Author's Personal Copy InternationalJournalofCoalGeology119(2013)56–78 ContentslistsavailableatScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Callipterid peltasperms of the Dunkard Group, Central Appalachian Basin WilliamA.DiMichelea,⁎,HansKerpb,RobertaSirmonsa,NickFedorkoc,ViktorasSkemad, BascombeM.BlakeJr.e,C.BlaineCecilf aDepartmentofPaleobiology,NMNHSmithsonianInstitution,Washington,DC20560,USA bForschungsstellefürPaläobotanik,UniversityofMünster,Germany cCoveGeologicalServices,Moatsville,WV26405,USA dPennsylvaniaGeologicalSurvey,Middletown,PA17057,USA eWestVirginiaGeologicalandEconomicSurvey,Morgantown,WV26508,USA fU.S.GeologicalSurvey,NationalCenter,Reston,VA20192,USA a r t i c l e i n f o a b s t r a c t Articlehistory: TheDunkardGroupistheyoungestlatePaleozoicrockunitintheCentralAppalachianBasin.Itsage,however, Received8April2013 remainscontroversial.Initssouthernandwesterntwo-thirdstheDunkardiscomprisedlargelyofredbeds,sand- Receivedinrevisedform3July2013 stoneandsiltstonechanneldepositsandpaleosols.Initsthickest,mostnortherlyexposures,insouthwestern Accepted4July2013 Pennsylvania,northernWestVirginia,andeast-centralOhio,muchofthelowerpartoftheunitiscomposedof Availableonline8August2013 coals, non-marine limestones and gray, often calcareous, paleosols. Age dating is confounded by the non- marinenatureofthedepositandbythelackofdateablevolcanicashbeds.Dunkardfossilsincludeplants,verte- Keywords: brates,andbothaquaticandterrestrialinvertebrates.Mostofthefossilgroupspointtoanageverycloseto,ifnot Dunkard Callipterids including, the Pennsylvanian–Permian boundary, though the exact position of that boundary is uncertain. Permian CallipteridsmaketheirfirstappearanceintheDunkardflorainthemiddleoftheWashingtonFormationandcon- Pennsylvanian tinueintotheGreeneFormation,butindifferentbedsfromthosecontainingwetlandfloralelements.Publication Paleoecology oftheseplantsinthe“PermianFlora”ofFontaineandWhite(1880)createdanimmediatecontroversyaboutthe Paleoclimate ageoftheunitbecauseCallipterisconferta(nowAutuniaconferta)was,atthetime,consideredtobeanindexfossil forthebaseofthe Permian.Subsequentcollecting hasrevealedthesecallipterdstocomprisefourspecies: A.conferta,Autunianaumannii,LodeviaoxydataandRhachiphyllumschenkii.Callipterids–andtheconiferswith which they are sometimesassociated – are typically found inseasonallydry equatorialenvironments and mostlikelyconstituteanenvironmentallycontrolledbiofacies.Thisbiofaciesisnotwellknown,resultinginlim- itedbiostratigraphicutility. PublishedbyElsevierB.V. 1.Introduction lineage,theyoriginatedduring,orpriorto,theMiddlePennsylvanian (Pšeničkaetal.,2011),andlaterradiatedextensively(DiMicheleetal., ThecallipteridsareagroupoflatePaleozoictropicalplants,charac- 2005;Kerp,1988;Naugolnykh,1999).Thisradiationappearstohave terizedbyfoliageformerlyclassifiedasCallipteris.Thisgenuswassplit occurredinenvironmentswithseasonallydistributedmoisture(Kerp, into five genera when the generic name appeared to be illegitimate 2000), probably under wet-subhumid to dry-subhumid climates (KerpandHaubold,1988).Reproductiveorgansrevealedthatoneof (terminologysensuCecilandDulong,2003).Whereaspeltaspermsin the resulting genera, Autunia, is a peltasperm (Kerp, 1988). Other generalspreadwidelythroughoutPangeantropicalandnortherntem- callipteridsalsoappeartobepeltasperms(e.g.,NaugolnykhandKerp, perate latitudes (see discussion in Naugolnykh and Kerp, 1996), the 1996;PoortandKerp,1990)anditcanbeassumedthatthisistruefor callipterids formed prominent elements mainly in Permian tropical most if not all callipterids. Peltasperms are related to, and possibly floras.ThenearabsenceoftheseplantsfromtypicalLatePennsylvanian descended from, the callistophytalean pteridosperms (Crane, 1985; wetlandflorasandtheiroccurrencesindepositswithorassociatedwith Hilton and Bateman, 2006). If the callipterids prove to be a natural indicatorsofseasonality(e.g.,Feldmanetal.,2005),arestrongevidence oftheirpreferenceforseasonallydrysettings. AsKerp(2000)hasnoted,callipteridsoccuronlyoccasionallywith ⁎ Correspondingauthorat:DepartmentofPaleobiologyMRC-121,NMNHSmithsonian conifers(ChaneyandDiMichele,2007;GaltierandBroutin,2008),anoth- Institution,Washington,DC20560,USA.Tel.:+12026331319;fax:+12027862832. ergroupconsideredtofavorseasonallydryhabitats.Fossilsofthetwo E-mailaddresses:[email protected](W.A.DiMichele),[email protected](H.Kerp), groupslargelyarefoundseparately,evenwithinrocksequencesfrom [email protected](R.Sirmons),[email protected](N.Fedorko),[email protected] (V.Skema),[email protected](B.M.Blake),[email protected](C.B.Cecil). whichbothgroupsotherwiseareknown(e.g.,KerpandFichter,1985), 0166-5162/$–seefrontmatter.PublishedbyElsevierB.V. http://dx.doi.org/10.1016/j.coal.2013.07.025 Author's Personal Copy W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 57 suggesting