . . . . 533 16 Ratesofchange 535 16A Recognisingrelationships . . . . . . . . . . . . . . . . . . . 536 16B Constantrateofchange . . . . . . . . . . . . . . . . . . . . 540 16C Averagerateofchange . . . . . . . . . . . . . . . . . . . . 543 16D Instantaneousrateofchange . . . . . . . . . . . . . . . . . 548 16E Positionandaveragevelocity . . . . . . . . . . . . . . . . . 554 ReviewofChapter16 . . . . . . . . . . . . . . . . . . . . . 561 17 Differentiationandantidifferentiationofpolynomials 566 17A Thederivative . . . . . . . . . . . . . . . . . . . . . . . . . 568 17B Rulesfordifferentiation . . . . . . . . . . . . . . . . . . . . 576 17C Differentiatingxnwherenisanegativeinteger . . . . . . . . 584 17D Graphsofthederivativefunction . . . . . . . . . . . . . . . 587 17E Antidifferentiationofpolynomialfunctions . . . . . . . . . . 595 17F Limitsandcontinuity . . . . . . . . . . . . . . . . . . . . . 601 17G Whenisafunctiondifferentiable? . . . . . . . . . . . . . . . 607 ReviewofChapter17 . . . . . . . . . . . . . . . . . . . . . 610 18 Applicationsofdifferentiationofpolynomials 615 18A Tangentsandnormals . . . . . . . . . . . . . . . . . . . . 616 18B Ratesofchange . . . . . . . . . . . . . . . . . . . . . . . . 619 18C Stationarypoints . . . . . . . . . . . . . . . . . . . . . . . 624 18D Typesofstationarypoints . . . . . . . . . . . . . . . . . . . 627 18E Applicationstomaximumandminimumproblems . . . . . . . 632 18F Applicationstomotioninastraightline . . . . . . . . . . . . 639 18G Familiesoffunctionsandtransformations . . . . . . . . . . 646 18H Newton’smethodforfindingsolutionstoequations . . . . . . 649 ReviewofChapter18 . . . . . . . . . . . . . . . . . . . . . 654 19 RevisionofChapters16–18 663 19A Technology-freequestions . . . . . . . . . . . . . . . . . . 663 19B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . 664 19C Extended-responsequestions . . . . . . . . . . . . . . . . . 670 19D Investigations . . . . . . . . . . . . . . . . . . . . . . . . . 674 viii Contents 20 Furtherdifferentiationandantidifferentiation 677 20A Thechainrule. . . . . . . . . . . . . . . . . . . . . . . . . 678 20B Differentiatingrationalpowers . . . . . . . . . . . . . . . . 683 20C Antidifferentiatingrationalpowers . . . . . . . . . . . . . . 686 20D Thesecondderivative . . . . . . . . . . . . . . . . . . . . . 689 20E Sketchgraphs . . . . . . . . . . . . . . . . . . . . . . . . 690 ReviewofChapter20 . . . . . . . . . . . . . . . . . . . . . 693 21 Integration 697 21A Estimatingtheareaunderagraph . . . . . . . . . . . . . . 698 21B Findingtheexactarea:thedefiniteintegral . . . . . . . . . . 703 21C Signedarea . . . . . . . . . . . . . . . . . . . . . . . . . . 708 ReviewofChapter21 . . . . . . . . . . . . . . . . . . . . . 714 22 RevisionofChapters20–21 721 22A Technology-freequestions . . . . . . . . . . . . . . . . . . 721 22B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . 722 23 RevisionofChapters1–22 724 23A Technology-freequestions . . . . . . . . . . . . . . . . . . 724 23B Multiple-choicequestions . . . . . . . . . . . . . . . . . . . 727 23C Extended-responsequestions . . . . . . . . . . . . . . . . . 731 A Algorithmsandpseudocode 735 A1 Algorithmsandflowcharts . . . . . . . . . . . . . . . . . . 736 A2 Iterationandselection . . . . . . . . . . . . . . . . . . . . 741 A3 Introductiontopseudocode . . . . . . . . . . . . . . . . . . 747 Glossary 756 Answers 764 OnlineappendicesaccessedthroughtheInteractiveTextbookorPDFTextbook AppendixB Furtherpolynomialsandsystemsoflinearequations AppendixC GuidetotheTI-NspireCAScalculatorinVCEmathematics AppendixD GuidetotheCasioClassPadIICAScalculatorinVCEmathematics AppendixE IntroductiontocodingusingPython AppendixF IntroductiontocodingusingtheTI-Nspire AppendixG IntroductiontocodingusingtheCasioClassPad Introduction and overview CambridgeMathematicalMethodsVCEUnits1&2SecondEditionprovidesacomplete teachingandlearningresourcefortheVCEStudyDesigntobefirstimplementedin2023. Ithasbeenwrittenwithunderstandingasitschiefaim,andwithamplepracticeoffered throughtheworkedexamplesandexercises. Theworkhasbeentrialledintheclassroom,and theapproachesofferedarebasedonclassroomexperienceandtheresponsesofteachersto earliereditionsofthisbookandtherequirementsofthenewStudyDesign. MathematicalMethodsUnits1and2provideanintroductorystudyofsimpleelementary functions,algebra,calculus,andprobabilityandstatisticsandtheirapplicationsinavariety ofpracticalandtheoreticalcontexts. ThecourseisdesignedaspreparationforMathematical MethodsUnits3and4,andtogetherwithCambridgeSpecialistMathematicsVCEUnits1&2 SecondEdition,aspreparationforSpecialistMathematicsUnits3and4. Itcontainsassumed knowledgeandskillsfortheseunits. ThefirsttwochaptersproviderevisionofmaterialfromYears9and10mathematics. This materialisessentialtotheintroductionoffunctionsandcalculus. Thebookhasbeencarefullypreparedtoreflecttheprescribedcourse. IntheStudyDesignwe havetheKeyKnowledgedotpointinOutcome2: (cid:4) keyelementsofalgorithmdesign: sequencing,decision-making,repetitionand representationincludingtheuseofpseudocode andinOutcome3: (cid:4) thepurposeandeffectofsequencing,decision-makingandrepetitionstatementson relevantfunctionalitiesoftechnology,andtheirroleinthedesignofalgorithmsand simulations. Theseareaddressedgenerallyin‘AppendixA:Algorithmsandpseudocode’andalso specificallyforsimulationandcountinginprobabilityandthenumericalsolutionof equationswiththebisectionmethodandNewton’smethod. Inadditiontotheonline appendicesonthegeneraluseofcalculators,therearethreeonlineappendicesforusing boththeprogramminglanguagePythonandtheinbuiltcapabilitiesofstudents’CAS calculators. Thebookcontainssixrevisionchapters. Theseprovidetechnology-free,multiple-choiceand extended-responsequestions. Thefirstfourrevisionchapterscontainmaterialsuitableforstudentinvestigations,afeature ofthenewcourse. TheStudyDesignsuggeststhat‘[a]nInvestigationcomprisesonetotwo weeksofinvestigationintooneortwopracticalortheoreticalcontextsorscenariosbased oncontentfromareasofstudyandapplicationofkeyknowledgeandkeyskillsforthe outcomes’. Wehaveaimedtoprovidestrongsupportforteachersinthedevelopmentofthese investigations. TheTI-NspirecalculatorexamplesandinstructionshavebeencompletedbyPeterFlynn, andthosefortheCasioClassPadbyMarkJelinek,andwethankthemfortheirhelpful contributions.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.