ebook img

Callipterid peltasperms of the Dunkard Group, Central Appalachian Basin PDF

23 Pages·2013·5.24 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Callipterid peltasperms of the Dunkard Group, Central Appalachian Basin

Author's Personal Copy InternationalJournalofCoalGeology119(2013)56–78 ContentslistsavailableatScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Callipterid peltasperms of the Dunkard Group, Central Appalachian Basin WilliamA.DiMichelea,⁎,HansKerpb,RobertaSirmonsa,NickFedorkoc,ViktorasSkemad, BascombeM.BlakeJr.e,C.BlaineCecilf aDepartmentofPaleobiology,NMNHSmithsonianInstitution,Washington,DC20560,USA bForschungsstellefürPaläobotanik,UniversityofMünster,Germany cCoveGeologicalServices,Moatsville,WV26405,USA dPennsylvaniaGeologicalSurvey,Middletown,PA17057,USA eWestVirginiaGeologicalandEconomicSurvey,Morgantown,WV26508,USA fU.S.GeologicalSurvey,NationalCenter,Reston,VA20192,USA a r t i c l e i n f o a b s t r a c t Articlehistory: TheDunkardGroupistheyoungestlatePaleozoicrockunitintheCentralAppalachianBasin.Itsage,however, Received8April2013 remainscontroversial.Initssouthernandwesterntwo-thirdstheDunkardiscomprisedlargelyofredbeds,sand- Receivedinrevisedform3July2013 stoneandsiltstonechanneldepositsandpaleosols.Initsthickest,mostnortherlyexposures,insouthwestern Accepted4July2013 Pennsylvania,northernWestVirginia,andeast-centralOhio,muchofthelowerpartoftheunitiscomposedof Availableonline8August2013 coals, non-marine limestones and gray, often calcareous, paleosols. Age dating is confounded by the non- marinenatureofthedepositandbythelackofdateablevolcanicashbeds.Dunkardfossilsincludeplants,verte- Keywords: brates,andbothaquaticandterrestrialinvertebrates.Mostofthefossilgroupspointtoanageverycloseto,ifnot Dunkard Callipterids including, the Pennsylvanian–Permian boundary, though the exact position of that boundary is uncertain. Permian CallipteridsmaketheirfirstappearanceintheDunkardflorainthemiddleoftheWashingtonFormationandcon- Pennsylvanian tinueintotheGreeneFormation,butindifferentbedsfromthosecontainingwetlandfloralelements.Publication Paleoecology oftheseplantsinthe“PermianFlora”ofFontaineandWhite(1880)createdanimmediatecontroversyaboutthe Paleoclimate ageoftheunitbecauseCallipterisconferta(nowAutuniaconferta)was,atthetime,consideredtobeanindexfossil forthebaseofthe Permian.Subsequentcollecting hasrevealedthesecallipterdstocomprisefourspecies: A.conferta,Autunianaumannii,LodeviaoxydataandRhachiphyllumschenkii.Callipterids–andtheconiferswith which they are sometimesassociated – are typically found inseasonallydry equatorialenvironments and mostlikelyconstituteanenvironmentallycontrolledbiofacies.Thisbiofaciesisnotwellknown,resultinginlim- itedbiostratigraphicutility. PublishedbyElsevierB.V. 1.Introduction lineage,theyoriginatedduring,orpriorto,theMiddlePennsylvanian (Pšeničkaetal.,2011),andlaterradiatedextensively(DiMicheleetal., ThecallipteridsareagroupoflatePaleozoictropicalplants,charac- 2005;Kerp,1988;Naugolnykh,1999).Thisradiationappearstohave terizedbyfoliageformerlyclassifiedasCallipteris.Thisgenuswassplit occurredinenvironmentswithseasonallydistributedmoisture(Kerp, into five genera when the generic name appeared to be illegitimate 2000), probably under wet-subhumid to dry-subhumid climates (KerpandHaubold,1988).Reproductiveorgansrevealedthatoneof (terminologysensuCecilandDulong,2003).Whereaspeltaspermsin the resulting genera, Autunia, is a peltasperm (Kerp, 1988). Other generalspreadwidelythroughoutPangeantropicalandnortherntem- callipteridsalsoappeartobepeltasperms(e.g.,NaugolnykhandKerp, perate latitudes (see discussion in Naugolnykh and Kerp, 1996), the 1996;PoortandKerp,1990)anditcanbeassumedthatthisistruefor callipterids formed prominent elements mainly in Permian tropical most if not all callipterids. Peltasperms are related to, and possibly floras.ThenearabsenceoftheseplantsfromtypicalLatePennsylvanian descended from, the callistophytalean pteridosperms (Crane, 1985; wetlandflorasandtheiroccurrencesindepositswithorassociatedwith Hilton and Bateman, 2006). If the callipterids prove to be a natural indicatorsofseasonality(e.g.,Feldmanetal.,2005),arestrongevidence oftheirpreferenceforseasonallydrysettings. AsKerp(2000)hasnoted,callipteridsoccuronlyoccasionallywith ⁎ Correspondingauthorat:DepartmentofPaleobiologyMRC-121,NMNHSmithsonian conifers(ChaneyandDiMichele,2007;GaltierandBroutin,2008),anoth- Institution,Washington,DC20560,USA.Tel.:+12026331319;fax:+12027862832. ergroupconsideredtofavorseasonallydryhabitats.Fossilsofthetwo E-mailaddresses:[email protected](W.A.DiMichele),[email protected](H.Kerp), groupslargelyarefoundseparately,evenwithinrocksequencesfrom [email protected](R.Sirmons),[email protected](N.Fedorko),[email protected] (V.Skema),[email protected](B.M.Blake),[email protected](C.B.Cecil). whichbothgroupsotherwiseareknown(e.g.,KerpandFichter,1985), 