different habitat preferences and, unsurprisingly, environ- 1994).Tousetheseflorasforaccuratebiostratigraphicdeterminations, mentalheterogeneityandcomplexityinseasonallydrylandscapes. onemustbedealingwithbiome-restrictedassemblageswhereinevolu- Theearlydevelopmentofflorasfromseasonallydrylandscapesis tionary changes can be identified and tracked through time with poorlyknown,however,largelyduetohydrologicalfactorsrelatedto high precision and accuracy (for discussion see Broutin et al., 1990; thepreservationoforganicmatter.Themostlikelytimesforfossilfor- DiMichele and Aronson, 1992; DiMichele et al., 2008; Kerp, 1996; mationinbasinallowlandsarewhenconditionsforplantpreservation MapesandGastaldo,1986).Unfortunately,theseasonally-dryassem- favor both short-term and long-term burial (Gastaldo and Demko, blagesofthepre-Permianareinadequatelyknownatpresentforthis 2010). Increasing evidence indicates that during the Pennsylvanian, task.Theirsporadicappearanceswithinstratigraphicsequencesother- thesefavorableperiodswereduringwettestpartsofglacial–interglacial wisedominatedbythewetlandbiomeareindicationsofclimateoscilla- cycles,whichinequatoriallatitudesmainlyoccurredduringthemiddle tion,shiftingspeciespoolsandpreservationalhappenstance,butthese andlatestagesofglacialmaxima,whensealevelswereattheirlowest occurrences are too few for detailed reconstruction of evolutionary (Ceciletal.,2003;Hortonetal.,2012;PeyserandPoulsen,2008).This changes. assuredbothshort-termburialoforganicmatterunderrainfall-driven TheDunkardflorahasbeenwidelycollectedandmanyofitscom- highwatertables,andintermediate-termburialundersubsequentlyris- monelementshavebeenillustrated.However,therearefewillustra- ingsealevels,duringensuinginterglacials(ElrickandNelson,2010). tionsofthecallipterids.TheoriginalFontaineandWhite(1880,Plate Ultimatelong-termburialreliedoncontinualbasinalsubsidence,anas- XI,Figs.1–4)figureswereengravings,andlackfinedetail.Photographic sumptionmadeplausiblebyrecent“digital”correlations,indicatingthat illustrationsofcallipteridspecimensappearinDarrah(1975,Figs.1–3), glacial-interglacialcyclescanbecorrelatedwithhighfidelityfromthe Gillespieetal.(1975,PlateIAandPlateVIIIA;refiguredinBlakeetal., MidcontinentUSA,throughtheeasternNorthAmericancoalbasins,to 2002, Plate XXXV, Figs. 1–2, 6) and Gillespie and Pfefferkorn (1979, as far as the Donets Basin of the Ukraine (Eros et al., 2012; Falcon- Plate3,Figs.6–8;refiguredinBlakeetal.,2002,PlateXXXV,Figs.5,7). Langetal.,2011a;Heckeletal.,2007).Therealsoisevidenceindicating Consequently,themainobjectiveofthispaperistodescribeandillus- thatseasonallydryflorasoccurredinbasinsregularlyduringmuchof tratetheDunkardGroupcallipteridsanddetailtheirstratigraphicdistri- theMiddle and Late Pennsylvanian(Falcon-Langet al., 2009, 2011b; bution.Someofthesespecimenscomefrom previously unillustrated Plotnick et al., 2009), but mainly during those intervals of climate collections made by David White in 1902, and T.E. Williard in 1903 andsea-levelcycleswhenclimatewasseasonallydrier—duringglacial (housedattheNationalMuseumofNaturalHistory),andbyAurealT. minima/marine highstand through early glacial maxima/lowstand, Cross(housedattheFieldMuseumofNaturalHistory),whoworkedex- thus when the potential for both short-term and intermediate-term tensivelyintheDunkardinthelate1940sandearly1950s.Inaddition, burialand preservation wereattheirlowest.Callipterid andconifer- weillustrateaspecimenofA.confertafromthecollectionsofR.D.Lacoe, richflorasdidnotbegintobepreservedregularly,orbecomethemost whichheacquiredinthelate1800sandsenttotheNationalMuseum common floras in lowland basins until the most favorable times for of Natural History as part of the transfer of his collection to the preservation–thewettesttimesofagivenglacial–interglacialcycle– Smithsonian in the mid-1890s; this specimen is of significance themselvesbecamerelativelyseasonallydry.Thisoccurredduringthe because itmaybetheoldestsurvivingDunkardcallipteridspecimen later Pennsylvanian and Permian, depending on location within the “incaptivity”. Pangeantropics(TaborandPoulsen,2008). Basedonthisstudy,threecallipteridgeneraandfourspeciesoccurin This digression into callipterid ecological and preservational pat- rocks of the Dunkard Group: Autunia conferta (Sternberg) Kerp, A. ternsisimportant for understandingcontroversiessurroundingtheir naumannii (Gutbier) Kerp, Lodevia oxydata (Goeppert) Kerp and importance in the biostratigraphic zonation of terrestrial sequences Haubold,andRhachiphyllumschenkiiKerp. andtheconsequencesofthisforthedebateabouttheageoftheDun- kardGroup.Themostwidespreadcallipteridspecies,Autunia(formerly Callipteris)conferta(Kerp,2000)waslongconsideredanindexspecies 2.GeologyoftheDunkardGroup forthebaseofthePermian(seeextensivediscussionsinvariouspapers inBarlow,1975).Consequently,itsdiscoveryinDunkardrocks,incom- 