ebook img

Calibration of a 2D hydrodynamic model for flood inundation extent using aerial photographs: A ... PDF

90 Pages·2017·6.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calibration of a 2D hydrodynamic model for flood inundation extent using aerial photographs: A ...

TRITA-HYD 2017:03 © Alexandros Chatzakis 2017 Royal Institute of Technology (KTH) Department of Civil and Architectural Engineering Division of Hydraulic Engineering SE-100 44 Stockholm, Sweden Abstract Alteration of rainfall patterns is one major impact of climate change. Rainfall events with big precipitation volumes under short periods of time are predicted to become even more frequent in higher latitude regions, including Sweden. One characteristic example of such an intense rainfall occurred between the 5th and 6th of September 2015 in Hallsberg, a city in central Sweden, where approximately 105 mm of rain fell under 24 hours, causing severe flooding in the city. In order to be able to predict flood cases like the aforementioned one, hydrodynamic models are employed to simulate floods and investigate rainfall scenarios so that the competent authorities can take precaution measures. However, due to lack of calibration data most of flood models are not validated and are comprised of substantial uncertainty. This report aims to study the Hallsberg flood event in September 2015 by calibrating a hydrodynamic model using aerial photographs for the flood inundation extent. The utilized model is MIKE 21, which is a 2D overland flow model developed by DHI. Contrary to the common practice in flood studies where inclusion of the infiltration capacity is implemented with an arbitrary reduction of the rain volume, the infiltration module of MIKE 21, which is a new development in the model, was utilized. Apart from the inundation extent, the outputs were also evaluated for the water depth in two points based on a photograph captured from the streets of the affected area, the description of the course of events for the timing of flood’s culmination and the water volume on the pixels that were erroneously simulated as flooded. The results presented a high degree of agreement with the observations. The parameter of surface resistance, expressed as Manning’s “M”, was found to be of paramount importance with the suitable values for undeveloped areas being below 5. In addition, the culverts’ limited capacity played an important role in the flooding of the city and hence including them in the simulations is crucial. Finally, utilization of the infiltration module resulted in a higher accuracy of 8.3% although it can be considered more of an arbitrary deduction of water as some of the parameters used in it are not physically well justified. Keywords MIKE 21, flood modelling, calibration, infiltration module, inundation, aerial photographs iii Sammanfattning Ändringar i nederbördsmönster är en tydlig konsekvens av klimatförändringen. Regnhändelser med stora volymer nederbörd under korta tidsperioder förutses bli alltmer frekventa i regioner vid högre breddgrader, däribland Sverige. Ett karaktäristiskt exempel av en sådan händelse skedde mellan den femte och sjätte september 2015 i Hallsberg. Ca 105 mm regn föll inom loppet av 24 timmar vilket orsakade stora översvämningar i staden. För att kunna förutse översvämningar så som den tidigare nämnd och möjliggöra vidtagning av förebyggande åtgärder används hydrodynamiska modeller för att simulera vattenflöden och undersöka möjliga scenarion av nederbörd. Emellertid, på grund av avsaknaden av data för kalibrering av modellerna medför användandet av dem en signifikant osäkerhet. Syftet med den här rapporten är att undersöka översvämningen i Hallsberg i september 2015 genom att kalibrera en hydrodynamisk modell med hjälp av flygbilder för översvämningens utbredning. Den använda modellen, MIKE 21, är en 2D modell över ytavrinningen utvecklad av DHI. Praxis vid studiet av översvämningar är att inkludera infiltrationsförmåga med ett godtyckligt avdrag av nederbörden. Här används istället infiltreringsmodulen för MIKE 21, vilket är en ny del som har utvecklats i modellen. Förutom översvämningens utbredning utvärderades även resultaten utifrån vattendjupet vid två punkter baseras på ett fotografi från gatorna i det drabbade området. Utvärdering av resultaten gjordes också mot tid av översvämnings kulm från beskrivning av händelses förlopp samt vattenvolym vid pixlarna som felaktigt simulerades som översvämmade. Resultatet visade på en hög grad av samstämmighet med gjorda observationer. Parametern ytans råhet, uttryckt som Mannings ”M”, visade sig vara av stor betydelse med lämpliga värden för underutvecklade områden under 5. Därtill spelade kulvertarnas begränsade kapacitet en viktig roll vid översvämmandet av staden. Att inkludera dessa i simuleringarna var därför avgörande. Slutligen, användandet av infiltreringsmodulen resulterade i en högre noggrannhet av 8.3 %, även om det kan anses vara ett godtyckligt vattenavdrag då vissa av de använda parametrarna inte är fysiskt välmotiverade. Nyckerlord: MIKE 21, översvämnings modellering, kalibrering, infiltration modul, flygbilder v Preface This report constitutes my Master of Science thesis which marks the completion of my education in the Master’s program Environmental Engineering and Sustainable Infrastructure at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The thesis was conducted as a collaboration between Sweco Environment AB and the Division of Hydraulic Engineering in KTH during the period of March to October 2015. I would like to thank all the people involved in a greater or lesser extent in the realization of this project. A big thank you is directed to Sweco Environment AB and Fredrik Ohls for showing trust in me and giving me the opportunity to collaborate with them, which made the process of conducting my thesis instructive in multiple levels. Special