0166-5162/$–seefrontmatter.PublishedbyElsevierB.V. http://dx.doi.org/10.1016/j.coal.2013.07.025 Author's Personal Copy W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 57 suggesting different habitat preferences and, unsurprisingly, environ- 1994).Tousetheseflorasforaccuratebiostratigraphicdeterminations, mentalheterogeneityandcomplexityinseasonallydrylandscapes. onemustbedealingwithbiome-restrictedassemblageswhereinevolu- Theearlydevelopmentofflorasfromseasonallydrylandscapesis tionary changes can be identified and tracked through time with poorlyknown,however,largelyduetohydrologicalfactorsrelatedto high precision and accuracy (for discussion see Broutin et al., 1990; thepreservationoforganicmatter.Themostlikelytimesforfossilfor- DiMichele and Aronson, 1992; DiMichele et al., 2008; Kerp, 1996; mationinbasinallowlandsarewhenconditionsforplantpreservation MapesandGastaldo,1986).Unfortunately,theseasonally-dryassem- favor both short-term and long-term burial (Gastaldo and Demko, blagesofthepre-Permianareinadequatelyknownatpresentforthis 2010). Increasing evidence indicates that during the Pennsylvanian, task.Theirsporadicappearanceswithinstratigraphicsequencesother- thesefavorableperiodswereduringwettestpartsofglacial–interglacial wisedominatedbythewetlandbiomeareindicationsofclimateoscilla- cycles,whichinequatoriallatitudesmainlyoccurredduringthemiddle tion,shiftingspeciespoolsandpreservationalhappenstance,butthese andlatestagesofglacialmaxima,whensealevelswereattheirlowest occurrences are too few for detailed reconstruction of evolutionary (Ceciletal.,2003;Hortonetal.,2012;PeyserandPoulsen,2008).This changes. assuredbothshort-termburialoforganicmatterunderrainfall-driven TheDunkardflorahasbeenwidelycollectedandmanyofitscom- highwatertables,andintermediate-termburialundersubsequentlyris- monelementshavebeenillustrated.However,therearefewillustra- ingsealevels,duringensuinginterglacials(ElrickandNelson,2010). tionsofthecallipterids.TheoriginalFontaineandWhite(1880,Plate Ultimatelong-termburialreliedoncontinualbasinalsubsidence,anas- XI,Figs.1–4)figureswereengravings,andlackfinedetail.Photographic sumptionmadeplausiblebyrecent“digital”correlations,indicatingthat illustrationsofcallipteridspecimensappearinDarrah(1975,Figs.1–3), glacial-interglacialcyclescanbecorrelatedwithhighfidelityfromthe Gillespieetal.(1975,PlateIAandPlateVIIIA;refiguredinBlakeetal., MidcontinentUSA,throughtheeasternNorthAmericancoalbasins,to 2002, Plate XXXV, Figs. 1–2, 6) and Gillespie and Pfefferkorn (1979, as far as the Donets Basin of the Ukraine (Eros et al., 2012; Falcon- Plate3,Figs.6–8;refiguredinBlakeetal.,2002,PlateXXXV,Figs.5,7). Langetal.,2011a;Heckeletal.,2007).Therealsoisevidenceindicating Consequently,themainobjectiveofthispaperistodescribeandillus- thatseasonallydryflorasoccurredinbasinsregularlyduringmuchof tratetheDunkardGroupcallipteridsanddetailtheirstratigraphicdistri- theMiddle and Late Pennsylvanian(Falcon-Langet al., 2009, 2011b; bution.Someofthesespecimenscomefrom previously unillustrated Plotnick et al., 2009), but mainly during those intervals of climate collections made by David White in 1902, and T.E. Williard in 1903 andsea-levelcycleswhenclimatewasseasonallydrier—duringglacial (housedattheNationalMuseumofNaturalHistory),andbyAurealT. minima/marine highstand through early glacial maxima/lowstand, Cross(housedattheFieldMuseumofNaturalHistory),whoworkedex- thus when the potential for both short-term and intermediate-term tensivelyintheDunkardinthelate1940sandearly1950s.Inaddition, burialand preservation wereattheirlowest.Callipterid andconifer- weillustrateaspecimenofA.confertafromthecollectionsofR.D.Lacoe, richflorasdidnotbegintobepreservedregularly,orbecomethemost whichheacquiredinthelate1800sandsenttotheNationalMuseum common floras in lowland basins until the most favorable times for of Natural History as part of the transfer of his collection to the preservation–thewettesttimesofagivenglacial–interglacialcycle– Smithsonian in the mid-1890s; this specimen is of significance themselvesbecamerelativelyseasonallydry.Thisoccurredduringthe because itmaybetheoldestsurvivingDunkardcallipteridspecimen later Pennsylvanian and Permian, depending on location within the “incaptivity”. Pangeantropics(TaborandPoulsen,2008). Basedonthisstudy,threecallipteridgeneraandfourspeciesoccurin This digression into callipterid ecological and preservational pat- rocks of the Dunkard Group: Autunia conferta (Sternberg) Kerp, A. ternsisimportant for understandingcontroversiessurroundingtheir naumannii (Gutbier) Kerp, Lodevia oxydata (Goeppert) Kerp and importance in the biostratigraphic zonation of terrestrial sequences Haubold,andRhachiphyllumschenkiiKerp. andtheconsequencesofthisforthedebateabouttheageoftheDun- kardGroup.Themostwidespreadcallipteridspecies,Autunia(formerly Callipteris)conferta(Kerp,2000)waslongconsideredanindexspecies 2.GeologyoftheDunkardGroup