2.1.Stratigraphy binationwithotherunusualelements,ledFontaineandWhite(1880)to proposethattheDunkardGroupwasatleastpartially,ifnotentirely,of Inthisstudy,wefollowtheterminologyusedbytheFedorkoand Permianage.DavidWhite,oftheU.S.GeologicalSurvey,thoughinitially Skema (2013), which divides the Dunkard into the Washington and infavorofapartialPermianage(White,1904),ultimatelycametoagree GreeneFormations(Fig.1).Martin(1998)summarizesthehistoryof (White,1936)thattheentireDunkardGroupwasofPermianage,apo- Dunkard stratigraphic nomenclature. The Washington Formation, at sitionlongassertedbyI.C.White(seediscussioninLyonsandWagner, the base of the Dunkard, encompasses those rocks from the top of 1995).Throughthe20thcentury,theageoftheserockscontinuedtoat- theWaynesburgcoaltothebaseofthetopoftheUpperWashington tractattentionandcontroversy(e.g.,Clendening,1972;Clendeningand Limestone.TheGreeneFormationencompassesallrocksabovethetop Gillespie, 1972; Cross, 1954, 1958; Cross et al., 1950; Darrah, 1975; oftheUpperWashingtonLimestone,andisthickerthanWashington Bode,recordedinthediscussionfollowingthepaperbyGillespieetal., formation. 1975;Martin,1998),withthecallipteridsplayingamajorpart. TheDunkardGroupisanerosionalremnantthatcropsoutinsouth- Whatisclear,however,isthatthecallipterids,andthepeltasperms westernPennsylvania,easternOhio,centralandwesternWestVirginia, ingeneral,arefaciesfossils.Theirappearanceinageologicalsectionre- andpossiblyinsmalloutliersinwesternMaryland.Itreachesamaxi- flectsseasonallydryclimaticconditions.Callipterids,conifersandava- mumthicknessinthePittsburgh–HuntingtonSynclinoriumofapproxi- rietyofotherplantsnottypicallyencounteredinPennsylvaniantropical mately340minGreeneCounty,Pennsylvania,andadjacentpartsof wetlandassemblages,nonethelessoccurinthePennsylvanianlowlands WetzelCounty,WestVirginia.TheDunkardconsistsofcyclicsucces- andevenlatestMississippian,thoughnotmixedwithwetlandspecies sions of sandstone, shale and mudrocks, and limestone with minor (e.g., Aizenverg et al., 1975; Augusta, 1937; Bassler, 1916; Boyarina, coal(Beerbower,1961),thelatterparticularlyinthethickerlithological 2010; Cridland and Morris, 1963; Doubinger, 1979; Doubinger and section,tothenorthandeast.Heretheclasticstrataarelargelybuffand Langiaux,1982;Doubingeretal.,1995;Falcon-Langetal.,2009;Galtier grayincolorintheWashingtonformation,withminorredbeds,which etal.,1992;Havlena,1958;Hernandez-Castilloetal.,2001;Langiaux, becomemoreconspicuoushigherinthesection,inconjunctionwithde- 1984; Lyons and Darrah, 1989; Martino and Blake, 2001; Němejc, creased abundances of coal(Fedorko and Skema, 2013). Toward the 1951;Plotnicketal.,2009;Rothwelletal.,1997,2005;Šimůnekand south and southwest, the Dunkard section becomes increasingly red Martínek, 2008; Wagner and Lyons, 1997; Winston, 1983; Zhou, and is mostly a sequence of stacked paleosols interbedded with Author's Personal Copy 58 W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 Fig.1.DunkardStratigraphy,afterFedorkoandSkema(2013).Numbersindicatehorizonsfromwhichcallipteridshavebeenidentified.1.BetweentheWaynesburgAandWashington coals.2.WithinorabovetheWashingtoncoalzone.3.WithinorproximatetotheLowerandMiddleWashingtonlimestones.4.IntheintervalfromtheJollytowncoaltotheDunkard coal.5.NeartheNinevehcoal. channel-formsandstonebodies(Berryhill,1963;FedorkoandSkema, characteristic of the latest Pennsylvanian (Gzhelian), quantitatively 2013;Martin,1998). dominatedbymarattialeantreeferns(Blakeetal.,2002;Darrah,1975; It is near the “Washington coal complex”, in the middle of the Gillespieetal.,1975;WagnerandLyons,1997).Therearealsosome Washington Formation (Skema, 2011), from which the first Appala- taxathat,inEurope,hadbeenconsideredcharacteristicoftheMiddle chian basin callipterids are confidently reported. The base of the Pennsylvanian, specifically the pteridosperms Neuropteris ovata and WashingtoncoalcomplexisplacedatthebaseoftheLittleWashington Macroneuropteris scheuchzeri (see discussion in Darrah, 1975). Thse coal (Hennen, 1911), below which is a regionally extensive paleosol formshavebeenshowntorangethroughouttheUpperPennsylvanian (FedorkoandSkema,2013).TheWashingtoncoalcomplexconsistsof (Blakeetal.,2002)andintothePermianinNorthAmerica. twotofourcoalbedsseparatedbyshaleand/orsandstone.Inthenorth- Dunkardcallipteridsdonotoccuraspartofthewetlandbiofacies, westernpartoftheDunkardoutcroparea(BelmontCounty,Ohioand even though some callipterids may have preferred wetter, even MarshallCounty,WestVirginia)thecomplexconsistsoftwocoalbeds swampysubstratesinseasonallydrylandscapes(BarthelandRößler, separatedbyN2mofgrayshale,depositedunderbrackishconditions. 