thanks go to my supervisor in Sweco, Xavier Mir Rigau, for all his time, support and valuable inputs. I would also like to thank the whole group of VA- utredningar that made me feel welcomed. From KTH I would like to thank my supervisor Joakim Riml for having a harmonious collaboration, for his availability and for his valuable inputs in the analysis of the results. I would also like to thank Anders Wörman for being my examiner and his help in formulating the topic of the thesis. Finally, since this thesis signifies the completion of my master’s studies, I would like to express my gratitude to KTH and, more specifically, to the faculty and personnel of EESI program for offering me the opportunity to develop myself by making sure to provide top quality education. Stockholm, December 2016 Alexandros Chatzakis vii Table of contents Abstract ...................................................................................................................... iii Sammanfattning .......................................................................................................... v Preface ................................................................................................................... ….vii 1 Introduction…………………………….………………………………………………..1 1.1 Types of floods ................................................................................................ 1 1.2 Flood management practices ........................................................................ 3 1.2.1 Strategies for modelling floods ............................................................. 4 1.2.2 Different approaches for flood modeling ..............................................5 1.2.3 Calibration data for flood models………………………………………………….6 1.3 Aims and objectives ....................................................................................... 7 2 Materials And Methods………………………………………………………………9 2.1 Materials........................................................................................................ 9 2.2 MIKE 21 ........................................................................................................ 9 2.2.1 MIKE 21 Flow Model ........................................................................... 10 2.2.2 Resistance ........................................................................................... 12 2.2.2.1 Resistance in MIKE 21 ................................................................ 16 2.2.3 Flood and Dry ..................................................................................... 17 2.2.4 Infiltration ........................................................................................... 17 2.2.4.1 Infiltration in MIKE 21 ............................................................... 19 2.3 Case study .................................................................................................... 21 2.3.1 Description of the Study area .............................................................. 21 2.3.2 Hydrological conditions and previous floods .................................... 25 2.3.3 The flood event in September 2015 .................................................... 27 2.4 Acquisition and preprocessing of the data ................................................. 29 2.4.1 Bathymetry ......................................................................................... 29 2.4.1.1 Buildings ..................................................................................... 30 ix 2.4.1.2 Culverts and bridges ................................................................. 30 2.4.1.3 Closing the boundaries .............................................................. 31 2.4.2 Precipitation ....................................................................................... 32 2.4.3 Surface resistance .............................................................................. 34 2.4.4 Infiltration .......................................................................................... 35 2.5 Model setup ................................................................................................. 37 2.6 Calibration .................................................................................................. 38 2.6.1 Surface resistance ................................................................................ 41 2.6.2 Infiltration parameters ...................................................................... 43 2.6.3 Initial Water surface .......................................................................... 46 2.6.4 Culverts ...............................................................................................47 2.6.5 Sink ..................................................................................................... 48 2.7 Performance comparison and uncertainty analysis ................................... 49 3 Results……………………………………………………………………………..……52 4 Discussion……………………………………………………………………………..60 4.1 Results ......................................................................................................... 60 4.2 Uncertainties and limitations ..................................................................... 62 4.2 Investigation of uncertainty in model parameters .................................... 64 4.3 Calibration and Performance Index ........................................................... 65 5 Conclusions………………………………………………………………………..…..67 References ................................................................................................................. 68 x

Description:
offshore structures, cooling water, desalination and recirculation analysis, environmental impact .. Figure 3 : Graphical representation of Horton`s equation for infiltration rate (Hiscock, 2005). Another equation is derived by Philip,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.