forthebaseofthePermian(seeextensivediscussionsinvariouspapers inBarlow,1975).Consequently,itsdiscoveryinDunkardrocks,incom- 2.1.Stratigraphy binationwithotherunusualelements,ledFontaineandWhite(1880)to proposethattheDunkardGroupwasatleastpartially,ifnotentirely,of Inthisstudy,wefollowtheterminologyusedbytheFedorkoand Permianage.DavidWhite,oftheU.S.GeologicalSurvey,thoughinitially Skema (2013), which divides the Dunkard into the Washington and infavorofapartialPermianage(White,1904),ultimatelycametoagree GreeneFormations(Fig.1).Martin(1998)summarizesthehistoryof (White,1936)thattheentireDunkardGroupwasofPermianage,apo- Dunkard stratigraphic nomenclature. The Washington Formation, at sitionlongassertedbyI.C.White(seediscussioninLyonsandWagner, the base of the Dunkard, encompasses those rocks from the top of 1995).Throughthe20thcentury,theageoftheserockscontinuedtoat- theWaynesburgcoaltothebaseofthetopoftheUpperWashington tractattentionandcontroversy(e.g.,Clendening,1972;Clendeningand Limestone.TheGreeneFormationencompassesallrocksabovethetop Gillespie, 1972; Cross, 1954, 1958; Cross et al., 1950; Darrah, 1975; oftheUpperWashingtonLimestone,andisthickerthanWashington Bode,recordedinthediscussionfollowingthepaperbyGillespieetal., formation. 1975;Martin,1998),withthecallipteridsplayingamajorpart. TheDunkardGroupisanerosionalremnantthatcropsoutinsouth- Whatisclear,however,isthatthecallipterids,andthepeltasperms westernPennsylvania,easternOhio,centralandwesternWestVirginia, ingeneral,arefaciesfossils.Theirappearanceinageologicalsectionre- andpossiblyinsmalloutliersinwesternMaryland.Itreachesamaxi- flectsseasonallydryclimaticconditions.Callipterids,conifersandava- mumthicknessinthePittsburgh–HuntingtonSynclinoriumofapproxi- rietyofotherplantsnottypicallyencounteredinPennsylvaniantropical mately340minGreeneCounty,Pennsylvania,andadjacentpartsof wetlandassemblages,nonethelessoccurinthePennsylvanianlowlands WetzelCounty,WestVirginia.TheDunkardconsistsofcyclicsucces- andevenlatestMississippian,thoughnotmixedwithwetlandspecies sions of sandstone, shale and mudrocks, and limestone with minor (e.g., Aizenverg et al., 1975; Augusta, 1937; Bassler, 1916; Boyarina, coal(Beerbower,1961),thelatterparticularlyinthethickerlithological 2010; Cridland and Morris, 1963; Doubinger, 1979; Doubinger and section,tothenorthandeast.Heretheclasticstrataarelargelybuffand Langiaux,1982;Doubingeretal.,1995;Falcon-Langetal.,2009;Galtier grayincolorintheWashingtonformation,withminorredbeds,which etal.,1992;Havlena,1958;Hernandez-Castilloetal.,2001;Langiaux, becomemoreconspicuoushigherinthesection,inconjunctionwithde- 1984; Lyons and Darrah, 1989; Martino and Blake, 2001; Němejc, creased abundances of coal(Fedorko and Skema, 2013). Toward the 1951;Plotnicketal.,2009;Rothwelletal.,1997,2005;Šimůnekand south and southwest, the Dunkard section becomes increasingly red Martínek, 2008; Wagner and Lyons, 1997; Winston, 1983; Zhou, and is mostly a sequence of stacked paleosols interbedded with Author's Personal Copy 58 W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 Fig.1.DunkardStratigraphy,afterFedorkoandSkema(2013).Numbersindicatehorizonsfromwhichcallipteridshavebeenidentified.1.BetweentheWaynesburgAandWashington coals.2.WithinorabovetheWashingtoncoalzone.3.WithinorproximatetotheLowerandMiddleWashingtonlimestones.4.IntheintervalfromtheJollytowncoaltotheDunkard coal.5.NeartheNinevehcoal. channel-formsandstonebodies(Berryhill,1963;FedorkoandSkema, characteristic of the latest Pennsylvanian (Gzhelian), quantitatively 2013;Martin,1998). dominatedbymarattialeantreeferns(Blakeetal.,2002;Darrah,1975; It is near the “Washington coal complex”, in the middle of the Gillespieetal.,1975;WagnerandLyons,1997).Therearealsosome Washington Formation (Skema, 2011), from which the first Appala- taxathat,inEurope,hadbeenconsideredcharacteristicoftheMiddle chian basin callipterids are confidently reported. The base of the Pennsylvanian, specifically the pteridosperms Neuropteris ovata and WashingtoncoalcomplexisplacedatthebaseoftheLittleWashington Macroneuropteris scheuchzeri (see discussion in Darrah, 1975). Thse coal (Hennen, 1911), below which is a regionally extensive paleosol formshavebeenshowntorangethroughouttheUpperPennsylvanian (FedorkoandSkema,2013).TheWashingtoncoalcomplexconsistsof (Blakeetal.,2002)andintothePermianinNorthAmerica. twotofourcoalbedsseparatedbyshaleand/orsandstone.Inthenorth- Dunkardcallipteridsdonotoccuraspartofthewetlandbiofacies, westernpartoftheDunkardoutcroparea(BelmontCounty,Ohioand even though some callipterids may have preferred wetter, even MarshallCounty,WestVirginia)thecomplexconsistsoftwocoalbeds swampysubstratesinseasonallydrylandscapes(BarthelandRößler, separatedbyN2mofgrayshale,depositedunderbrackishconditions. 