1996;KerpandFichter,1985).Theyarewelldocumentedfirstinshales Theshalebedcontainsabrackishfauna,includinglinguloidbrachiopods withintheWashingtonFormation,beginningattheapproximatehori- and myalinid pelecypods (Berryhill, 1963; Cross and Schemel, 1956; zon of the Washington coal complex, and continuing into the lower FedorkoandSkema,2013).Thisfaunaisthestratigraphicallyhighest halfoftheGreeneFormation.Thesefossilsoccurinavarietyoflitholo- occurrenceofanyevidenceofmarineinfluencefoundintheAppala- gies,fromdark,micaceous,finelylaminatedshales,tobuffandredmud- chianBasinandmaycorrelatewithaglobalmarinetransgressionand stoneswithpoorfissility,tolimestones.Darrah(1975,inthecaptionsto highstandjustbelowtheboundaryofthePennsylvanianandPermian hisFigs.1and3onpage95)providestheonlyreportofcallipteridsfrom (Davydovetal.,2010,2013). belowtheleveloftheWashingtoncoalcomplex.Heattributesthecol- lectionstoJamesBarlowoftheWestVirginiaGeologicalSurvey,pur- 2.2.Plantfossilsingeologiccontext portedly collected from the lower Washington Formation, between the Waynesburg A and Washington coals, near Williamstown, in Most Dunkard plant fossils have been collected from the coal- WoodCounty,WestVirginia.However,coalsareverypoorlydeveloped bearingportions,frequentlyfromshalesimmediatelyabovecoalbeds. intheDunkardGroupinWoodCounty,andDarrahneitherprovidesde- Thus,theyarecomposedoftypicalPennsylvanianwetlandplants.This tailedinformationonthelocationofthecollectinglocalitynorontheul- wetland flora is quite widespread, however, and has been found timatedispositionofthesamples;atpresent,wetreatthisreportwith throughouttheoutcroparea,includingintheredbedfacies(Blakeand reservation.Callipteridshavebeendescribedfromtheimmediateroof Gillespie, 2011). The flora is diverse and includes many species shalesofacoalbedatonlyoneplace,theBrown'sBridgelocality,by Author's Personal Copy W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 59 FontaineandWhite(1880),andheretheymayactuallyhaveoccurred respectively), specifically noting that they come from the roof shale in a clastic layer at the base of the Lower Washington Limestone oftheWashingtoncoal.LeoLesquereuxidentifiedaspecimeninthe (White,1891). R.D.Lacoecollection(USNMspecimen27141)as“C.conferta”,according Otherplantstypical(butnotdiagnostic)ofPermian-ageflorashave to a label affixed to the specimen; a further label identifies it as beenreportedfromtheDunkardandolderrocksin theAppalachian comingfrom“Brown'sMills”,andgivesthestratigraphichorizononly Basin including Taeniopteris, Plagiozamites, and conifers (Blake and as“Washingtoncoal”.OnAugust12,1902,D.WhitecollectedA.conferta Gillespie, 2011), including one collection from near the base of the andL.oxydatafromalocalityheidentifiedas“Brown'sMillsonDunkard Upper Pennsylvanian (McComas, 1988; Wagner and Lyons, 1997). Creek,MonongaliaCo.,W.Va.”(USGSlocality2926);intheUSGSlocality These are reported from various horizons, including the Cassville register,collection2926isnotedascomingfrom“justoverthelime- Shale,abovetheWaynesburgcoal,atthebaseoftheDunkardGroup stoneabovetheWashingtoncoal”. (Darrah,1975;FontaineandWhite,1880;White,1904,1936).Theseoc- From the mid-20th century onward, all of these collections have currences have led some paleobotanists to conclude that the entire beentreatedashavingbeencollectedfromthesameplaceandstratum. DunkardGroupisofPermianage. Detailed notes in published papers and official files (field notes and locality registers), however, indicate that Fontaine and I.C. White's 3.CallipteridsinDunkardstrata “Brown's Bridge” may, in fact, represent a different site from the “Brown'sMills”localityofDavidWhiteandR.D.Lacoe.Inhis1891re- InthisreportweillustrateDunkardcallipteridsfromanumberof port on the bituminous coal fields of Pennsylvania, Ohio and West stratigraphicpositions(Fig.1)andgeographiclocations(shownregion- Virginia,I.C.White(1891,p.37–38)specificallydifferentiates“Brown's allyinFig.2;morespecificityisshowninadditionalmapsthatfollow). Mills”from“Brown'sBridge”,notingthatitisfromthesecondlocation Wefocushereonthefollowing:(1)Collectionsofcallipteridsinthe thatcallipteridsweredescribedinReportPP,SecondGeologicalSurvey, National Museum of Natural History, made by David White or T.E. Pennsylvania,p.54(FontaineandWhite,1880).Hegoesonfurtherto Williard, or acquired from R.D. Lacoe; (2) Collections from the Field notethatatBrown'sMillstheWashingtoncoal(acomplexsuccession MuseumofNaturalHistory,madebyAurealCross;(3)Specimensillus- ofcoal,shaleandbituminousshale)hasa limestoneroof,theLower tratedordescribedexplicitlyinpreviouspublications.Preciseidentifica- WashingtonLimestone,lyingimmediatelyabovetheuppermostbitu- tionofthecollectinghorizonsfromwhichthesecollectionsweremade minousshale.Thelimestoneisnotedascontainingmuchiron.Healso is often difficult. When the original work was being done, the area notesthattheLowerWashingtonLimestoneisofteninterbeddedwith hadbeenclearcutandconsistedlargelyofsmallfarms.Infrastructure iron-rich layers that are themselves interstratified with bituminous