1996;KerpandFichter,1985).Theyarewelldocumentedfirstinshales Theshalebedcontainsabrackishfauna,includinglinguloidbrachiopods withintheWashingtonFormation,beginningattheapproximatehori- and myalinid pelecypods (Berryhill, 1963; Cross and Schemel, 1956; zon of the Washington coal complex, and continuing into the lower FedorkoandSkema,2013).Thisfaunaisthestratigraphicallyhighest halfoftheGreeneFormation.Thesefossilsoccurinavarietyoflitholo- occurrenceofanyevidenceofmarineinfluencefoundintheAppala- gies,fromdark,micaceous,finelylaminatedshales,tobuffandredmud- chianBasinandmaycorrelatewithaglobalmarinetransgressionand stoneswithpoorfissility,tolimestones.Darrah(1975,inthecaptionsto highstandjustbelowtheboundaryofthePennsylvanianandPermian hisFigs.1and3onpage95)providestheonlyreportofcallipteridsfrom (Davydovetal.,2010,2013). belowtheleveloftheWashingtoncoalcomplex.Heattributesthecol- lectionstoJamesBarlowoftheWestVirginiaGeologicalSurvey,pur- 2.2.Plantfossilsingeologiccontext portedly collected from the lower Washington Formation, between the Waynesburg A and Washington coals, near Williamstown, in Most Dunkard plant fossils have been collected from the coal- WoodCounty,WestVirginia.However,coalsareverypoorlydeveloped bearingportions,frequentlyfromshalesimmediatelyabovecoalbeds. intheDunkardGroupinWoodCounty,andDarrahneitherprovidesde- Thus,theyarecomposedoftypicalPennsylvanianwetlandplants.This tailedinformationonthelocationofthecollectinglocalitynorontheul- wetland flora is quite widespread, however, and has been found timatedispositionofthesamples;atpresent,wetreatthisreportwith throughouttheoutcroparea,includingintheredbedfacies(Blakeand reservation.Callipteridshavebeendescribedfromtheimmediateroof Gillespie, 2011). The flora is diverse and includes many species shalesofacoalbedatonlyoneplace,theBrown'sBridgelocality,by Author's Personal Copy W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 59 FontaineandWhite(1880),andheretheymayactuallyhaveoccurred respectively), specifically noting that they come from the roof shale in a clastic layer at the base of the Lower Washington Limestone oftheWashingtoncoal.LeoLesquereuxidentifiedaspecimeninthe (White,1891). R.D.Lacoecollection(USNMspecimen27141)as“C.conferta”,according Otherplantstypical(butnotdiagnostic)ofPermian-ageflorashave to a label affixed to the specimen; a further label identifies it as beenreportedfromtheDunkardandolderrocksin theAppalachian comingfrom“Brown'sMills”,andgivesthestratigraphichorizononly Basin including Taeniopteris, Plagiozamites, and conifers (Blake and as“Washingtoncoal”.OnAugust12,1902,D.WhitecollectedA.conferta Gillespie, 2011), including one collection from near the base of the andL.oxydatafromalocalityheidentifiedas“Brown'sMillsonDunkard Upper Pennsylvanian (McComas, 1988; Wagner and Lyons, 1997). Creek,MonongaliaCo.,W.Va.”(USGSlocality2926);intheUSGSlocality These are reported from various horizons, including the Cassville register,collection2926isnotedascomingfrom“justoverthelime- Shale,abovetheWaynesburgcoal,atthebaseoftheDunkardGroup stoneabovetheWashingtoncoal”. (Darrah,1975;FontaineandWhite,1880;White,1904,1936).Theseoc- From the mid-20th century onward, all of these collections have currences have led some paleobotanists to conclude that the entire beentreatedashavingbeencollectedfromthesameplaceandstratum. DunkardGroupisofPermianage. Detailed notes in published papers and official files (field notes and locality registers), however, indicate that Fontaine and I.C. White's 3.CallipteridsinDunkardstrata “Brown's Bridge” may, in fact, represent a different site from the “Brown'sMills”localityofDavidWhiteandR.D.Lacoe.Inhis1891re- InthisreportweillustrateDunkardcallipteridsfromanumberof port on the bituminous coal fields of Pennsylvania, Ohio and West stratigraphicpositions(Fig.1)andgeographiclocations(shownregion- Virginia,I.C.White(1891,p.37–38)specificallydifferentiates“Brown's allyinFig.2;morespecificityisshowninadditionalmapsthatfollow). Mills”from“Brown'sBridge”,notingthatitisfromthesecondlocation Wefocushereonthefollowing:(1)Collectionsofcallipteridsinthe thatcallipteridsweredescribedinReportPP,SecondGeologicalSurvey, National Museum of Natural History, made by David White or T.E. Pennsylvania,p.54(FontaineandWhite,1880).Hegoesonfurtherto Williard, or acquired from R.D. Lacoe; (2) Collections from the Field notethatatBrown'sMillstheWashingtoncoal(acomplexsuccession MuseumofNaturalHistory,madebyAurealCross;(3)Specimensillus- ofcoal,shaleandbituminousshale)hasa limestoneroof,theLower tratedordescribedexplicitlyinpreviouspublications.Preciseidentifica- WashingtonLimestone,lyingimmediatelyabovetheuppermostbitu- tionofthecollectinghorizonsfromwhichthesecollectionsweremade minousshale.Thelimestoneisnotedascontainingmuchiron.Healso is often difficult. When the original work was being done, the area notesthattheLowerWashingtonLimestoneisofteninterbeddedwith hadbeenclearcutandconsistedlargelyofsmallfarms.Infrastructure iron-rich layers that are themselves interstratified with bituminous