suchasroadsandshortlinerailroadswerebeingactivelyconstructed. shales,thelatter“coveredwithfossilplants”.I.C.White(1891)specifi- Todaythisareaisgenerallyremoteandreforested. cally writes that it was also on such a layer that callipterids were foundatBrown'sBridge. Theseobservationsappeartoestablish,unequivocally,that(1)the 3.1.Brown'sBridge,Brown'sMills,Worley callipteridsreported byFontaineandWhite(1880)are from a place knownthenas“Brown'sBridge”,(2)thatthisoriginalsiteisdifferent ThereissomeconfusionsurroundingthesitefromwhichDunkard fromthesitedescribedas“Brown'sMills”,and(3)thatcallipteridsat Groupcallipteridswereoriginallycollected.Forthisreason,wedevote bothplacescamefrombituminousshalelayers,whichwerevariously severalparagraphstothismatter.Theoriginalbedshavenotbeenre- developedaspartoftheLowerWashingtonLimestone. locatedanduncertaintyexistsabouttheexactsitesandstratigraphic Alsobearingonthismatterarethedescriptionsofthefossiliferous positions at which the original 19th century and subsequent early beds in relation to the Washington coal complex. Fontaine and I.C. 20thcenturycollectionsweremade. WhitereportedcallipteridspecimensatBrown'sBridgefromtheroof Fontaine and White (1880) reported Callipteris (Autunia) conferta shale of the Washington coal. In contrast, David White reported his and Sphenopteris coreacea (L.oxydata) from a locality theyidentified specimensascomingfromjustoverthelimestoneabovetheWashing- as “near Brown's Bridge, Monongalia Co., W. Va.” (p. 42 and p. 54, toncoal,thusnotfromashaleimmediatelyincontactwithacoalbed. TheprovenanceoftheUSNMLacoe-collectionspecimenisequivocal becauseLacoeprimarilyacquiredmaterialthroughpurchase,exchange, orbyhiringcollectorstovisitparticularsites.Itispossiblethatthespec- imenwasacquiredfromFontaineandI.C.White(alongwithalarger collectionofDunkardspecimensnowhousedintheNMNH,donated byLacoe).Alabelaffixedtothisspecimenliststhesiteofcollectionas “Brown's Mills”. The matrix of the Lacoe specimen, which is heavy, 12 andthuspresumablyenrichediniron,issimilarincolorandtexture 10 to that of D. White's Brown's Mills specimens. These are the only 5 9 callipteridsintheNMNHcollectionsfromdarkgray,organic-richshales, 8 321 andtheyaresimilarenoughtoinferanoriginfromthesamebed.Lacoe 647 must have acquired this specimen prior to the 1889 death of Leo Lesquereux(whoidentifiedit),andturneditovertotheSmithsonian 11 aspartofthe1895donationofthebulkofhisprivatecollection.David White, who arranged, packed and identified the specimens in the 13 Lacoe bequest, thus would have known of this specimen and the Brown'sMillslocalitypriortohis1902fieldworkintheDunkard. Finallythereareavarietyofother,indirectlinesofevidencethatsug- Fig.2.DunkardGroupoutcropareaandlocationofcallipteridcollections.Appalachian gest different sites for Brown's Bridge and Brown's Mills (Fig. 3). BasinProvince(DarkGreen),AppalachianPlateauregion(LightGreen),Dunkardbasin Accordingtohis1902,Pennsylvania–Dunkardfieldnotebook(onfileat (withinredline).1,Brown'sBridge.2,Brown'sMills.3,WestofLittleton.4,Between theNMNH),onAugust10,1902DavidWhitecollectedatCore'sMine pumpingstationwestofLittletonandLittleton.5,EastofBelltonStation.6,RinehartTun- onDoll'sRun(USGS2893—roofoftheWashingtoncoal,nocallipterids nelStation.7,WestofWallaceStation.8,Winkler'sMill.9,PleasantHillGap.10,Locations aroundWaynesburg.11,Williamstown.12,Wolfdale.13,Liberty.ModifiedfromMilici collected),whichwepresumeto havebeenlocatednearpresentday andSwezey(2006,Fig.3). Core, West Virginia, south of Dunkard Creek. On August 11, 1902 he Author's Personal Copy 60 W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 Fig.3.Blacksville,WV1904USGS15′topographicmapsegmentshowingthelocationsoftheBrownsMills(2926)andBrown'sBridge(2921)sitesinWestVirginia.Notethespellingof thesenames.Thereisambiguityinfieldnotes,localityregisters,theliteratureandtheUSGSGeographicNamesInformationSystemregardingthespellingof“Brown's”vs“Browns”for bothBrownsMills(theofficialUSGSspelling)andBrown'sBridge,aswellasBrownsHill,abovetheBrown'sBridgesite.Wehavesplitthedifference. collectedatasitehedesignatedBrown'sBridge(USGS2921—beneath USGStopographicmapdoesnotshowarailroad.If,indeed,therailroad the Washington coal, no callipterids collected), which in his notes is werebuiltafterthecollectionsofLacoeandDavidWhiteweremade, showntobeanunspecifieddistancenorthofabridgeoverDoll'sRun, thentheoriginalbedsmayhavebeenburiedorsignificantlyalteredin northofCore.Onthe1904topographic map,abridgeis shownover outcrop.Thismayaccountfortheinabilityoflatercollectorstorelocate Doll's Run 1.5 miles (2.4km) north of Core, and a second bridge is anyoftheseearlycollectinghorizons. shownoverDunkardCreek,0.5miles(0.8km)northoftheDoll'sRun bridge. On the 1904 topographic map, this second bridge carries the 3.1.1.FontaineandI.C.WhiteCollection roadthatleadstoMt.Morris,Pennsylvania;furthermore,immediately TheentireoriginalDunkardcollectionofFontaineandWhite(1880) tothenorthofthebridge,onthePennsylvania–WestVirginiaborder,is hasbeenlost.Consequently,theirillustrations–allengravingsandof aprominencelabeled“Brown'sHill”.OnAugust12,1902,Whitecollect- variabledetail–areallthatremain,whichhascausedsignificantprob- ednearMt.Morris(USGS2894—beneaththeWaynesburgSandstone, lemswithapplicationofsomeofthetaxonomicnamestheyinstituted. no callipterids collected) and then at the site he called Brown's Mills In their original publication, they illustrated two callipterid species, (USGS2926–justoverthelimestoneabovetheWashingtoncoal,his only one of which they recognized as a callipterid, Callipteris (now callipteridcollection,accordingtotheUSGSlocalityregister–thereare Autunia)conferta(F&WPlateXI,Figs.1–4,reproducedasFig.4aof no D. White field notes accompanying this collection). In 1903, T.E. this paper). The other, which we identify as L. oxydata (Goeppert) Williardobservedthathiscollection,USGS3438(nocallipterids),was Kerp and Haubold, 1988, was originally described as Sphenopteris fromthe“southsideofDunkardCreekoppositethemillatWorley”.The coreacea Fontaine and White (F & W Plate 5, Fig. 5, reproduced as U.S. Geological Survey Names Information System (http://geonames. Fig. 4b of this paper), which Darrah (1969) identified as Callipteris usgs.gov/pls/gnispublic/f?p=132:3:1293502122222994::NO:3:P3_FID, lyratifolia. Fontaine and White (1880, p. 54) describe their plants as P3_TITLE:1549998,Worley)shows“Brown'sMills”tobeanalternative coming from a “calcareous iron ore” that occurs in the roof of the namefor“Worley”.TheWorley/Brown'sMillssiteis1.5(straightline) Washingtoncoal. to2miles(roadalongDunkardCreek)(~2.5–3km)westofthe“Brown's Bridge”location,butWorley/Brown'sMillsalsoisonDunkardCreekand 3.1.2.R.D.Lacoespecimen directlyoppositeabridge. ThereisasinglespecimenofA.confertamentionedabove,fromthe Itappearsfromthisdiscussionthatasitecalled“Brown'sMills”can R.D.Lacoecollection,housedattheNationalMuseumofNaturalHistory beconfidentlylocatedonthesouthsideofabendinDunkardCreek (USNMspecimen27141—Fig.5).ThespecimenwasidentifiedasC. (NWquadrantoftheBlacksville15′Quadranglemap,andNEquadrant conferta by Leo Lesquereux (according to a label affixed to it); it is oftheBlacksville7.5′Quadranglemap),oppositetheunincorporated mostlikelythatthisspecimenwasmadeavailabletoLesquereuxfor townofWorley,alongpresent-dayWestVirginiaRoute7.Weinitially identificationbyLacoe(seenoteinDarrah,1969,p.153).Thespecimen believedtheBrown'sMillscollectionstocomefromclosetothegrade isinaheavy,thinbedded,darkgrayshalethat,fromitsweight,mustin- ofaformerrailroadatthatlocation.However,thecontemporary,1904 deedcontainconsiderablesiderite. Author's Personal Copy W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 61 Fig.4.OriginalillustrationsofcallipteridsbyFontaineandWhite(1880),fromBrown'sBridge,WestVirginia.A.Autunia(Callipteris)conferta.OriginalPlateXI,Figs.1–4.B.Lodeviaoxydata (Sphenopteriscoreacea).OriginalPlateV,Fig.5. TheidentificationofthisspecimenasA.confertaissupportedbythe fromshalesabovethelimestoneimmediatelyabovetheWashington blunttipped,rectangularpinnuleshapes,sunkenmidveinsandassoci- coal. atedvaultedpinnulelaminaeandsteeplateralveins.Preservation of Aspreviouslymentioned,theBrown'sMillsgeologicaldescriptionis thespecimenisnotgood,butthismayreflectitsageandthefactthat at odds with the Brown's Bridge description of Fontaine and White it has been coated in the past, probably with a varnish, to preserve (1880),whoreportedtheirplantbedtobetheroofoftheWashington whatmayhavebeentheflakingorganiccompression. coal.DarrahreportsthatherecollectedfromtheBrown'sMillssitein 1932,butdoesnotillustrateitorprovideageologicalinterpretivesec- tion; he described the plant bed as a thin, dense, arenaceous shale, 3.1.3.DavidWhitecollection whichbroadlyfitstheotherknowncollections,buthedoesnotmention DavidWhite's“Brown'sMills”collection(USGSlocality2926)con- theconspicuouslydarkcolor. tains both A. conferta (Fig. 6) and L. oxydata (Fig. 7), the same taxa Environmental interpretation of the callipterid-bearing beds at reportedfromBrown'sBridgebyFontaineandWhite(1880).Thema- Brown'sMillsisdifficult,basedonthefragmentaryevidenceavailable. trixofthespecimensdiffersslightlyfromthatofthesingleSmithsonian Furthermore,thesiteispresentlyheavilyvegetatedand,thus,toopoor- Lacoespecimen,mainlyinbeinglesssideriticandmoredistinctlylami- lyexposedtopermitlocationoftheoriginalbeds.I.C.White(1891), nated,butbothareverydarkshaleswithconsiderablesideritecontent, however, described a complex section at the Brown's Mills site and sotheymayrepresentdifferentpartsofordifferentcollectinglocalities noted that plants occur in layers of bituminous shales within the withinthesamebed.DavidWhite's1902fieldnotes,frustratingly,do