suchasroadsandshortlinerailroadswerebeingactivelyconstructed. shales,thelatter“coveredwithfossilplants”.I.C.White(1891)specifi- Todaythisareaisgenerallyremoteandreforested. cally writes that it was also on such a layer that callipterids were foundatBrown'sBridge. Theseobservationsappeartoestablish,unequivocally,that(1)the 3.1.Brown'sBridge,Brown'sMills,Worley callipteridsreported byFontaineandWhite(1880)are from a place knownthenas“Brown'sBridge”,(2)thatthisoriginalsiteisdifferent ThereissomeconfusionsurroundingthesitefromwhichDunkard fromthesitedescribedas“Brown'sMills”,and(3)thatcallipteridsat Groupcallipteridswereoriginallycollected.Forthisreason,wedevote bothplacescamefrombituminousshalelayers,whichwerevariously severalparagraphstothismatter.Theoriginalbedshavenotbeenre- developedaspartoftheLowerWashingtonLimestone. locatedanduncertaintyexistsabouttheexactsitesandstratigraphic Alsobearingonthismatterarethedescriptionsofthefossiliferous positions at which the original 19th century and subsequent early beds in relation to the Washington coal complex. Fontaine and I.C. 20thcenturycollectionsweremade. WhitereportedcallipteridspecimensatBrown'sBridgefromtheroof Fontaine and White (1880) reported Callipteris (Autunia) conferta shale of the Washington coal. In contrast, David White reported his and Sphenopteris coreacea (L.oxydata) from a locality theyidentified specimensascomingfromjustoverthelimestoneabovetheWashing- as “near Brown's Bridge, Monongalia Co., W. Va.” (p. 42 and p. 54, toncoal,thusnotfromashaleimmediatelyincontactwithacoalbed. TheprovenanceoftheUSNMLacoe-collectionspecimenisequivocal becauseLacoeprimarilyacquiredmaterialthroughpurchase,exchange, orbyhiringcollectorstovisitparticularsites.Itispossiblethatthespec- imenwasacquiredfromFontaineandI.C.White(alongwithalarger collectionofDunkardspecimensnowhousedintheNMNH,donated byLacoe).Alabelaffixedtothisspecimenliststhesiteofcollectionas “Brown's Mills”. The matrix of the Lacoe specimen, which is heavy, 12 andthuspresumablyenrichediniron,issimilarincolorandtexture 10 to that of D. White's Brown's Mills specimens. These are the only 5 9 callipteridsintheNMNHcollectionsfromdarkgray,organic-richshales, 8 321 andtheyaresimilarenoughtoinferanoriginfromthesamebed.Lacoe 647 must have acquired this specimen prior to the 1889 death of Leo Lesquereux(whoidentifiedit),andturneditovertotheSmithsonian 11 aspartofthe1895donationofthebulkofhisprivatecollection.David White, who arranged, packed and identified the specimens in the 13 Lacoe bequest, thus would have known of this specimen and the Brown'sMillslocalitypriortohis1902fieldworkintheDunkard. Finallythereareavarietyofother,indirectlinesofevidencethatsug- Fig.2.DunkardGroupoutcropareaandlocationofcallipteridcollections.Appalachian gest different sites for Brown's Bridge and Brown's Mills (Fig. 3). BasinProvince(DarkGreen),AppalachianPlateauregion(LightGreen),Dunkardbasin Accordingtohis1902,Pennsylvania–Dunkardfieldnotebook(onfileat (withinredline).1,Brown'sBridge.2,Brown'sMills.3,WestofLittleton.4,Between theNMNH),onAugust10,1902DavidWhitecollectedatCore'sMine pumpingstationwestofLittletonandLittleton.5,EastofBelltonStation.6,RinehartTun- onDoll'sRun(USGS2893—roofoftheWashingtoncoal,nocallipterids nelStation.7,WestofWallaceStation.8,Winkler'sMill.9,PleasantHillGap.10,Locations aroundWaynesburg.11,Williamstown.12,Wolfdale.13,Liberty.ModifiedfromMilici collected),whichwepresumeto havebeenlocatednearpresentday andSwezey(2006,Fig.3). Core, West Virginia, south of Dunkard Creek. On August 11, 1902 he Author's Personal Copy 60 W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 Fig.3.Blacksville,WV1904USGS15′topographicmapsegmentshowingthelocationsoftheBrownsMills(2926)andBrown'sBridge(2921)sitesinWestVirginia.Notethespellingof thesenames.Thereisambiguityinfieldnotes,localityregisters,theliteratureandtheUSGSGeographicNamesInformationSystemregardingthespellingof“Brown's”vs“Browns”for bothBrownsMills(theofficialUSGSspelling)andBrown'sBridge,aswellasBrownsHill,abovetheBrown'sBridgesite.Wehavesplitthedifference. collectedatasitehedesignatedBrown'sBridge(USGS2921—beneath USGStopographicmapdoesnotshowarailroad.If,indeed,therailroad the Washington coal, no callipterids collected), which in his notes is werebuiltafterthecollectionsofLacoeandDavidWhiteweremade, showntobeanunspecifieddistancenorthofabridgeoverDoll'sRun, thentheoriginalbedsmayhavebeenburiedorsignificantlyalteredin northofCore.Onthe1904topographic map,abridgeis shownover outcrop.Thismayaccountfortheinabilityoflatercollectorstorelocate Doll's Run 1.5 miles (2.4km) north of Core, and a second bridge is anyoftheseearlycollectinghorizons. shownoverDunkardCreek,0.5miles(0.8km)northoftheDoll'sRun bridge. On the 1904 topographic map, this second bridge carries the 3.1.1.FontaineandI.C.WhiteCollection roadthatleadstoMt.Morris,Pennsylvania;furthermore,immediately TheentireoriginalDunkardcollectionofFontaineandWhite(1880) tothenorthofthebridge,onthePennsylvania–WestVirginiaborder,is hasbeenlost.Consequently,theirillustrations–allengravingsandof aprominencelabeled“Brown'sHill”.OnAugust12,1902,Whitecollect- variabledetail–areallthatremain,whichhascausedsignificantprob- ednearMt.Morris(USGS2894—beneaththeWaynesburgSandstone, lemswithapplicationofsomeofthetaxonomicnamestheyinstituted. no callipterids collected) and then at the site he called Brown's Mills In their original publication, they illustrated two callipterid species, (USGS2926–justoverthelimestoneabovetheWashingtoncoal,his only one of which they recognized as a callipterid, Callipteris (now callipteridcollection,accordingtotheUSGSlocalityregister–thereare Autunia)conferta(F&WPlateXI,Figs.1–4,reproducedasFig.4aof no D. White field notes accompanying this collection). In 1903, T.E. this paper). The other, which we identify as L. oxydata (Goeppert) Williardobservedthathiscollection,USGS3438(nocallipterids),was Kerp and Haubold, 1988, was originally described as Sphenopteris fromthe“southsideofDunkardCreekoppositethemillatWorley”.The coreacea Fontaine and White (F & W Plate 5, Fig. 5, reproduced as U.S. Geological Survey Names Information System (http://geonames. Fig. 4b of this paper), which Darrah (1969) identified as Callipteris usgs.gov/pls/gnispublic/f?p=132:3:1293502122222994::NO:3:P3_FID, lyratifolia. Fontaine and White (1880, p. 54) describe their plants as P3_TITLE:1549998,Worley)shows“Brown'sMills”tobeanalternative coming from a “calcareous iron ore” that occurs in the roof of the namefor“Worley”.TheWorley/Brown'sMillssiteis1.5(straightline) Washingtoncoal. to2miles(roadalongDunkardCreek)(~2.5–3km)westofthe“Brown's Bridge”location,butWorley/Brown'sMillsalsoisonDunkardCreekand 3.1.2.R.D.Lacoespecimen directlyoppositeabridge. ThereisasinglespecimenofA.confertamentionedabove,fromthe Itappearsfromthisdiscussionthatasitecalled“Brown'sMills”can R.D.Lacoecollection,housedattheNationalMuseumofNaturalHistory beconfidentlylocatedonthesouthsideofabendinDunkardCreek (USNMspecimen27141—Fig.5).ThespecimenwasidentifiedasC. (NWquadrantoftheBlacksville15′Quadranglemap,andNEquadrant conferta by Leo Lesquereux (according to a label affixed to it); it is oftheBlacksville7.5′Quadranglemap),oppositetheunincorporated mostlikelythatthisspecimenwasmadeavailabletoLesquereuxfor townofWorley,alongpresent-dayWestVirginiaRoute7.Weinitially identificationbyLacoe(seenoteinDarrah,1969,p.153).Thespecimen believedtheBrown'sMillscollectionstocomefromclosetothegrade isinaheavy,thinbedded,darkgrayshalethat,fromitsweight,mustin- ofaformerrailroadatthatlocation.However,thecontemporary,1904 deedcontainconsiderablesiderite. Author's Personal Copy W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 61 Fig.4.OriginalillustrationsofcallipteridsbyFontaineandWhite(1880),fromBrown'sBridge,WestVirginia.A.Autunia(Callipteris)conferta.OriginalPlateXI,Figs.1–4.B.Lodeviaoxydata (Sphenopteriscoreacea).OriginalPlateV,Fig.5. TheidentificationofthisspecimenasA.confertaissupportedbythe fromshalesabovethelimestoneimmediatelyabovetheWashington blunttipped,rectangularpinnuleshapes,sunkenmidveinsandassoci- coal. atedvaultedpinnulelaminaeandsteeplateralveins.Preservation of Aspreviouslymentioned,theBrown'sMillsgeologicaldescriptionis thespecimenisnotgood,butthismayreflectitsageandthefactthat at odds with the Brown's Bridge description of Fontaine and White it has been coated in the past, probably with a varnish, to preserve (1880),whoreportedtheirplantbedtobetheroofoftheWashington whatmayhavebeentheflakingorganiccompression. coal.DarrahreportsthatherecollectedfromtheBrown'sMillssitein 1932,butdoesnotillustrateitorprovideageologicalinterpretivesec- tion; he described the plant bed as a thin, dense, arenaceous shale, 3.1.3.DavidWhitecollection whichbroadlyfitstheotherknowncollections,buthedoesnotmention DavidWhite's“Brown'sMills”collection(USGSlocality2926)con- theconspicuouslydarkcolor. tains both A. conferta (Fig. 6) and L. oxydata (Fig. 7), the same taxa Environmental interpretation of the callipterid-bearing beds at reportedfromBrown'sBridgebyFontaineandWhite(1880).Thema- Brown'sMillsisdifficult,basedonthefragmentaryevidenceavailable. trixofthespecimensdiffersslightlyfromthatofthesingleSmithsonian Furthermore,thesiteispresentlyheavilyvegetatedand,thus,toopoor- Lacoespecimen,mainlyinbeinglesssideriticandmoredistinctlylami- lyexposedtopermitlocationoftheoriginalbeds.I.C.White(1891), nated,butbothareverydarkshaleswithconsiderablesideritecontent, however, described a complex section at the Brown's Mills site and sotheymayrepresentdifferentpartsofordifferentcollectinglocalities noted that plants occur in layers of bituminous shales within the withinthesamebed.DavidWhite's1902fieldnotes,frustratingly,do Lower Washington Limestone. The co-occurrence of large, well pre- notmentionthislocalitybyname.Theonlyrecord,therefore,isinthe