Lower Washington Limestone. The co-occurrence of large, well pre- notmentionthislocalitybyname.Theonlyrecord,therefore,isinthe servedfragmentsofA.confertaandL.oxydatatogetheronsomebedding USGeologicalSurveypaleobotanicallocalityregisterentry,whichprob- surfaces,inthesamelithology,leaveslittlequestionthatthesespecies ably was based on data included with the specimens when shipped werelivingtogether,atleastintheorganic-shalehabitat.Thesedark- from the field. The locality register notes that the collections come shale, callipterid beds also include a fauna of ostracodes and snails Author's Personal Copy 62 W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 Fig.5.R.D.LacoeCollectionspecimenfromBrown'sMills,WestVirginia,identifiedbyLeoLesquereux.Autuniaconferta.USNMspecimen27141.Specimenhasbeencoatedwithan unidentifiedsubstance.A.Typicalsmall-pinnuledformofAutuniaconferta.B.MagnificationofpinnaefromA,illustratingattachmenttomainrachisandpinnulecharacteristics,upswept venation.Scalebars=1cm. (Tibertetal.,2011).Thesnailsareheavilycalcifiedandwouldhavere- 3.2.WestofLittleton quiredalkaline-richwatersheds,thustheydidnotlikelyliveinassocia- tionwiththedrowningofanacidic,peat-formingswamp.Thegeneral Several plant collections from “West of Littleton”, West Virginia, inferenceisthatthelimestoneandtheinterbeddedshalesweredepos- weremadebyDavidWhiteonAugust22,1902.AccordingtoWhite's itedunderaseasonallydryclimate(N.Tibert,personalcommunication, fieldnotesandanotefoundwiththecollections,thesitewasatthe 2013). westendofthefirstrailroadcutwestofLittleton.Therailroad,then We may draw the following conclusions from these observations. theBaltimoreandOhioline,isnowgone,butappearsontheNEquad- (1)Thestratigraphic-temporalseparationofthecallipteridbedsfrom rantoftheLittleton15′USGSquadranglemapfromtheearly20thcen- theWashington coal complex indicatesthattheywere notdeposited tury(Fig.8).T.E.Williardcollectedfromthesesameexposuresin1903 bydrowningofthecoalswamp.(2)Thisplantbedcontainsabundantre- andnotedthemascomingfromthefirstrailroadcutnorthofLittleton, mainsofnon-marineostracodes,snails,fishandserpulidworms(Tibert justaboveFishCreek.Duetothepathoftherailroadtrack,,thesiteis,in etal.,2011),suggestingthatitmaybeaninterbedfaciesoftheLower fact,northandwestofLittleton. WashingtonLimestone,whichmayexplaintheironcarbonatecontent TheWest/NorthofLittletonplantcollections(USGSLocalityNumbers oftheshales.(3)Thepositionoftheplant-bearingshaleabove,orper- 2909,2909×,2911,3376)consistofseveraldifferentlithologies.D.White hapsevenwithin,apartingofalimestonereflectsashiftfromahumid indicatesplantsatminimallyfourlevels,whichmayaccountforhislitho- climate during coal-swamp development to a sub-humid, seasonally logically mixedsamples—there are fewerUSNMcollectionsthanthe dryclimate(terminologyofCecilandDulong,2003)duringdeposition number of plant-bearing beds indicated in the field notes, indicating ofthenon-marinelimestoneandorganic-richshaleinterbeds.(4)The mixingofcollectionsmadefromthevarious,distinctfossiliferousbeds. density, lack of preferential orientation and excellent preservation of Similarly,Williard'ssamplesarelithologicallyheterogeneous,indicating theplantmaterialsuggestaparautochthonoustoautochthonousenvi- derivation from more than one fossiliferous bed. D. White's notes for ronmentofaccumulation—thefoliagewasburiedwhereitfellfrom thislocationindicatearelativelylargenumberoflimestonesinthesec- theparentplant.(5)Atthe landscapescale, the reportofcallipterids tion,interspersedwithredandgreenshale.Thestratigraphicpositionof fromsandstonesatthissite(Gillespieetal.,1975)isancillaryevidence thesebedsappearstobebetweentheJollytownandDunkardcoals(be- that callipterids were widespread and occurred across the landscape tween which the Tenmile coal occurs, Fig. 1), with some uncertainty. foranextendedperiod,permittingtheirpreservationinavarietyofhab- ThispositionwouldputthecollectionsinthelowerGreeneFormation, itatsandthelithologiesformedtherein. atvariousdistancesabovetheUpperWashingtonLimestone. Author's Personal Copy W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 63 Fig.6.AutuniaconfertafromBrown'sMills,WestVirginia,collectedbyDavidWhite.USGSlocality2926.A.USNMspecimen543957,fragmentaryfrondwithseveralpinnae.B.3Xenlarge- mentofA,notepinnuleshape,whichisthesameasthatoftheLacoe/LesquereuxspecimenandthoseillustratedbyFontaineandWhite(1880)fromBrown'sBridge.Thicknessofpinnule laminaeobscuressteeplyascendinglateralveins.C.USNMspecimen543962,pinnatipwithacroscopicallyfusedpinnules,steeplyascendinglateralveins.BandCatsamemagnification. Scalebars=1cm. Collections2909,2909×and3376aremostlyhandsamplesofgrayto basedonthepresenceofslickensides,bioturbatedtexture,andlackof redclay-richmudstoneswithafewbuffsiltstones.Themajorityoftheas- clearbedding.Wewouldcharacterizeallthesecallipteridspecimensas