servedfragmentsofA.confertaandL.oxydatatogetheronsomebedding USGeologicalSurveypaleobotanicallocalityregisterentry,whichprob- surfaces,inthesamelithology,leaveslittlequestionthatthesespecies ably was based on data included with the specimens when shipped werelivingtogether,atleastintheorganic-shalehabitat.Thesedark- from the field. The locality register notes that the collections come shale, callipterid beds also include a fauna of ostracodes and snails Author's Personal Copy 62 W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 Fig.5.R.D.LacoeCollectionspecimenfromBrown'sMills,WestVirginia,identifiedbyLeoLesquereux.Autuniaconferta.USNMspecimen27141.Specimenhasbeencoatedwithan unidentifiedsubstance.A.Typicalsmall-pinnuledformofAutuniaconferta.B.MagnificationofpinnaefromA,illustratingattachmenttomainrachisandpinnulecharacteristics,upswept venation.Scalebars=1cm. (Tibertetal.,2011).Thesnailsareheavilycalcifiedandwouldhavere- 3.2.WestofLittleton quiredalkaline-richwatersheds,thustheydidnotlikelyliveinassocia- tionwiththedrowningofanacidic,peat-formingswamp.Thegeneral Several plant collections from “West of Littleton”, West Virginia, inferenceisthatthelimestoneandtheinterbeddedshalesweredepos- weremadebyDavidWhiteonAugust22,1902.AccordingtoWhite's itedunderaseasonallydryclimate(N.Tibert,personalcommunication, fieldnotesandanotefoundwiththecollections,thesitewasatthe 2013). westendofthefirstrailroadcutwestofLittleton.Therailroad,then We may draw the following conclusions from these observations. theBaltimoreandOhioline,isnowgone,butappearsontheNEquad- (1)Thestratigraphic-temporalseparationofthecallipteridbedsfrom rantoftheLittleton15′USGSquadranglemapfromtheearly20thcen- theWashington coal complex indicatesthattheywere notdeposited tury(Fig.8).T.E.Williardcollectedfromthesesameexposuresin1903 bydrowningofthecoalswamp.(2)Thisplantbedcontainsabundantre- andnotedthemascomingfromthefirstrailroadcutnorthofLittleton, mainsofnon-marineostracodes,snails,fishandserpulidworms(Tibert justaboveFishCreek.Duetothepathoftherailroadtrack,,thesiteis,in etal.,2011),suggestingthatitmaybeaninterbedfaciesoftheLower fact,northandwestofLittleton. WashingtonLimestone,whichmayexplaintheironcarbonatecontent TheWest/NorthofLittletonplantcollections(USGSLocalityNumbers oftheshales.(3)Thepositionoftheplant-bearingshaleabove,orper- 2909,2909×,2911,3376)consistofseveraldifferentlithologies.D.White hapsevenwithin,apartingofalimestonereflectsashiftfromahumid indicatesplantsatminimallyfourlevels,whichmayaccountforhislitho- climate during coal-swamp development to a sub-humid, seasonally logically mixedsamples—there are fewerUSNMcollectionsthanthe dryclimate(terminologyofCecilandDulong,2003)duringdeposition number of plant-bearing beds indicated in the field notes, indicating ofthenon-marinelimestoneandorganic-richshaleinterbeds.(4)The mixingofcollectionsmadefromthevarious,distinctfossiliferousbeds. density, lack of preferential orientation and excellent preservation of Similarly,Williard'ssamplesarelithologicallyheterogeneous,indicating theplantmaterialsuggestaparautochthonoustoautochthonousenvi- derivation from more than one fossiliferous bed. D. White's notes for ronmentofaccumulation—thefoliagewasburiedwhereitfellfrom thislocationindicatearelativelylargenumberoflimestonesinthesec- theparentplant.(5)Atthe landscapescale, the reportofcallipterids tion,interspersedwithredandgreenshale.Thestratigraphicpositionof fromsandstonesatthissite(Gillespieetal.,1975)isancillaryevidence thesebedsappearstobebetweentheJollytownandDunkardcoals(be- that callipterids were widespread and occurred across the landscape tween which the Tenmile coal occurs, Fig. 1), with some uncertainty. foranextendedperiod,permittingtheirpreservationinavarietyofhab- ThispositionwouldputthecollectionsinthelowerGreeneFormation, itatsandthelithologiesformedtherein. atvariousdistancesabovetheUpperWashingtonLimestone. Author's Personal Copy W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 63 Fig.6.AutuniaconfertafromBrown'sMills,WestVirginia,collectedbyDavidWhite.USGSlocality2926.A.USNMspecimen543957,fragmentaryfrondwithseveralpinnae.B.3Xenlarge- mentofA,notepinnuleshape,whichisthesameasthatoftheLacoe/LesquereuxspecimenandthoseillustratedbyFontaineandWhite(1880)fromBrown'sBridge.Thicknessofpinnule laminaeobscuressteeplyascendinglateralveins.C.USNMspecimen543962,pinnatipwithacroscopicallyfusedpinnules,steeplyascendinglateralveins.BandCatsamemagnification. Scalebars=1cm. Collections2909,2909×and3376aremostlyhandsamplesofgrayto basedonthepresenceofslickensides,bioturbatedtexture,andlackof redclay-richmudstoneswithafewbuffsiltstones.Themajorityoftheas- clearbedding.Wewouldcharacterizeallthesecallipteridspecimensas semblageineachcollectionconsistsalmostentirelyoftypicalLatePenn- A.conferta(Fig.9A–C),basedonthehighvaultingofthepinnules,sunken sylvanian wetland plants, including Pecopteris tree-fern foliage, midveins,anddense,steepsecondaryveins.TheD.Whiteandsomeofthe calamitalean remains and possibly Callipteridium. There are, however, Williardcallipteridcollectionsmayhavecomefromthesamebed,based severalspecimensofcallipteridsinthesecollections,preservedingray onthesimilarityoftheirrespectivelithologies.However,theWilliardcol- toredmudstonesthatappeartohavebeenpedogenicallyoverprinted, lectionincludesaspecimeninbuffsiltstone. Author's Personal Copy 64 W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 Fig.7.LodeviaoxydatafromBrown'sMills,WestVirginia,collectedbyDavidWhite.USGSlocality2926;USNMspecimen543958.A.Fragmentoffrondwithattachedpinnae.B.3×enlarge- mentofA,notepinnuleshape,steeplyascendinglateralvenation,andthickpinnulelaminae.C.Closeupoftwopinnae.Notespirorbidsattachedtothefoliage(oneatwhitearrow,others canbeseenbyscanningthefoliagelaminae).Scalebars=1cm. Collection2911alsoconsistsofamixtureoflithologies,includingred tunnel along the railroad grade. No pumping station is shown north mudstonesandbuff,micaceoussiltstone.Asinglepossiblecallipteridis andwestofLittletononthe1926USGS15′topographicmap(Fig.8). presentinthiscollectioninthebuffsiltstonefacies.Thespecimenmost Thespecimensfromthissiteareamixtureoflithologiessuggesting closelyresemblesRhachiphylluminthepresenceofflatpinnulelaminae, that they were collected from different beds. Most of the specimens relativelysparseveins,andathin,non-sunkenpinnulemidvein. are red mudstone, consisting mainly of wetland taxa such as Basedonthemixednatureofthecollections,onthesmallamountof Macroneuropteris scheuchzeri, Polymorphopteris, Pecopteris and overlapbetweenthecallipteridsandwetlandspecies,andontheuncer- Sphenophyllum.However,severalpinnaeofA.confertaoccurinagray, taintyinthefieldnotesthataccompanythecollections,littlecanbesaid carbonate-rich, fine grained mudstone, on an irregular red-stained aboutthepaleoenvironmentsoccupiedbytheseplantsoraboutthecli- surface.Thepinnulesarevaultedwithasunkenmidveinandsteeply maticregimeunderwhichtheylived. angledlateralveins(Fig.9D,E). D.White(fieldnotes)placesthiscollectionatthelevelofacoalho- rizonbetweentheJollytowncoalandtheDunkardcoal(notedas“fide 3.3.BetweenLittletonandthePumpingStationWestofLittleton I.C.W.”—presumablyreferringtoI.C.White).IfD.Whiteinterpreted thesectioncorrectly,thesecollectionsappeartobefromasuccession USGSLocality2901isanunspecifieddistancetothewestoftheLittle- ofthincarbonatebedsandredshalebelowabedofcoalandcarbona- tonrailroadstation(accordingtoD.White'sfieldnotes),butperhaps¼ ceous shale, above the Jollytown coal, making the Tenmile coal a or less of the distance between Littleton and the Board Tree railroad candidate. Author's Personal Copy W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 65 Fig.8.Cameron,WV1904andLittleton,WV1926USGS15′topographicmapsegmentsshowingfossilplantlocalitiesfromWestofLittleton(2909and2911),NorthofLittleton(3376)and BetweenLittletonandthePumpingStationWestofLittleton(2901).Fossilplantlocality2mileseastofBellton(2914).AllinWestVirginia. 3.4.TwoMilesEastofBelltonStation asinglespecimenwithcallipteridimpressionsinthiscollection;itcon- tainspartsoftwopinnae,preservedinahard,buff,siltstone.Theyare Along the former Baltimore and Ohio Railroad, two miles east of referable to A. conferta based on pinnule shape, sunken midveins, Bellton,WestVirginia(Fig.8),D.Whitecollectedspecimensfromred steeplateralveinsandvaultedpinnulesurfaces(Fig.10). andgrayshales,anunspecifieddistanceabovewhatheidentifiedas the “Dunkard (or perhaps the Jollytown) coal” (field notes), which 3.5.RinehartTunnelStation wouldplacethiscollection(USGSLocalitynumber2914)inthelower portion of the Greene Formation. The coal is noted as 6 in. (15cm) On August 23, 1902, the final day of his summer field season, thick.RedbedslieabovetheDunkardcoal(Fig.1),separatedfromit D.WhitestoppednearanewlyexcavatedrailroadtunnelontheWest bygrayshalesandsandstone,whichisbroadlyinconformancewith VirginiaShortlineRailroad(fieldnotespage34),asitehereferredto D. White's field sketch, perhaps explaining his identification of the as“TunnelSta.”(?TunnelStation).Apossiblylateradditiontothenote- coal bed. From White's notes, it appears that the plant-bearing beds bookbyD.Whiteoranunknownpersonlocatesthissite“…inSEcorner areseparatedfromthecoalbymorethanameterbutlessthan10m. ofWetzelCountyinCenterpoint15′quadandFolsom71/2′quad.Itis Consisting,again,ofmixedlithologiesandamixedflora,D.White's between Rinehart and Folsom” (Fig. 11). White notes “Callipteris in fieldnotesrecord“Callipterisreginum[Callipterisconferta]”.Wefound plentyatthetunnelinthe[illegible]dumpandindumpatthew.end

Description:
David White, of the U.S. Geological Survey, though initially in favor of . chian basin callipterids are confidently reported. The 1904 road configuration (refer to the Rogersville 15′ . ship, northwest of Washington, Pennsylvania.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.