semblageineachcollectionconsistsalmostentirelyoftypicalLatePenn- A.conferta(Fig.9A–C),basedonthehighvaultingofthepinnules,sunken sylvanian wetland plants, including Pecopteris tree-fern foliage, midveins,anddense,steepsecondaryveins.TheD.Whiteandsomeofthe calamitalean remains and possibly Callipteridium. There are, however, Williardcallipteridcollectionsmayhavecomefromthesamebed,based severalspecimensofcallipteridsinthesecollections,preservedingray onthesimilarityoftheirrespectivelithologies.However,theWilliardcol- toredmudstonesthatappeartohavebeenpedogenicallyoverprinted, lectionincludesaspecimeninbuffsiltstone. Author's Personal Copy 64 W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 Fig.7.LodeviaoxydatafromBrown'sMills,WestVirginia,collectedbyDavidWhite.USGSlocality2926;USNMspecimen543958.A.Fragmentoffrondwithattachedpinnae.B.3×enlarge- mentofA,notepinnuleshape,steeplyascendinglateralvenation,andthickpinnulelaminae.C.Closeupoftwopinnae.Notespirorbidsattachedtothefoliage(oneatwhitearrow,others canbeseenbyscanningthefoliagelaminae).Scalebars=1cm. Collection2911alsoconsistsofamixtureoflithologies,includingred tunnel along the railroad grade. No pumping station is shown north mudstonesandbuff,micaceoussiltstone.Asinglepossiblecallipteridis andwestofLittletononthe1926USGS15′topographicmap(Fig.8). presentinthiscollectioninthebuffsiltstonefacies.Thespecimenmost Thespecimensfromthissiteareamixtureoflithologiessuggesting closelyresemblesRhachiphylluminthepresenceofflatpinnulelaminae, that they were collected from different beds. Most of the specimens relativelysparseveins,andathin,non-sunkenpinnulemidvein. are red mudstone, consisting mainly of wetland taxa such as Basedonthemixednatureofthecollections,onthesmallamountof Macroneuropteris scheuchzeri, Polymorphopteris, Pecopteris and overlapbetweenthecallipteridsandwetlandspecies,andontheuncer- Sphenophyllum.However,severalpinnaeofA.confertaoccurinagray, taintyinthefieldnotesthataccompanythecollections,littlecanbesaid carbonate-rich, fine grained mudstone, on an irregular red-stained aboutthepaleoenvironmentsoccupiedbytheseplantsoraboutthecli- surface.Thepinnulesarevaultedwithasunkenmidveinandsteeply maticregimeunderwhichtheylived. angledlateralveins(Fig.9D,E). D.White(fieldnotes)placesthiscollectionatthelevelofacoalho- rizonbetweentheJollytowncoalandtheDunkardcoal(notedas“fide 3.3.BetweenLittletonandthePumpingStationWestofLittleton I.C.W.”—presumablyreferringtoI.C.White).IfD.Whiteinterpreted thesectioncorrectly,thesecollectionsappeartobefromasuccession USGSLocality2901isanunspecifieddistancetothewestoftheLittle- ofthincarbonatebedsandredshalebelowabedofcoalandcarbona- tonrailroadstation(accordingtoD.White'sfieldnotes),butperhaps¼ ceous shale, above the Jollytown coal, making the Tenmile coal a or less of the distance between Littleton and the Board Tree railroad candidate. Author's Personal Copy W.A.DiMicheleetal./InternationalJournalofCoalGeology119(2013)56–78 65 Fig.8.Cameron,WV1904andLittleton,WV1926USGS15′topographicmapsegmentsshowingfossilplantlocalitiesfromWestofLittleton(2909and2911),NorthofLittleton(3376)and BetweenLittletonandthePumpingStationWestofLittleton(2901).Fossilplantlocality2mileseastofBellton(2914).AllinWestVirginia. 3.4.TwoMilesEastofBelltonStation asinglespecimenwithcallipteridimpressionsinthiscollection;itcon- tainspartsoftwopinnae,preservedinahard,buff,siltstone.Theyare Along the former Baltimore and Ohio Railroad, two miles east of referable to A. conferta based on pinnule shape, sunken midveins, Bellton,WestVirginia(Fig.8),D.Whitecollectedspecimensfromred steeplateralveinsandvaultedpinnulesurfaces(Fig.10). andgrayshales,anunspecifieddistanceabovewhatheidentifiedas the “Dunkard (or perhaps the Jollytown) coal” (field notes), which 3.5.RinehartTunnelStation wouldplacethiscollection(USGSLocalitynumber2914)inthelower portion of the Greene Formation. The coal is noted as 6 in. (15cm) On August 23, 1902, the final day of his summer field season, thick.RedbedslieabovetheDunkardcoal(Fig.1),separatedfromit D.WhitestoppednearanewlyexcavatedrailroadtunnelontheWest bygrayshalesandsandstone,whichisbroadlyinconformancewith VirginiaShortlineRailroad(fieldnotespage34),asitehereferredto D. White's field sketch, perhaps explaining his identification of the as“TunnelSta.”(?TunnelStation).Apossiblylateradditiontothenote- coal bed. From White's notes, it appears that the plant-bearing beds bookbyD.Whiteoranunknownpersonlocatesthissite“…inSEcorner areseparatedfromthecoalbymorethanameterbutlessthan10m. ofWetzelCountyinCenterpoint15′quadandFolsom71/2′quad.Itis Consisting,again,ofmixedlithologiesandamixedflora,D.White's between Rinehart and Folsom” (Fig. 11). White notes “Callipteris in fieldnotesrecord“Callipterisreginum[Callipterisconferta]”.Wefound plentyatthetunnelinthe[illegible]dumpandindumpatthew.end
Description: